Automated garage door closer

Abstract
An automated garage door closing device for a remote controlled overhead garage door wherein the device is mounted on one of a pair of parallel tracks receiving rollers suitably mounted on the outer edges of the door panels, the device including a switch housing containing a switch for the leading edge of the door, and a circuit located in a second housing adjacent the garage floor and including an interval timer acting to close the door after a predetermined period of time, an audible alarm which is activated upon the garage door reaching the fully open position, a switch deactivating the entire unit when the garage door is deliberately to be left in the fully open position, and a flexible switch arm extending through the switch housing to a position to engage the upper edge of the garage door panel and acts to activate the automated closing device. A recycle delay circuit in the timing circuit acts to deactivate the unit upon interruption of the door closing operation if door movement is reversed and returned to the open position, and a sensor providing a sensor beam adjacent the garage floor to measure the time interval of interruption of the sensor beam to determine if a vehicle has exited or entered the garage or a person or animal has interrupted the beam. Also, a carbon monoxide detector is inserted in the circuit to provide activation of the door opening cycle if the level of carbon monoxide reaches a dangerous level.
Description




TECHNICAL FIELD




The invention disclosed herein relates to an improved garage door closer that will automatically act to close a garage door that is left open for a specified period of time to prevent unwanted access to the garage.




BACKGROUND




Most residences are provided with garages which are either separated from the main residence or are directly connected to the house or through a breezeway, and have a connecting doorway from the garage into the house for entrance or egress therefrom; the garage having space for one or more vehicles. Of these garages, many have one or more overhead garage doors which travel on pairs of generally parallel tracks at the sides of the door opening from a closed vertical position to a substantially horizontal open position a short distance below the ceiling of the garage. Although a garage door may be manually opened or closed by the owner, the vast majority are provided with a reversible electric motor for raising and/or lowering the door, the motor being actuated by a wall switch on a wall of the garage or through a remote radio transmitter carried in the vehicle to send a signal from the vehicle driver to a receiver operatively connected to the motor to open or close the door. Thus, in inclement weather conditions, the driver is not obligated to leave the vehicle to open or close the door.




One problem with an automated overhead garage door is that, occasionally the door is unintentionally left in the open position when leaving the garage. When this happens, the security of the residence may be compromised by unauthorized entry into the garage and/or access to the house by burglars by breaking into the house through the connecting door leading from the garage to the house. Obviously, such a security breach is unwelcome and may result in property losses of objects stolen from the garage and/or house.




There have been a number of proposed solutions to this problem, however, many of the solutions are mechanical in nature and require specially manufactured parts. Also, electronic solutions to the problem have been suggested, but these systems lack versatility and have disadvantages regarding power supply and limitations in the timer function. Further, problems may occur with a premature closing of the garage door that might result in the door closing on a vehicle or locking a person out of his house. The present invention overcomes these problems in a simplified solution for automatically closing the garage door and is in conformity with United Underwriters Laboratory regulations.




SUMMARY OF THE INVENTION




The present invention relates to a novel and improved automated garage door closing device including a variable timing mechanism, optical sensor, carbon monoxide detector and activation switch. The activation switch is mounted to the door support rail and triggered when the door reaches the open position. The timing device, carbon monoxide detector and optical sensor, which are mounted in an enclosed case, are attached to the door support rail approximately eighteen inches from the garage floor. The sensor is directed to the opposite end of the door opening to a reflector mounted at the same height. The timing device is powered by a twelve-volt DC power supply, and two wires are attached to the activation switch previously described to activate the device when the door is opened. The timing device has a terminal for attaching two wires to the door opener that activates the door opener when a relay in the timing device is activated. The terminal can also be substituted with a radio transmitter that can learn the code of the door opener to eliminate the need for wires.




When the garage door is opened, the timing device is ready for the sequence of events. The timer that activates the door opener will not activate until a vehicle enters or leaves the garage. The timer is ready to be activated when the sensor is interrupted for at least three seconds or more. The activation of the timer takes place one second after the sensor returns to normal operation. The timer can be adjusted to activate the relay from thirty seconds to five minutes. When the timer is activated, an audible alarm provided in the unit will give an intermittent signal to warn the operator that the system is armed and that the door will automatically close. Shortly before closing, the alarm becomes more rapid in sound to announce the closing. If, during the closing of the door, an obstruction would occur returning the door to its open position, the closer device would automatically turn itself off. The automatic door closer cannot be activated again until the door is closed by the operator and remains closed for one and one-half minutes.




The unit also contains a carbon monoxide detector. If, after the timer closes the garage door and the engine of a vehicle is not turned off, dangerous carbon monoxide levels can build within the closed garage. When the level of carbon monoxide reaches the danger level, an alarm will sound and simultaneously this device will trigger the relay in the timing unit to activate the door opener and open the closed garage door.




A unique feature of this timing sequence is that it will allow a person or animal to pass through the sensor beam without activating the timer. This is important, allowing the user to use the open garage door as egress.




After an arriving or leaving vehicle activates the timing device and the sensor beam is interrupted again, the device will be deactivated. This is a safety feature to eliminate the possibility of entrapping a person or animal in the garage. The unit will remain deactivated until the user closes the overhead garage door and it remains closed for at least one and one-half minutes. When the garage door is reopened, the timing device is again ready for its sequence of events. The unit also has a manual switch that can be used to deactivate the unit when the overhead door is in the open position.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of a prior art garage door closer device mounted in the door opening for an overhead door.





FIG. 2

is an enlarged perspective view similar to

FIG. 1

but showing the improved control device of the present invention.





FIG. 3

is a block diagram of the control unit found in FIG.


2


.





FIG. 4

is an enlarged perspective view of the activating door switch for the control unit.





FIG. 5

is a schematic showing of the control circuit for the automated closer.











ILLUSTRATIVE EMBODIMENT OF THE INVENTION




Referring more particularly to the disclosure in the drawings wherein is shown an illustrative embodiment of the present invention,

FIG. 1

discloses a prior art overhead garage door


10


consisting of a plurality of door panel segments


11


,


11




a


which are joined together by horizontally spaced hinges


12


,


12


, each horizontal panel segment having one or more pairs of vertically spaced sets of rollers


13


,


13


that are guided in a pair of generally parallel tracks


14


,


14


; which tracks include a generally horizontal portion


15


and a generally vertical portion


17


at right angles to the vertical portion and joined by a curved intermediate portion


16


mounted in the opening


18


for entry of a vehicle into and from the garage. A garage door opening mechanism


21


consists of a reversible electric motor


22


which either drives an elongated screw or a gear


23


to move an endless chain in a central overhead track


24


; a bracket


25


being secured to the upper edge


27


of the upper panel segment


11




a


of the garage door


10


and operationally connected to the screw or chain by a follower


26


. Also, the overhead track


24


is provided with a pair of limit switches


28


,


29


, respectively, that are positioned adjacent the ends of the central track


24


and are adapted to be engaged either by a portion of the garage door panel segment


11


or a portion of the closer unit bracket


25


to de-energize the electric motor


22


at either end of garage door travel. Likewise, the garage door could comprise a single panel of a size to close the opening


18


of the garage, but without articulation; the door taking a different path of movement for opening and closing when actuated by the closer unit. All of this structure is conventional and well known.




The garage door opening mechanism


21


includes a receiver


31


that is mounted adjacent and operatively connected to the reversible electric motor


22


, and a transmitter (not shown) carried by the operator of or located in the vehicle of the garage owner provides a signal to the receiver


31


to open or close the door. Also connected to the receiver by wiring


32


is a wall switch


33


having a push button


34


to actuate the motor. The closer may further include a ceiling light


35


which can be mounted on the unit or other suitable support in the ceiling of the garage, which light is actuated when the motor is energized and the unit has a time delay mechanism (not shown) that retains the light in an illuminated state for a predetermined period of time after the motor is energized. After the set period, the light is extinguished and remains off until the receiver is again energized. Also located adjacent the lower ends of the rails


14


are a pair of photo-eye sensors


36


and


37


mounted to project a beam


38


of light across the garage door opening which, when interrupted by an object as the door is closing, will reverse movement of the door to its open position; a safety feature required by UL regulation UL 325.




The present invention relates to an automated closing device for the garage door including a-two-part housing


41


consisting of a body portion


43


and a cover


44


which nest together to form an enclosed unit for an activating switch


48


. The cover


44


is provided with one or more pairs of spaced raised loops


45


adjacent the ends of the cover resulting in openings


46


to receive at least one strap


47


that passes through a pair of openings


46


and around the housing


41


and the horizontal portion


15


of one track


14


to support the housing on the rail; the housing being mounted on the horizontal track portion and positioned adjacent the end of movement of the upper door panel


11




a.






Within the housing


41


is mounted the switch


48


having a flexible finger


49


to be engaged by the leading edge


27


of the upper garage door panel


11




a


. A control circuit


51


for the door closing device is shown in FIG.


5


and includes a timing device


52


consisting of an RC oscillator chip (designated MC14541B and manufactured by Motorola Corporation) that contains an oscillator providing a timing function; the circuit


51


being located in a second or sensor housing


61


. The circuit includes a transformer (not shown) connected to a 120 volt AC source which provides 12 volt DC power at


76


, and a line


53


extending between a pair of pins on the timing device or chip


52


includes an audible alarm


54


in series with a Schmit trigger inverter


55


. A relay


57


is connected to the timing device


52


and is activated when the predetermined time interval (such as five minutes) elapses, the relay being connected to the door opener switch terminals


58


; the terminals being connected to the line


32


of manual wall switch


33


. The Schmit trigger inverter


55


in line with the alarm


54


acts to sound the alarm at pre-selected intervals, such as every ten seconds until fifteen seconds remain before the door closes, at which time the signal frequency increases and, at the five minute mark, the circuit actuates the drive motor to cause the door to descend.




Also connected to the timing chip


52


is a secondary portion


71


of circuit


51


including a line


72


extending from a pin on the chip through a resistor R


7


to an on/off switch


56


in series with one side


74


of the micro-switch


48


that is closed when the garage door is opened, the opposite terminal


75


of the switch


48


being connected to the voltage source


76


. The line


72


branches at


77


to the collector of a transistor Q


3


, the emitter leading to ground at


78


. A line


79


from the base of transistor Q


3


extends through a resistor R


6


to intersect a branch line


81


extending between line


72


and a terminal of a second transistor Q


1


; line


81


containing a resistor R


4


. Another branch line


82


containing a resistor R


5


extends from line


79


to the base of a third transistor Q


2


, with the emitter from this transistor grounded at


83


, and a line


84


from the collector of a transistor Q


2


extends to a line


85


from the base of transistor Q


1


, line


85


containing a resistor R


3


and intersecting a third branch line


86


from line


72


. Branch line


86


includes a diode CR


1


and a resistor R


1


on one side of line


85


and a capacitor C


1


leading to ground


87


on the opposite side. The line


85


terminates beyond the third branch line


86


in a resistor R


2


and is grounded at


88


, and the voltage supply is grounded at


89


.




Connected to the timing chip


52


through a line


92


is a sensor


91


that is connected to a second photo-eye sensor


93


and opposing reflector


94


, which sensor is programmed to activate the timer/closer device when a vehicle leaves the garage. In view of the bulk and length of an automotive vehicle, the sensor beam


95


is interrupted for a sufficient interval that the sensor will activate the device.




In normal operation, (the door having been closed for a long time), when the door is opened to close the switch


48


, power is applied to the timer's voltage input


76


(approximately 12 volts DC). Capacitor C


1


is discharged which holds the gate of transistor Q


1


low so transistor Q


1


is off. With transistor Q


1


off, the resistors R


4


, R


5


and R


6


form a voltage divider network that applies sufficient base voltage to turn on transistors Q


2


and Q


3


. When transistor Q


2


is on, it grounds the gate of transistor Q


1


, which prevents transistor Q


1


from turning on as capacitor C


1


charges up. Also, with transistor Q


3


on, the reset input to the timing chip


52


is low, enabling timer operation.




When the timer is operating, capacitor C


1


charges up to approximately the voltage supply level through diode CR


1


and resistor R


1


. The resistor R


1


and capacitor C


1


network provides a power up delay of about 1.5 seconds allowing the timer to latch the operational state. When the timer circuit completes the time delay, the output relay


57


is activated which causes the door to close. When the door closes, the door switch


48


opens removing power from the timer. With the power removed, capacitor C


1


starts discharging through resistor R


2


. Diode CR


1


prevents discharge current flow back through resistor R


1


. It takes about one minute for capacitor C


1


to discharge to a level that will be low enough to allow another timer cycle.




If the door hits an obstruction that causes the door to reopen within the one-minute capacitor discharge time, the re-cycle fault circuit


71


prevents another time delay cycle. When power is re-applied and capacitor C


1


is still charged up, the transistor Q


1


is on grounding the junction of resistors R


4


, R


5


and R


6


. With that point grounded, transistors Q


2


and Q


3


are off. When transistor Q


3


is off, the reset input to the timing chip


52


is high, disabling the timer, and the timer will not operate again until a remote switch closes the door or power is removed for the capacitor C


1


discharge delay time.




This device presents a complete package for the homeowner that possesses a garage with an overhead garage door having a remote control opening device including the photo-electric eye beam, and the present device will act to automatically close the overhead door if the owner should forget to do so; the device being easily installed by a homeowner with a minimum of tools and equipment. The closed housing


41


contains the activating switch


48


for the device and the second or sensor housing


61


is provided adjacent the photo-eye placement adjacent the floor of the garage to contain the electronics for the device with the exception of the power supply. One or more nylon straps


47


are used to position and secure the switch


48


in housing


41


next to the door edge when the door is in the “up” position, and the strap is secured to the door rail or track


14


.




This automated door closing device has a number of advantages for the home owner:




1. Easy installation.




2. Audible alarm sound is immediate when the system is activated.




3. A low voltage system that is safe to use.




4. Allows passage of a person through the door opening without activation of the door closing device.




The unit is designed to operate with garage door openers containing sensors as shown in

FIGS. 1 and 2

of the drawings; wherein the sensors are installed adjacent ground level for the garage door


10


. When the door opening mechanism


21


operates to open the door, the door moves in the tracks


14


,


14


by the motor until the door reaches a filly open position, which in turn, closes the switch


48


. Once the door is opened, the sensor


91


through interruption of the beam


95


for a pre-determined time interval, such as three seconds, detects a vehicle entering or exiting the garage, which will activate the circuit


51


to initiate a cycle and automatically close the door after the variable time period expires; the circuit activating the motor to close the door. However, if a person or an animal passes through the open door during the timing cycle, the person or animal interrupts the light beam


95


of the sensor


91


momentarily, the sensor notes the shorter time interval of beam interruption, and the circuit will be deactivated. This will prevent entrapment of a person or animal within the garage. Once the circuit for the door is deactivated, it will remain deactivated until the door is intentionally closed by an operator and remains closed for a pre-determined time interval, such as one and one-half minutes; which action resets the device. Then, when the door is opened and a vehicle enters the garage, the device will be activated for another cycle.




If the garage is situated in an alley necessitating the jockeying of the vehicle into or out of the garage, once the door is opened, the vehicle will break the beam


95


one or more times until the vehicle is fully positioned in the garage. During this jockeying, although the beam is interrupted for the required minimum time interval, the sensor will not activate the timer cycle. When the vehicle is fully positioned in the garage and the beam is uninterrupted for a set time interval, the sensor will sense that the vehicle is present and activates the circuit to start the timing cycle for automatically closing the door.




When the device completes the cycle and initiates closing of the garage door, if an object or person is within the path of the closing door, the door will reverse and engage the switch finger


49


, and the sensor will disable the timer. Again, the device cannot be activated until a preset time period is exceeded and the door is manually activated by the vehicle operator. The device can be deactivated at any time with the manual switch


56


. The unit also may contain a carbon monoxide detector


96


connected by line


97


to the relay


57


. If, after the timer closes the garage door and the engine of a vehicle is not turned off, dangerous carbon monoxide fumes can build within the closed garage area. When the level of carbon monoxide reaches the danger level, an alarm will sound and simultaneously this device will trigger the relay


57


to activate the door opener and open the closed garage door.



Claims
  • 1. An automatically controlled garage door closer device for installation on a garage having a door opening and a garage door with an upper edge and a lower edge, a reversible electric motor providing motive power to move the door between open and closed positions on a pair of parallel tracks, and sensor means adjacent the lower edge of the door opening providing a beam projected across the opening, said device acting to automatically close the door if said door is inadvertently left open after a vehicle enters or exits the garage and comprises a switch housing adapted to be mounted on one of said tracks guiding the door between open and closed positions adjacent the final open position of the door, a switch within the housing having a flexible finger extending beyond the housing and into the path of the upper door edge, and a second housing containing said sensor means and a control circuit including timer means operatively connected to the motive power for the garage door for energization of the door closer once a predetermined period of time has elapsed after the door is opened, relay means operated by the timer once the predetermined time period has elapsed to automatically close the door, and means to interrupt the timer cycle upon breaking of the sensor beam, wherein if the sensor beam is interrupted before the predetermined time cycle is completed for closing the relay, the device is inactivated and reactivation of said timing circuit only occurs when the door is closed for a predetermined period of time.
  • 2. An automated garage door closer as set forth in claim 1, in which a radio receiver is mounted adjacent to and operatively connected to said motor and adapted to cooperate with a transmitter for activation of the motor.
  • 3. An automated garage door closer as set forth in claim 1, in which a Schmit trigger inverter is positioned in the circuit of the audible alarm to sound the alarm at prescribed intervals.
  • 4. An automated garage door closer as set forth in claim 3, wherein a switch is located in the closer circuit to deactivate the device.
  • 5. An automated garage door closer as set forth in claim 1, wherein said device is operatively connected to a push button wall switch for the garage door opener/closer mechanism.
  • 6. An automated garage door closer as set forth in claim 1, wherein mounting means for said switch housing comprises at least one strap encompassing said housing and track.
  • 7. An automated garage door closer as set forth in claim 6, in which said switch housing consists of a box provided with a nesting lid or cover, said cover having two or more raised straps forming openings therein that receive a strap passing through the openings and around the track to secure the device to the track.
  • 8. An automated garage door closer set forth in claim 1, including audible alarm means activated when the door reaches its fully open position.
  • 9. An automated garage door closer as set forth in claim 8, wherein once the timer is activated, interruption of the door closer cycle by the sensor inactivates the timing circuit.
  • 10. An automated garage door closer as set forth in claim 1, in which said circuit includes a capacitor which begins discharging when power is removed and prevents another time delay cycle.
  • 11. An automatically controlled garage door closer device for installation on a garage having a door opening and a garage door with an upper edge and a lower edge, a reversible electric motor providing motive power to, move the door between open and closed positions on a pair of generally parallel tracks, and sensor means adjacent the lower edge of the door opening providing a beam projected across the opening, said device acting to automatically close the door if said door is inadvertently left open after a vehicle enters or exits the garage and comprises a switch housing adapted to be mounted on one of said tracks guiding the door between open and closed positions adjacent the final open position of the door, a switch within the housing having a flexible finger extending beyond the housing and into the path of the upper door edge, and a second housing containing said sensor means and a control circuit including timer means operatively connected to the motive power for the garage door for energization of the door closer once a predetermined period of time has elapsed after the door is opened, audible alarm means activated when the door reaches its fully open position, relay means operated by the timer once the predetermined time period has elapsed to automatically close the door, and means to interrupt the timer cycle upon a breaking of the sensor beam, wherein if the sensor beam is interrupted before the predetermined time cycle is completed for closing the relay, the timing circuit is deactivated and reactivation of said timing circuit only occurs when the door is closed for a predetermined period of time, said sensor means provides means to gauge the interval of interruption of said sensor beam.
  • 12. An automated garage door closer as set forth in claim 11, in which said sensor means determines whether a vehicle or a person or animal interrupts the sensor beams by the time interval involved.
  • 13. An automated garage door closer as set forth in claim 1, including means to detect carbon monoxide positioned in the unit.
  • 14. An automated garage door closer as set forth in claim 13, wherein the carbon monoxide detector means is connected in said circuit to open the door when a dangerous level of gas is sensed.
  • 15. A method for controlling a motor-driven door operator including the steps of activating a switch when the door is moved to its open position, said switch activating a sensor beam, providing a timer circuit having a predetermined time delay during which the door remains open, sounding an alarm during the time delay indicating that an automatic closer mechanism is activated, upon termination of the time delay reactivating the motor to close the door, and determining the time interval of interruption of the sensor beam and acting to activate the timing cycle based on the elapsed time interval.
  • 16. A method for controlling a motor-driven door operator as set forth in claim 15, including the step of providing means to deactivate the timing circuit if the door closing cycle is interrupted.
  • 17. A method for controlling a motor-driven door operator as set forth in claim 16, including the step of interrupting the door closing cycle and deactivating the timing circuit where a sensor determines that an object has interrupted the sensor beam for a short interval.
  • 18. A method for controlling a motor-driven operator as set forth in claim 15, in which said sensor provides a short time delay after interruption of the sensor beam before initiating the timing cycle.
  • 19. A method for controlling a motor-driven door operator as set forth in claim 18, wherein multiple interruptions of said sensor beam will not initiate the door closing cycle until the time delay after interruptions of the sensor beam has occurred.
  • 20. A method for controlling a motor-driven door operator as set forth in claim 19, in which a pre-determined minimum time interval is gauged for passage of a vehicle through the sensor beam, wherein the elapse of the minimum time interval initiates the door closing cycle.
Parent Case Info

The present application is a continuation-in-part of U.S. patent application Ser. No. 09/358,970, filed Jul. 22, 1999 now abandoned.

US Referenced Citations (26)
Number Name Date Kind
2807460 Guimont Sep 1957 A
3060361 Purdy Oct 1962 A
3510982 Purdy May 1970 A
3617835 Dreher et al. Nov 1971 A
3733747 Fox et al. May 1973 A
4035702 Pettersen et al. Jul 1977 A
4037201 Willmott Jul 1977 A
4119896 Estes, III et al. Oct 1978 A
4134050 Sibalis Jan 1979 A
4234833 Barrett Nov 1980 A
4263536 Lee et al. Apr 1981 A
4364003 Phipps Dec 1982 A
4393342 Matsuoka et al. Jul 1983 A
4463292 Engelmann Jul 1984 A
4939434 Elson Jul 1990 A
5027553 Vergara Jul 1991 A
5233185 Whitaker Aug 1993 A
5247232 Lin Sep 1993 A
5357183 Lin Oct 1994 A
5406179 Davall et al. Apr 1995 A
5510686 Collier Apr 1996 A
5596840 Teich Jan 1997 A
5787365 Rivero et al. Jul 1998 A
5955031 King, Jr. Sep 1999 A
6020703 Telmet Feb 2000 A
6111374 Fitzgibbon et al. Aug 2000 A
Continuation in Parts (1)
Number Date Country
Parent 09/358970 Jul 1999 US
Child 09/750992 US