Not Applicable
Not Applicable
Not Applicable
Not Applicable
Not Applicable
The disclosure relates to fueling devices and more particularly pertains to a new fueling device for automatically refueling a vehicle at a gas station. The device includes a refueling station that includes a control panel that is extendable away from the refueling station and a robotic arm that is movably integrated into the refueling station. The device includes a pair of sensing units that are each positioned on a driveway of the gas station for sensing the weight of the vehicle. The control panel extends outwardly toward the vehicle to facilitate the driver of the vehicle to access the control panel for purchasing fuel. The robotic arm extends into a refueling port in the vehicle once the driver has purchased the fuel to refuel the vehicle.
The prior art relates to fueling devices including an automated refueling station that includes electronic means of receiving vehicle information from a transponder in the vehicle and a robotic arm which is suspended from an elevated carriage to refuel the vehicle. The prior art discloses a variety of refueling stations that each includes a robotic arm that engages a fuel port on a vehicle for refueling the vehicle. The prior art discloses a refueling station that includes a robotic arm for refueling a vehicle and a lifting unit that aligns the vehicle with the robotic arm. The prior art discloses an autonomous refueling device that includes a payment terminal and a robotic arm that is discrete from the payment terminal.
An embodiment of the disclosure meets the needs presented above by generally comprising a refueling station that is positioned at a gas station for refueling gas burning vehicles. The refueling station includes a control panel that is movably integrated into the refueling station to facilitate a driver of a vehicle to access the control panel. The refueling station includes a robotic arm that is actuatable to extend into a refueling port in the vehicle for refueling the vehicle without requiring the driver to exit the vehicle. A pair of sensing units is each positioned on a driveway adjacent to the refueling station. Furthermore, the refueling station is turned on when each the sensing units senses the weight of the vehicle.
There has thus been outlined, rather broadly, the more important features of the disclosure in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the disclosure that will be described hereinafter and which will form the subject matter of the claims appended hereto.
The objects of the disclosure, along with the various features of novelty which characterize the disclosure, are pointed out with particularity in the claims annexed to and forming a part of this disclosure.
The disclosure will be better understood and objects other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such description makes reference to the annexed drawings wherein:
With reference now to the drawings, and in particular to
As best illustrated in
The refueling station 12 comprises a housing 24 that has a bottom wall 26, a top wall 28 and an outer wall 30 extending between the bottom wall 26 and the top wall 28, and the outer wall 30 has a first lateral side 32, a second lateral side 34 and a front side 36. The housing 24 has a slot 38 extending through the first lateral side 32 and the slot 38 is elongated to extend substantially between the bottom wall 26 and the top wall 28. The control panel 16 is disposed on the front side 36 and the housing 24 has a channel 40 extending through the front side 36. The channel 40 extends substantially between the bottom wall 26 and the top wall 28, and the channel 40 is positioned closer to the second lateral side 34 than the first lateral side 32.
A control actuator 42 is movably integrated into the front side 36 of the outer wall 30, the control actuator 42 has a distal end 44 with respect to the front side 36 and the control panel 16 is positioned on the distal end 44. The control actuator 42 is actuatable into a retracted position having the control actuator 42 being recessed into the front side 36 such that the control panel 16 is aligned with the front side 36. Conversely, the control actuator 42 is actuatable into an extended position having the control panel 16 being spaced from the front side 36 thereby facilitating the control panel 16 to be accessible to the driver 18 of the vehicle 20. Additionally, the control panel 16 has an exposed surface 46 with respect to the control actuator 42. The control actuator 42 includes a corrugated surround 48 that extends between the front side 36 of the outer wall 30 and a rear side 50 of the control panel 16. Additionally, the control actuator 42 may comprise a linear electromechanical actuator or other type of actuator that can both extend and retract.
A lifting unit 52 is integrated into the housing 24, the lifting unit 52 has an engagement 54 extending outwardly through the channel 40 in the front side 36 of the outer wall 30 of the housing 24 and the engagement 54 travels upwardly or downwardly in the channel 40. The engagement 54 is coupled to the control actuator 42 for moving the control actuator 42 upwardly or downwardly along the front side 36 of the outer wall 30 of the housing 24. In this way the control actuator 42 can be aligned with a driver's side window 54 of a variety of types of vehicles 20, such as sport utility vehicles, compact vehicles and any other vehicles that might have varying heights of driver's side windows with respect to each other. The lifting unit 52 might comprise an electric motor and a gear that engages the housing 24, an electromechanical linear actuator or any other type of actuator that can travel in two directions.
The refueling station 12 includes a control circuit 56 that is positioned in the housing 24 and the control circuit 56 is electrically coupled to a power source 55 comprising an electrical system of the gas station 14. The control circuit 56 receives an actuate input, the control circuit 56 receives a de-actuate input and the control circuit 56 receives a payment input. The control circuit 56 is electrically coupled to the control actuator 42, the control actuator 42 is actuated into the extended position when the control circuit 56 receives the actuate input and the control actuator 42 is actuated into the retracted position when the control circuit 56 receives the de-actuate input. Furthermore, the control circuit 56 is electrically coupled to the lifting unit 52.
The robotic arm 22 includes a first section 58, a second section 60 that is pivotally attached to the first section 58 and a third section 62 that is pivotally attached to the second section 60. The first section 58 extends outwardly from the slot 38 in the first lateral side 32 of the outer wall 30 of the housing 24. The second section 60 lies on a plane that is oriented parallel to the first lateral side 32 of the outer wall 30 and the third section 62 lies on a plane that is oriented parallel to the first lateral side 32 of the outer wall 30. The third section 62 has a distal end 64 with respect to the second section 60 and the robotic arm 22 has a fuel nozzle 66 extending away from the distal end 64 of the third section 62. Additionally, the third section 62 comprises a plurality of telescopic sections 68 that slidably engage each other such that the third section 62 has a telescopically adjustable length.
The robotic arm 22 includes a first actuator 70 that is positioned within the housing 24, the first actuator 70 is electrically coupled to the control circuit 56 and the first actuator 70 urges the first section 58 upwardly or downwardly in the slot 38. The first actuator 70 may comprise an electric motor with a gear that engages the housing 24, an electromechanical linear actuator or other type of actuator that can move in two directions. The robotic arm 22 includes a second actuator 72 that is positioned at an intersection between the first section 58 and the second section 60, the second actuator 72 is electrically coupled to the control circuit 56 and the second actuator 72 rotates the second section 60 about the first section 58. The second actuator 72 may comprise a two direction electric motor, a servo or other type of actuator commonly associated with robotic arms.
The robotic arm 22 includes a third actuator 74 that is positioned at an intersection between the second section 60 and the third section 62. The third actuator 74 rotates the third section 62 about the second section 60 and the third actuator 74 is electrically coupled to the control circuit 56. The third actuator 74 may comprise a two direction electric motor, a servo or other type of actuator commonly associated with robotic arms. The robotic arm 22 includes a fourth actuator 76 that is disposed within the third section 62 for extending and retracting the telescopic sections 68, and the fourth actuator 76 is electrically coupled to the control circuit 56. The fourth actuator 76 may comprise a linear electromechanical actuator or other type of mechanism that is common to extendable robotic arms.
The refueling station 12 includes an alignment camera 78 that is coupled to the front side 36 of the outer wall 30 of the housing 24 such that the alignment camera 78 can capture imagery of the vehicle 20. The alignment camera 78 is electrically coupled to the control circuit 56 and the control circuit 56 analyzes the imagery of the vehicle 20 thereby facilitating the control circuit 56 to actuate the lifting unit 52 to align the actuator with the driver's side window 54. Additionally, the control circuit 56 actuates each of the first actuator 70, the second actuator 72, the third actuator 74 and the fourth actuator 76 to urge the robotic arm 22 into a strategic orientation for inserting the fuel nozzle 66 into the refueling port 23 in the vehicle 20.
The refueling station 12 includes a display 80 which is coupled to the exposed surface 46 of the control panel 16 such that the display 80 is visible to the driver 18 of the vehicle 20. The display 80 is electrically coupled to the control circuit 56 and the display 80 displays indicia 82 comprising words and numbers for communicating operational parameters of the refueling station 12 to the driver 18. The display 80 may comprise a liquid crystal display or other type of electronic display. The refueling station 12 includes a card reader 84 that is integrated into the exposed surface 46 of the control panel 16 thereby facilitating the card reader 84 to receive a financial transaction card for processing a payment. The card reader 84 is electrically coupled to the control circuit 56 and the control circuit 56 receives the payment input when the card reader 84 successfully processes a payment with the financial transaction card.
The refueling station 12 includes a keypad 86 that is integrated into the exposed surface 46 of the control panel 16 such that the keypad 86 is accessible to the driver 18. The keypad 86 is electrically coupled to the control circuit 56 for programming operational parameters into the refueling station 12 including numerical data pertaining to the card reader 84 for processing the payment. The refueling station 12 includes a currency unit 88 that is integrated into the exposed surface 46 of the control panel 16 thereby facilitating the currency unit 88 to insertably receive currency for processing a payment. The currency unit 88 is electrically coupled to the control circuit 56 and the control circuit 56 receives the payment input when the currency unit 88 receives a pre-determined amount of currency.
The refueling station 12 includes a plurality of fuel buttons 90 that is each movably integrated into the exposed surface 46 of the control panel 16 such that each of the fuel buttons 90 is accessible to the driver 18. Each of the fuel buttons 90 is electrically coupled to the control circuit 56 and each of the fuel buttons 90 is in communication with a respective one of a plurality of fuel pumping units 92 in the gas station 14. Additionally, the robotic arm 22 is in fluid communication with each of the fuel pumping units 92 and a respective one of the fuel pumping units 92 is turned on when the fuel button 90 associated with the respective fuel pumping unit 92 is depressed thereby facilitating the robotic arm 22 to dispense fuel into the refueling port 23 in the vehicle 20. The fuel pumping units 92 may comprise fuel pumping units that are commonly employed at gas stations for delivering gasoline to gasoline pumps.
A pair of sensing units 94 is provided and each of the sensing units 94 is positioned on a driveway 96 adjacent to the refueling station 12 such that the vehicle 20 drives over the sensing units 94 when the vehicle 20 parks next to the refueling station 12. Each of the sensing units 94 is in communication with the refueling station 12 and the refueling station 12 is turned on when each the sensing units 94 senses the weight of the vehicle 20. Each of the sensing units 94 comprises a panel 98 that has a lower surface 99, an upper surface 100 and a perimeter surface 102 extending between the lower surface 99 and the upper surface 100. The perimeter surface 102 angles inwardly between the lower surface 99 and the upper surface 100 such that the panel 98 has a trapezoidal shape, and the lower surface 99 rests on the driveway. The panel 98 associated with each of the sensing units 94 is aligned with a respective one of the first lateral side 32 and the second lateral side 34 of the outer wall 30 of the housing 24 thereby facilitating panel 98 associated with each of the sensing units 94 to be aligned with a respective one of a set of rear wheels 104 and a set of front wheels 106 of the vehicle 20.
Each of the sensing units 94 includes a weight sensor 108 that is integrated into the upper surface 100 of the panel 98 such that the weight sensor 108 senses the weight of the vehicle 20 when the vehicle 20 drives onto the panel 98. The weight sensor 108 is electrically coupled to the control circuit 56 and the control circuit 56 receives the actuate input when the weight sensor 108 senses weight. Each of the first actuator 70, the second actuator 72, the third actuator 74 and the fourth actuator 76 in the robotic arm 22 are not actuated until the control circuit 56 receives the actuate input and the payment input. In this way the vehicle 20 will not be refueled until a payment has been processed. Additionally, the control circuit 56 receives the de-actuate input when the weight sensor 108 does not sense weight.
In use, the vehicle 20 drives onto each of the sensing units 94 and the lifting unit 52 and the actuator position the control panel 16 to be accessible the driver 18 in the vehicle 20. The driver 18 processes a payment with either a financial transaction card or currency and the driver 18 depresses a respective fuel button 90 according to the driver's 18 preference. The robotic arm 22 is actuated to insert the fuel nozzle 66 into the refueling port 23 in the vehicle 20 for refueling the vehicle 20. In this way the vehicle 20 can be refueled without requiring the driver 18 to exit the vehicle 20 thereby reducing the transmission diseases between multiple drivers.
With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of an embodiment enabled by the disclosure, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by an embodiment of the disclosure.
Therefore, the foregoing is considered as illustrative only of the principles of the disclosure. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the disclosure to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the disclosure. In this patent document, the word “comprising” is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article “a” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be only one of the elements.
Number | Name | Date | Kind |
---|---|---|---|
3364940 | Ginsburgh | Jan 1968 | A |
3642036 | Ginsburgh | Feb 1972 | A |
4735289 | Kenyon | Apr 1988 | A |
4793429 | Bratton | Dec 1988 | A |
4881581 | Hollerback | Nov 1989 | A |
5238034 | Corfitsen | Aug 1993 | A |
5644119 | Padula | Jul 1997 | A |
6202712 | Aguilar | Mar 2001 | B1 |
6237647 | Pong | May 2001 | B1 |
6279624 | Corfitsen | Aug 2001 | B1 |
6338008 | Kohut | Jan 2002 | B1 |
6382269 | Tatsuno | May 2002 | B1 |
6431226 | Koslowsky | Aug 2002 | B1 |
8393362 | Hollerback | Mar 2013 | B1 |
9169114 | Butler, Jr. | Oct 2015 | B2 |
D890218 | Larsson | Jul 2020 | S |
20190023557 | Wu | Jan 2019 | A1 |
20200122998 | Stumpf | Apr 2020 | A1 |
20210017014 | Mouser | Jan 2021 | A1 |
20220402746 | Trott | Dec 2022 | A1 |
20230150811 | Li | May 2023 | A1 |
Number | Date | Country |
---|---|---|
WO9854084 | Dec 1998 | WO |
Entry |
---|
AI translation of FR2780051 (Year: 2024). |
Number | Date | Country | |
---|---|---|---|
20230356994 A1 | Nov 2023 | US |