Automated manufacturing processes for producing deformable polymer devices and films

Information

  • Patent Grant
  • 9553254
  • Patent Number
    9,553,254
  • Date Filed
    Thursday, March 1, 2012
    12 years ago
  • Date Issued
    Tuesday, January 24, 2017
    7 years ago
Abstract
A process for producing a patterned deformable polymer film for use in a deformable polymer device is disclosed. The process includes positioning an intermediary layer between a deformable film and a process tooling and printing at least one electrode on the deformable film by depositing an ink to form the at least one electrode on a first surface of the deformable film, wherein the intermediary layer permits release of the deformable film from the process tooling subsequent to the printing process. Films produced by the inventive processes may find use in electroactive polymer devices.
Description
FIELD OF THE INVENTION

The present invention is directed in general to manufacturing and more specifically, to high volume manufacturing processes for producing electroactive polymer films and devices.


BACKGROUND OF THE INVENTION

A tremendous variety of devices used today rely on actuators of one sort or another to convert electrical energy to mechanical energy. Conversely, many power generation applications operate by converting mechanical action into electrical energy. Employed to harvest mechanical energy in this fashion, the same type of device may be referred to as a generator. Likewise, when the structure is employed to convert physical stimulus such as vibration or pressure into an electrical signal for measurement purposes, it may be characterized as a sensor. Yet, the term “transducer” may be used to generically refer to any of the devices.


A number of design considerations favor the selection and use of advanced dielectric elastomer materials, also referred to as “electroactive polymers”, for the fabrication of transducers. These considerations include potential force, power density, power conversion/consumption, size, weight, cost, response time, duty cycle, service requirements, environmental impact, etc. As such, in many applications, electroactive polymer technology offers an ideal replacement for piezoelectric, shape-memory alloy and electromagnetic devices such as motors and solenoids.


An electroactive polymer transducer comprises two electrodes having deformable characteristics and separated by a thin elastomeric dielectric material. When a voltage difference is applied to the electrodes, the oppositely charged electrodes attract each other thereby compressing the polymer dielectric layer therebetween. As the electrodes are pulled closer together, the dielectric polymer film becomes thinner (the Z-axis component contracts) as it expands in the planar directions (along the X- and Y-axes), i.e., the displacement of the film is in-plane. The electroactive polymer film may also be configured to produce movement in a direction orthogonal to the film structure (along the Z-axis), i.e., the displacement of the film is out-of-plane. U.S. Pat. No. 7,567,681 discloses electroactive polymer film constructs which provide such out-of-plane displacement—also referred to as surface deformation or as thickness mode deflection.


The material and physical properties of the electroactive polymer film may be varied and controlled to customize the deformation undergone by the transducer. More specifically, factors such as the relative elasticity between the polymer film and the electrode material, the relative thickness between the polymer film and electrode material and/or the varying thickness of the polymer film and/or electrode material, the physical pattern of the polymer film and/or electrode material (to provide localized active and inactive areas), the tension or pre-strain placed on the electroactive polymer film as a whole, and the amount of voltage applied to or capacitance induced upon the film may be controlled and varied to customize the features of the film when in an active mode.


Numerous applications exist that benefit from the advantages provided by such electroactive polymer films whether using the film alone or using it in an electroactive polymer actuator. One of the many applications involves the use of electroactive polymer transducers as actuators to produce haptic feedback (the communication of information to a user through forces applied to the user's body) in user interface devices. There are many known user interface devices which employ haptic feedback, typically in response to a force initiated by the user. Examples of user interface devices that may employ haptic feedback include keyboards, keypads, game controller, remote control, touch screens, computer mice, trackballs, stylus sticks, joysticks, etc. The user interface surface can comprise any surface that a user manipulates, engages, and/or observes regarding feedback or information from the device. Examples of such interface surfaces include, but are not limited to, a key (e.g., keys on a keyboard), a game pad or buttons, a display screen, etc.


The haptic feedback provided by these types of interface devices is in the form of physical sensations, such as vibrations, pulses, spring forces, etc., which a user senses either directly (e.g., via touching of the screen), indirectly (e.g., via a vibrational effect such a when a cell phone vibrates in a purse or bag) or otherwise sensed (e.g., via an action of a moving body that creates a pressure disturbance sensed by the user). The proliferation of consumer electronic media devices such as smart phones, personal media players, portable computing devices, portable gaming systems, electronic readers, etc., can create a situation where a sub-segment of customers would benefit or desire an improved haptic effect in the electronic media device. However, increasing haptic capabilities in every model of an electronic media device may not be justified due to increased cost or increased profile of the device. Moreover, customers of certain electronic media devices may desire to temporarily improve the haptic capabilities of the electronic media device for certain activities.


Use of electroactive polymer materials in consumer electronic media devices as well as the numerous other commercial and consumer applications highlights the need to increase production volume while maintaining precision and consistency of the films.


SUMMARY OF THE INVENTION

Electroactive polymer devices that can be used with these designs include, but are not limited to planar, diaphragm, thickness mode, roll, and passive coupled devices (hybrids) as well as any type of electroactive polymer device described in the commonly assigned patents and applications cited herein.


In some variations, the electroactive polymer actuator comprises at least one electroactive polymer cartridge, where the electroactive polymer cartridge includes an electroactive polymer film comprising a dielectric elastomer layer, wherein a portion of the dielectric elastomer layer is between a first and a second electrodes wherein the overlapping portions of the electrodes define an active area comprising the active portion, whereupon application of a triggering signal to the electrodes causes movement of the active area to produce the haptic effect.


The electroactive polymer actuator can include a plurality of discrete electroactive polymer cartridges coupled together, where the electroactive polymer actuator includes an increased active portion comprising each active area of each electroactive polymer cartridge.


As noted above, there remains a need to mass produce such electroactive polymer devices while maintaining the performance characteristics obtained through batch production or lower volume manufacturing processes.


The present disclosure includes a process for high volume fabrication of a deformable polymeric film device. In one variation, the process comprises continuously advancing a film of an elastomeric material from a supply of elastomeric material, optionally mechanically straining the film to create a first pre-strained film section that remains continuous with the supply of elastomeric material, supporting the film section such that the first film section comprises a supported portion and an unsupported portion, depositing an ink to create at least a first electrode on a first side of the unsupported portion of the first film section, and depositing the ink to create at least a second electrode on a second side of the unsupported portion of the first film section opposing the first electrode and forming at least one opposing electrode pair to complete at least a first section of electroactive polymeric film and collecting the first section of electroactive polymeric film.


Optionally, the process can further include mechanically straining the film to create a second pre-strained film section that remains continuous with the film, supporting the second pre-strained film section such that the second pre-strained film section comprises a supported portion and an unsupported portion, depositing an ink to create at least a first electrode on a first side of the unsupported portion of the second pre-strained film section, printing at least a second electrode on a second side of the unsupported portion of the second pre-strained film section opposing the first electrode to form at least one opposing electrode pair to complete at least a second section of electroactive polymeric film and collecting the second section of electroactive polymeric film.


In some variations of the inventive process, the film section may be supported by increasing the rigidity of a portion of the film section.


The process can further include stacking or laminating at least the first and second sections to create a multi-layer film.


In some variations of the inventive manufacturing process, layers of structural or adhesive material can be applied to the electroactive polymer film either before or during the stacking or lamination process step.


The processes described herein may include advancing the film of an elastomeric material from the supply of elastomeric material by unwinding a supply roll of the elastomeric material. The film may be advanced at a constant rate or in a stepwise fashion where each section of the film stops at each of a series of process stations for a given dwell time.


In some variations of the manufacturing process, supporting the first pre-strained film section comprises applying a supporting layer to the first pre-strained film section and/or applying UV or thermal treatment the first pre-strained film section.


As part of the inventive manufacturing process, the film can optionally be reinforced with a tape or other material applied to the edges to prevent tearing or tear propagation. The tape or the applied material can be stretchable or patterned in such a way as to enable the film to stretch.


Applying pre-strain to the film can include the use of a first and second belt member on respective near and far edges of the film, where the first and second belt members each comprise a top surface and a bottom surface sandwiching the film, and where the belt member comprises a material having a Young's Modulus greater than a Young's Modulus of the film. Optionally, the belt members can comprise perforated belt members and where perforation rollers are used to mechanically strain the film.


One method of creating the perforated belts is to laminate or cast the polymer film onto a release liner that has fine perforated lines parallel to the web direction similar to the perforated lines along the edges of pin-fed printer paper. During the inventive transducer manufacturing process, the center region of the release liner can be separated from the unsupported regions of the film and from strips of release liner along the edges of the film by tearing along the perforated lines. The remaining strips of release liner serve as perforated belts and may have additional perforations defining holes which are punched out by pins or sprockets on the perforation rollers. Alternatively, these holes may be punched, drilled, or cut as part of the transducer manufacturing process.


The strain of the film may be bi-directional or uni-directional to produce an isotropic pre-strained film section or an anisotropic pre-strained film section.


The use of the tooling and processes described herein also allow for using a screen printing process where the first pre-strained film section is advanced against a process tooling as the ink is applied to the pre-strained film.


In certain variations, the inventive process may include the use of“soft tooling”. For example, the printing process can further comprise positioning a removable liner between the first pre-strained film section and the process tooling to assist in release of the first pre-strained film section from the process tooling. Alternatively, or in combination, the printing process can include positioning an engineered surface and/or a compliant layer between the first pre-strained film section and the process tooling to assist in release of the first pre-strained film section from the process tooling. In yet another variation, the process can include positioning a deformable layer between the first pre-strained film section and a process tooling, where the deformable layer allows release of the first pre-strained film section without the use of a liner affixed to the first pre-strained film section. The deformable layer may comprise a foam layer.


Soft tooling permits varying pressures on the same surface of the film. For example, the processes described herein can further include a deformable layer that comprises at least one cavity in a surface of the deformable layer such that application of the deformable layer against the first pre-strained film section allows for a first pressure at the cavity and a second pressure at the surface to permit printing of varying ink depths on the first pre-strained film section.


The inventive manufacturing process may also include applying at least a frame and/or an output bar to the first section of electroactive polymer films to assemble an electroactive polymer actuator device. Alternatively, the process to collect the first section of electroactive polymer film comprises winding a plurality of electroactive polymer films to form a roll of electroactive polymer films.


Another variation of the process described below includes producing an electroactive polymer film for use in an electroactive polymer device. In one variation, the process includes pre-straining a section of elastomeric film to produce a pre-strained elastomeric film, supporting the pre-strained elastomeric film; positioning an intermediary layer between the pre-strained elastomeric film and a process tooling and screen printing at least one electrode on the pre-strained elastomeric film by depositing an ink to form the electrode on a first surface of the pre-strained elastomeric film, where the intermediary layer permits release of the second surface from the process tooling subsequent to the screen printing process.


The intermediary layer can include a removable liner. Alternatively, or in combination, the intermediary layer may include an engineered surface and/or a compliant layer, where the engineered surface comprises a surface selected from the group consisting of a parchment paper, a screen mesh, a textured surface, a non-stick surface and a polymer sheet.


In another variation, the intermediary layer comprises a deformable layer. For example, the deformable layer can comprise an ethylene vinyl acetate foam material. The deformable layer can comprise similarly soft materials such as silicones and polyurethane gels or foams with the appropriate surface release properties for the film. Use of a deformable layer also allows for a plurality of cavities in the deformable layer. The cavities permit regions of varying pressure during screen printing, the process further comprising depositing ink at varying levels on the first surface of the pre-strained elastomeric film.


Another variation disclosed herein the present invention includes an electroactive polymer film for use in an electroactive polymer device prepared by a process comprising the steps of pre-straining a section of elastomeric film, screen printing at least one electrode on a surface of the section of elastomeric film using a deformable layer between the elastomeric film and a process tooling, where the deformable layer comprises one or more cavities permitting varying pressures during deposition of ink to deposit ink sections having varying depths on the elastomeric film; and affixing one or more frames, output bars, or flexures to the film surface.


In addition to screen printing, other printing processes such as flexography, pad printing, gravure printing, ink jet printing, and aerosol jet printing may prove useful in the present manufacturing process.


These and other features, objects and advantages of the invention will become apparent to those persons skilled in the art upon reading the details of the invention as more fully described below. In addition, variations of the processes and devices described herein include combinations of the embodiments or of aspects of the embodiments where possible are within the scope of this disclosure even if those combinations are not explicitly shown or discussed.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is best understood from the following detailed description when read in conjunction with the accompanying drawings. To facilitate understanding, the same reference numerals have been used (where practical) to designate similar elements are common to the drawings. Included in the drawings are the following:



FIGS. 1A and 1B illustrate a top perspective view of a transducer before and after application of a voltage in accordance with one embodiment of the present invention;



FIG. 2A illustrates an exemplary electroactive polymer cartridge;



FIG. 2B illustrates an exploded view of an electroactive polymer actuator, inertial mass and actuator housing;



FIG. 3A illustrates a schematic roll-to-roll process for preparing an elastomeric film into an electroactive polymer film;



FIG. 3B illustrates two rolls of electroactive polymer films being combined to produce an electroactive polymer device;



FIGS. 4A to 4D illustrate an example of using a stiff belt member to assist in controlling the desired strain on an elastomeric film;



FIG. 5A illustrates a variation of a printing process useful in manufacturing electroactive polymer actuators;



FIG. 5B illustrates a variation of a printing configuration that eliminates the requirement of a liner similar to that shown in FIG. 5A;



FIG. 5C demonstrates yet another variation of a tooling configuration where the film contacts a foam layer directly without the use of any layer as shown in FIGS. 5A and 5B;



FIG. 6 shows an etched foam layer that allows for deposition of varying ink levels in the same printing process;



FIG. 7A depicts the square patterned microstructure of an electroactive polymer film which has been screen printed;



FIG. 7B shows the fibrillated microstructure of an electroactive film printed by flexographic printing;



FIG. 8 illustrates the inventive process using a continuous web frame to hold pre-strained silicone film;



FIG. 9 demonstrates aligning several printing stations sequentially on the web; and



FIG. 10 illustrates one layout of the line according to the process of the present invention.





Variation of the invention from that shown in the figures is contemplated.


DETAILED DESCRIPTION OF THE INVENTION

Examples of electroactive polymer devices and their applications are described, for example, in U.S. Pat. Nos. 7,394,282; 7,378,783; 7,368,862; 7,362,032; 7,320,457; 7,259,503; 7,233,097; 7,224,106; 7,211,937; 7,199,501; 7,166,953; 7,064,472; 7,062,055; 7,052,594; 7,049,732; 7,034,432; 6,940,221; 6,911,764; 6,891,317; 6,882,086; 6,876,135; 6,812,624; 6,809,462; 6,806,621; 6,781,284; 6,768,246; 6,707,236; 6,664,718; 6,628,040; 6,586,859; 6,583,533; 6,545,384; 6,543,110; 6,376,971; 6,343,129; 7,952,261; 7,911,761; 7,492,076; 7,761,981; 7,521,847; 7,608,989; 7,626,319; 7,915,789; 7,750,532; 7,436,099; 7,199,501; 7,521,840; 7,595,580; and 7,567,681, and in U.S. Patent Application Publication Nos. 2009/0154053; 2008/0116764; 2007/0230222; 2007/0200457; 2010/0109486; and 2011/128239, and PCT Publication No. WO2010/054014, the entireties of which are incorporated herein by reference.


The present invention provides a process for producing a patterned deformable polymer film for use in a deformable polymer device, the process including positioning an intermediary layer between a deformable film and a process tooling and printing at least one electrode on the deformable film by depositing an ink to form the at least one electrode on a first surface of the deformable film, wherein the intermediary layer permits release of the deformable film from the process tooling subsequent to the printing process.


Films useful in the present invention include, but are not limited to those made from polymers such as silicone, polyurethane, acrylate, hydrocarbon rubber, olefin copolymer, polyvinylidene fluoride copolymer, fluoroelastomer styrenic copolymer, and adhesive elastomer.


It is noted that the figures discussed herein schematically illustrate exemplary configurations of devices that employ electroactive polymer films or transducers having such electroactive polymer films. Many variations are within the scope of this disclosure, for example, in variations of the device, the electroactive polymer transducers can be implemented to move a mass to produce an inertial haptic sensation. Alternatively, the electroactive polymer transducer can produce movement in the electronic media device when coupled to the assembly described herein. Electroactive transducers manufactured with the processes disclosed here can be used as actuators, generators, or sensors in many other applications including, without limitation, fluid handling systems, motion control, adaptive optical devices, vibration control systems, and energy harvesting systems.


In any application, the displacement created by the electroactive polymer transducer can be exclusively in-plane which is sensed as lateral movement, or can be out-of-plane (which is sensed as vertical displacement). Alternatively, the electroactive polymer transducer material may be segmented to provide independently addressable/movable sections so as to provide angular displacement of the housing or electronic media device or combinations of other types of displacement. In addition, any number of electroactive polymer transducers or films (as disclosed in the applications and patent listed herein) can be incorporated in the user interface devices described herein.


The electroactive polymer transducer may be configured to displace to an applied voltage, which facilitates programming of a control system used with the subject tactile feedback devices. Electroactive polymer transducers are ideal for such applications for a number of reasons. For example, because of their light weight and minimal components, electroactive polymer transducers offer a very low profile and, as such, are ideal for use in sensory/haptic feedback applications.



FIGS. 1A and 1B illustrate an example of an electroactive polymer film or membrane 10 structure. A thin elastomeric dielectric film or layer 12 is sandwiched between compliant or stretchable electrode plates or layers 14 and 16, thereby forming a capacitive structure or film. The length “1” and width “w” of the dielectric layer, as well as that of the composite structure, are much greater than its thickness “t”. Preferably, the dielectric layer has a thickness in the range from about 10 μm to about 100 μm, with the total thickness of the structure in the range from about 15 μm to about 10 cm. Additionally, it is desirable to select the elastic modulus, thickness, and/or the geometry of electrodes 14, 16 such that the additional stiffness they contribute to the actuator is generally less than the stiffness of the dielectric layer 12, which has a relatively low modulus of elasticity, i.e., less than about 100 MPa and more preferably less than about 10 MPa, but is likely thicker than each of the electrodes. Electrodes suitable for use with these compliant capacitive structures are those capable of withstanding cyclic strains greater than about 1% without failure due to mechanical fatigue.


As seen in FIG. 1B, when a voltage is applied across the electrodes, the unlike charges in the two electrodes 14, 16 are attracted to each other and these electrostatic attractive forces compress the dielectric film 12 (along the Z-axis). The dielectric film 12 is thereby caused to deflect with a change in electric field. As electrodes 14, 16 are compliant, they change shape with dielectric layer 12. In the context of the present invention, “deflection” refers to any displacement, expansion, contraction, torsion, linear or area strain, or any other deformation of a portion of dielectric film 12. Depending on the architecture, e.g., a frame, in which capacitive structure 10 is employed (collectively referred to as a “transducer”), this deflection may be used to produce mechanical work. Various different transducer architectures are disclosed and described in the above-identified patent references.


With a voltage applied, the transducer film 10 continues to deflect until mechanical forces balance the electrostatic forces driving the deflection. The mechanical forces include elastic restoring forces of the dielectric layer 12, the compliance or stretching of the electrodes 14, 16 and any external resistance provided by a device and/or load coupled to transducer 10. The resultant deflection of the transducer 10 as a result of the applied voltage may also depend on a number of other factors such as the dielectric constant of the elastomeric material and its size and stiffness. Removal of the voltage difference and the induced charge causes the reverse effects.


In some cases, the electrodes 14 and 16 may cover a limited portion of dielectric film 12 relative to the total area of the film. This may be done to prevent electrical breakdown around the edge of the dielectric or achieve customized deflections in certain portions thereof. Dielectric material outside an active area (the latter being a portion of the dielectric material having sufficient electrostatic force to enable deflection of that portion) may be caused to act as an external spring force on the active area during deflection. More specifically, material outside the active area may resist or enhance active area deflection by its contraction or expansion.


The dielectric film 12 may be pre-strained. The pre-strain improves conversion between electrical and mechanical energy, i.e., the pre-strain allows the dielectric film 12 to deflect more and provide greater mechanical work. Pre-strain of a film may be described as the change in dimension in a direction after pre-straining relative to the dimension in that direction before pre-straining. The pre-strain may include elastic deformation of the dielectric film and be formed, for example, by stretching the film in tension and fixing one or more of the edges while stretched. The pre-strain may be imposed at the boundaries of the film or for only a portion of the film and may be implemented by using a rigid frame or by stiffening a portion of the film.


The transducer structure of FIGS. 1A and 1B and other similar compliant structures and the details of their constructs are more fully described in many of the referenced patents and publications disclosed herein.



FIG. 2A illustrates an exemplary electroactive polymer cartridge 12 having an electroactive polymer transducer film 26 placed between rigid frame 8 where the electroactive polymer film 26 is exposed in openings of the frame 8. The exposed portion of the film 26 includes two working pairs of thin elastic electrodes 32 on either side of the cartridge 12 where the electrodes 32 sandwich or surround the exposed portion of the film 26. The electroactive polymer film 26 can have any number of configurations. However, in one example, the electroactive polymer film 26 comprises a thin layer of elastomeric dielectric polymer (e.g., made of acrylate, silicone, urethane, thermoplastic elastomer, hydrocarbon rubber, fluoroelastomer, copolymer elastomer, or the like). When a voltage difference is applied across the oppositely-charged electrodes 32 of each working pair (i.e., across paired electrodes that are on either side of the film 26), the opposed electrodes attract each other thereby compressing the dielectric polymer layer 26 therebetween. The area between opposed electrodes is considered the active area. As the electrodes are pulled closer together, the dielectric polymer 26 becomes thinner (i.e., the Z-axis component contracts) as it expands in the planar directions (i.e., the X- and Y-axes components expand) (See FIG. 1B for axis references). Furthermore, in variations where the electrodes contain conductive particles, like charges distributed across each electrode may cause conductive particles embedded within that electrode to repel one another, thereby contributing to the expansion of the elastic electrodes and dielectric films. In alternate variations, electrodes do not contain conductive particles (e.g., textured sputtered metal films). The dielectric layer 26 is thereby caused to deflect with a change in electric field. As the electrode material is also compliant, the electrode layers change shape along with dielectric layer 26. As stated hereinabove, deflection refers to any displacement, expansion, contraction, torsion, linear or area strain, or any other deformation of a portion of dielectric layer 26. This deflection may be used to produce mechanical work. As shown, the dielectric layer 26 can also include one or more mechanical output bars 34. The bars 34 can optionally provide attachment points for either an inertial mass (as described below) or for direct coupling to a substrate in the electronic media device.


In fabricating a transducer, an elastic film 26 can be stretched and held in a pre-strained condition usually by a rigid frame 8. In those variations employing a four-sided frame, the film can be stretched bi-axially. It has been observed that pre-strain improves the dielectric strength of the polymer layer 26, thereby enabling the use of higher electric fields and improving conversion between electrical and mechanical energy, i.e., the pre-strain allows the film to deflect more and provide greater mechanical work. Preferably, the electrode material is applied after pre-straining the polymer layer, but may be applied beforehand. The two electrodes provided on the same side of layer 26, referred to herein as same-side electrode pairs, i.e., electrodes on the top side of dielectric layer 26 and electrodes on a bottom side of dielectric layer 26, can be electrically isolated from each other. The opposed electrodes on the opposite sides of the polymer layer form two sets of working electrode pairs, i.e., electrodes spaced by the electroactive polymer film 26 form one working electrode pair and electrodes surrounding the adjacent exposed electroactive polymer film 26 form another working electrode pair. Each same-side electrode pair can have the same polarity, whereas the polarity of the electrodes of each working electrode pair is opposite each other. Each electrode has an electrical contact portion configured for electrical connection to a voltage source.


In this variation, the electrodes 32 are connected to a voltage source via a flex connector 30 having leads 22, 24 that can be connected to the opposing poles of the voltage source. The cartridge 12 also includes conductive vias 18, 20. The conductive vias 18, 20 can provide a means to electrically couple the electrodes 8 with a respective lead 22 or 24 depending upon the polarity of the electrodes.


The cartridge 12 illustrated in FIG. 2A shows a 3-bar actuator configuration. However, the devices and processes described herein are not limited to any particular configuration, unless specifically claimed. Preferably, the number of the bars 34 depends on the active area desired for the intended application. The total amount of active area e.g., the total amount of area between electrodes, can be varied depending on the mass that the actuator is trying to move and the desired frequency of movement. In one example, selection of the number of bars is determined by first assessing the size of the object to be moved, and then the mass of the object is determined. The actuator design is then obtained by configuring a design that will move that object at the desired frequency range. Clearly, any number of actuator designs is within the scope of the disclosure.


An electroactive polymer actuator for use in the processes and devices described herein can then be formed in a number of different ways. For example, the electroactive polymer can be formed by stacking a number of cartridges 12 together, having a single cartridge with multiple layers, or having multiple cartridges with multiple layers. Manufacturing and yield considerations may favor stacking single cartridges together to form the electroactive polymer actuator. In doing so, electrical connectivity between cartridges can be maintained by electrically coupling the vias 18, 20 together so that adjacent cartridges are coupled to the same voltage source or power supply.


The cartridge 12 shown in FIG. 2A includes three pairs of electrodes 32 separated by a single dielectric layer 26. In one variation, as shown in FIG. 2B, two or more cartridges 12 are stacked together to form an electroactive actuator 14 that is coupled to an inertial mass 50. Alternatively, the electroactive actuator 14 can be coupled directly to the electronic media device through a temporary attachment plate or frame. As discussed below, the electroactive actuator 14 can be placed within a cavity 52 that allows for movement of the actuator as desired. The pocket 52 can be directly formed in a housing of a haptic case. Alternatively, pocket 52 can be formed in a separate case 56 positioned within the housing of the device. If the latter, the material properties of the separate case 56 can be selected based upon the needs of the actuator 14. For example, if the main body of the haptic housing assembly is flexible, the separate case 56 can be made rigid to provide protection to the electroactive actuator and/or the mass 50. In any event, variations of the device and processes described herein include size of the cavity 52 with sufficient clearance to allow movement of the actuator 14 and/or mass 50 but a close enough tolerance so that the cavity 52 barrier (e.g., the haptic housing or separate case 56) serves as a limit to prevent excessive movement of the electroactive actuator 14. Such a feature prevents the active areas of the actuator 14 from excessive displacement that can shorten the life of the actuator or otherwise damage the actuator.


Additional examples of electroactive polymer films can be found in the commonly assigned patents and patent applications disclosed and incorporated by reference herein. Roll-to-roll manufacturing is a desirable way to produce high volumes of electroactive polymer devices. Roll-to-roll manufacturing comprises providing the unprocessed stock film material in a roll form, processing the material as the stock material unrolls and ultimately singulating the finished electroactive polymer devices at the conclusion of the assembly process. One can also have a roll-to-sheet process where the film is advanced by sections in a step-and-repeat fashion. The line is organized as a series of processing stations, and a film section is advanced from station to station along the web.


The final configuration of the electroactive polymer films presents challenges when trying to produce these films in high volume. For example, the materials are preferably pre-strained to a specific, well-controlled degree prior to assembly. Maintenance of a consistent web speed and tension and registration of multiple printing or patterning steps are especially difficult on a deformable substrate. Also, elastomeric materials are often prone to damage during the manufacturing process and this damage can limit performance and reliability of the finished film.


To address these concerns and limitations, a novel process for producing electroactive polymer devices addresses the issues discussed above. In one variation the process includes separating the stock film material 300, typically a silicone from a release liner (i.e., a liner of material that prevents the film from sticking together). Although, the stock film material 300 may comprise any material used for fabrication of electroactive polymer devices, such as disclosed in the references incorporated by reference herein. The roll-to-roll process can include rollers treated to release the stock film material 300 as it passes through the various manufacturing processes. For example, such treatment can include TEFLON coatings or other release (or non-stick) coatings that prevents the film from adhering to the roller. The rollers may also be covered with an intermediary layer such as an engineered surface, a removable liner, a compliant layer, or a deformable layer. Examples of engineered surfaces include, but are not limited to, parchment paper, texture surfaces, screen mesh, non-stick surfaces, and polymer sheets. Examples of deformable layers include, but are not limited to, foams and soft network materials such those made from ethylene vinyl acetate, silicone and polyurethanes. In an alternate variation, the process can include replacing the roll of the stock film material 300 with a feed direct from an extrusion or other manufacturing process that directly produces the film material 96.


As the film material 96 unwinds from the stock roll 300, a release liner 330 that separates layers of the film material 96 can be rewound 302. As noted herein, the film material 96 may be pre-strained. In the illustrated variation the film material 96 is stretched in a machine direction (direction parallel to the travel of the material 96) using, for example rollers 302 travelling at different speeds. The material 96 is then stretched in a transverse direction using a separate mechanism 304. Variations include simultaneously stretching the material 96 in a machine and transverse direction (i.e., bi-axial stretchers). The desired stretch will depend upon the application as well as the desired performance of the electroactive polymer device. For example, the material can be stretched 30% in either or both the machine and transverse direction.


In some cases, it may be desirable to provide a layer of support to the film 96 after stretching. If so, a lamination layer 308 can be added to the film 96 to provide additional support for processing of the film. As discussed below, the lamination 308 also serves to reduce the occurrence of breaks in the film 96 as well as limit the breakage areas to non-critical sections of the film 96. This lamination layer 308 is sometimes referred to as a “rip-stop” layer or film. The rip-stop lamination layer may also include any number of openings that allow for further processing of the film 96. Though not shown, any number of cutouts can be included in the rip-stop layer 308 as long as the ability to provide support is not lost and the film 96 does not buckle during processing. The rip-stop layer 308 may comprise any number of polymeric materials, including polyethylene terephthalate, polyester and polycarbonate. The rip-stop layer 308 may have a surface treatment to optimize its interaction with the film 96. To provide sufficient support and tear resistance, the rip-stop layer 308 should have good surface blocking or bond to the film 96. Accordingly, the rip-stop layer 308 can be laminated to the film 96 using an adhesive layer, coatings, or tape. Preferably, the rip-stop layer 308 may include openings that allow for further processing of the film 96 into the electroactive polymer device. These openings may be created by any conventional process such as stamping, cutting, etching, etc. Although the laminated film 96 with rip-stop 308 can proceed through the manufacturing process, as illustrated in FIG. 3A, alternate variations of the process can include re-winding the film 96 after lamination with the rip-stop layer 308.


A printed layer can be used as an alternative to a laminated rip-stop layer. The printed material can be any material that can be applied to the film and cured or dried in place that is tougher and more tear resistant than the film. Examples of suitable materials include, but are not limited to, polyurethanes, silicones, acrylates, and epoxy systems.


Next, the film 96 with rip-stop 308 is fed through one or more electrode printing assemblies 310. The electrode printing assembly 310 may also optionally print the bus bar connection for the electrodes on both sides of the film 96. Any number of web-printing processes can produce the electrodes necessary for the electroactive polymer device, including flexographic printing, gravure (also called rotogravure or roto printing), screen printing, rotary screen printing, ink jet printing, aerosol jet printing, etc. The printing process may be adjusted for the offset caused by the openings in the rip-stop layer (for example, the print rollers can have raised bosses that are timed to print on the unlaminated portion of the film 96). Furthermore, registration of the film 96 web positions may be necessary to ensure electrodes are printed within the openings of the rip-stop lamination as well as on the web of film 96. Any such registration commonly used in printing or similar applications may be applied to the process disclosed herein.



FIG. 3A also illustrates printing occurring on both surfaces of the film 96. As noted above, electrode placement is required on each side of the film 96. In alternate variations of the process, printing can occur on a single side of the film 96, which is then rewound and reprocessed with printing occurring on the opposite side in a subsequent process. Alternatively, the single-sided printed film may be stacked or laminated where the single electrode can be used to service two adjacent films in a multilayer stack. In any case, registration may be necessary to ensure that printing of electrodes on opposing sides of the film material and on different sections of the film is within manufacturing tolerances.


Once the electrodes are placed on the film 96, the film 96 can be re-wound 312 with an interleaf or separation layer 314 positioned between layers of the film 96. Alternatively, the film 96 can continue for additional processing to assemble the electroactive polymer frame and support structures as described herein.



FIG. 3B illustrates an example of further processing of the printed elastomeric film 96 material in a process that produces a double layered electroactive polymer device. As shown, two sources of the printed film 96 can be fed 316 or unwound and joined to form a double layer of electroactive polymer film 96. The film may optionally be bonded or laminated depending upon the desired application. Next, one or more cartridge frames 318 may be added or bonded to the film 96 on both sides of the double layered electroactive polymer film 96. In addition to placement of the frames, one or more output bars or center discs 320 may be positioned by each electrode on the opposing sides of the double layer electroactive polymer film 96. Structural elements such as flexures may also be placed onto the film. Additional printing stations may be used to print adhesives or structural materials for the frames, flexures, and output bars. Finally, the finished electroactive polymer devices can be removed from the web (e.g., die cut, punched, laser cut, etc.). Clearly, variations of the process may include removal of the materials after any stage of processing so the device can be completed in a batch process rather than on the conveyor assembly system. Moreover, variations of the process include re-winding of the finished electroactive polymer device for subsequent removal.


In an alternate variation, a process for fabricating an electroactive polymer device may include UV, thermal, or surface treatment of the elastomeric polymer. The present inventors have found that UV treatment of the film prior to depositing electrodes on the film results in improved stroke performance of the finished actuator. While not wishing to be bound to any particular theory, the present inventors believe UV exposure, silicone, polyurethane, acrylate, hydrocarbon rubber, olefin copolymer, polyvinylidene fluoride copolymer, fluoroelastomer, styrenic copolymer, and adhesive elastomer may change the surface energy of the film to improve uniformity of the electrode deposition. Further, the inventors speculate that UV curing may change the bulk modulus or other properties of the elastomer making it more compliant and UV treatment may modify residual functional groups in the polymer film that cross-link during thermal loading in the manufacturing process.


Regardless of the actual mechanism, the present inventors have found UV curing is an effective treatment to improve the stroke performance of actuators. In one example, UV curing improved a pulse response of an actuator by 20% and characterized the actuators with lower resonant frequency as compared to a non-UV cured elastomer. The parameters for UV curing will vary depending on a number of factors and the desired application of the end electroactive polymer device. In one example, it was found that UV curing of 6.5-7.0 J/cm2 was an optimum point of UV treatment that improved stroke performance for actuators. Another unexpected benefit of UV curing (prior to deposition of electrodes) is that the queue time between UV curing and electrode printing was not a sensitive factor. In the study conducted by the present inventors, the queue time could last as long as 25 days. This finding may potentially allow for UV curing during or immediately after pre-straining the film. In some cases, it may be possible to treat the elastomer during film manufacture so that the benefits are retained from when the elastomeric film is made to when the film is processed as described herein.


One of the problems with attempting to use roll-to-roll manufacturing for elastomeric films (such as silicone) is that the film is relatively thin (e.g., 23 μm) while having a very low modulus. The compliant film cannot remain flat without applying pre-strain but at the same time, the film can tear or break easily. Furthermore, to ensure that the device is manufactured to meet high actuator performance, the film requires a high level of applied strain during printing and lamination. Without a frame to hold and maintain the pre-strain, the electrode pattern printed on the film has a high chance of deforming and registration of the printed patterns is likely to be poor. If the film deforms during the printing operations, the film may be rendered non-functional for use in the electroactive polymer actuators.


To address this issue, a variation of the inventive manufacturing process includes applying a uni-axial pre-strain to the electroactive polymer film. Experiments have shown that uni-axial strain can match the stroke performance of regular bi-axial pre-strained films under certain conditions.


Uni-axial pre-strain magnitude can be defined by an index of thickness, the same as biaxial pre-strain after stretching. For example, uni-axial strain (67% thickness direction and 0% strain in XY direction) and biaxial strain (30% in two directions) can have similar film thickness ranges. The longer output bar direction is parallel to the uni-axial pre-strain direction.


To achieve uni-axial pre-strain in a roll-to-roll system, perforated belts 360, as shown in FIGS. 4A and 4B, may be used to hold the two edges of the elastomeric film 96 in the web (longitudinal) direction. The uni-axial strain may be applied by stretching the film in lateral direction, while in the web direction there is zero or low pre-strain. The output bar of the electroactive polymer cartridge can be designed to be perpendicular to the web direction. One variation of the process includes the use of perforation (or sprocket or pin-fed) rollers to hold the belts and film while controlling the degree and direction of strain (See FIGS. 4C and 4D).


The lateral and longitude position of the belts 360 can be controlled precisely through the perforation rollers so the local strain will be consistent and stable. This allows for multiple printing and curing steps as described herein. The major strain is defined by the distance between two belts 360 on the two long edges of elastomeric film 96.


The belts 360 may be constructed from a material that is much stiffer than the elastomeric film. For example, the belts 360 can comprise polyethylene terephthalate, which has a Young's Modulus between 2800-3100 MPa and tensile strength is 55-75 MPa. In contrast, silicone (a common material for the elastomeric film) has Young's Modulus of 1-5 MPa and tensile strength is 5-8 MPa. Accordingly, polyethylene terephthalate is about 1000 times stiffer than silicone film.


When applying tension through the rollers 362, the majority of force will be applied to the polyethylene terephthalate belt 360 rather than the film 96. For example, assuming 5% elongation on the web, 400 out of 401 parts of force is applied on the polyethylene terephthalate belt while 1 part is applied on silicone film (assuming polyethylene terephthalate is 50 μm thick and 25 mm wide; while silicone film is 25 m thick and 500 mm wide). This avoids the need to use tension rollers directly on the silicone film to control the strain of the film. If tension rollers were used, any small change in tension applied to the silicone film would lead to a great change in film elongation which would be difficult to control.


Biaxial stretching may be accomplished with perforated belts if the belts are constructed of stretchable material or are segmented, e.g. with perforated lines, so sections of the belt can separate upon stretching along the web direction while remaining engaged with the perforated rollers or guide chains along the edge of the web.



FIG. 5A illustrates a variation of a printing process useful in manufacturing electroactive polymer transducers. This process can be especially useful in large volume manufacturing of the transducers. FIG. 5A illustrates a configuration used in a screen print process for large volume manufacturing of electroactive polymer actuators. In this variation, an elastomeric film 96 is held in a frame 340 with a liner 342 that is attached to the backside of the film. The liner 342 assists in release of the film 96 from the aluminum vacuum tooling 344 after the screen printing process. The liner 342 also serves to stabilize the film 96, which improves control over dimensional tolerances of the printed film 96. Although liners 342 are effective, the use of the liners may increase process time, setup time, and cost while reducing throughput of the manufacturing process. Furthermore, increased handling of the electroactive polymer film, from applying and removing the liners, can increase the chances of damage to the film. Moreover, the liners can damage the film if the liner does not release easily or if air or other particles become trapped between the film and the liner.



FIG. 5B illustrates a variation of a printing configuration that eliminates the requirement of a liner similar to that shown in FIG. 5A. In this variation the electroactive polymer film 96 remains secured to a frame. The setup also includes a base plate (e.g. constructed from aluminum or a similar material) having vacuum openings 346 used to retain the film 96. The variation illustrated in FIG. 5B includes an engineered top surface 348 (e.g., parchment paper, screen mesh, polymer sheet, textured surface, non-stick surface, or a similar material). The engineered surface 348 should have sufficient tack properties that it holds tolerance, provides differential release from the screen, and releases the elastomeric film 96 after the printing process. The printing configuration also may include a compliant intermediate layer 350 that creates a relatively soft, firm, and level surface for printing. The compliant layer 350 may include a very high bond adhesive, rubber, or other similar material. As illustrated, the print tooling configuration may include vacuum apertures 346 to assist in holding the film 96 in place during printing and to ease release (via cessation of the vacuum force).



FIG. 5C demonstrates yet another variation of a tooling configuration used for screen printing of the film 96. In this variation, the film 96 contacts a deformable layer such as a foam sheet 352 directly without the use of any type of layer such as the engineered surface or the liner described in FIGS. 5A and 5B. The deformable layer provides a soft tooling effect and may comprise a material such as ethylene vinyl acetate foam. In one example, the deformable layer comprises an ethylene-vinyl acetate film with 2 mm thickness and a 75+/−5 Shore 00 hardness. Other soft materials such as silicones and polyurethanes may also be used. The deformable layer may have a textured or treated surface to aid in its release properties from the film. As with the other variations, the foam layer 352 includes a plurality of vacuum holes that help secure the film 96 to the foam and release the film upon cessation of the vacuum force. With some open-celled foams, vacuum holes may not be needed.


The soft tooling described in FIG. 5C above provides an additional benefit by allowing formation of patterns which aid in the manufacturing process. For example, as shown in FIG. 6, the foam layer may be etched to produce a pattern 356 that is related to the design of the feature or part being printed on the elastomeric film. The illustration shown in FIG. 6 relates to a pattern 356 that assists in creating a bus bar on the electroactive polymer device. As the modified tooling 354 contacts the film (not shown in FIG. 6), the compression of the soft tooling allows for differential pressure zones based on the depth and/or size of the pattern 356. For example, in the modified soft tooling 354 shown the regions containing the patterns 356 will create zones of lower pressure than the continuous regions 358. Accordingly, during screen printing, the lower pressure zones will result in greater print thickness compared to the remainder of the printed electrode. The ability to perform multiple thickness printing in one step has the potential to improve throughput as compared to needing sequential printing steps.


Apart from improving efficiency, the ability to produce areas of varying thickness also results in improved device performance. For example, in one example, printing of a thicker bus bar with modified soft tooling resulted in a bus bar resistivity that was four times lower than resistivity of the bus bar produced with unmodified soft tooling. Generally, the depth of the pattern is calculated based on the initial print pressure, tooling hardness and ink viscosity. In one example, the depth of the patterns ranged between 150-200 μm for electrode ink given a 1.7 mm ethylene vinyl acetate foam.


Any of the tooling configurations discussed above may optionally include additional materials that enhance maintenance, serviceability, or improve performance. Examples of such materials include, but are not limited to, coatings, adhesives, release agents, etc. These tooling configurations may also be used to print inks other than conductive electrode inks and print onto deformable substrates other than those used for electroactive polymer transducers.


In another embodiment of the present invention a fibrillated (net) microstructure that demonstrates extra stability in sheet resistance under large strain cycles is provided. An electroactive polymer structure comprises a dielectric polymer film and two compliant electrodes. When a voltage is applied across the electrodes, the film contracts and expands in area. Flexographic printing, rather than screen printing, can produce a fibrillated (or net) microstructure as shown in FIG. 7B. Comparing the square pattern microstructure (shown in FIG. 7A) made by screen printing with this net microstructure resulting from flexographic printing in conjunction with Table 1, reveals a significant improvement in the consistency of sheet resistance, using the same dielectric polymer film and the carbon ink in the two processes.


The preferred flexographic layers are: rip-stop/electrode/bus bar/adhesive/pressure sensitive adhesive. To build up such a robust structure, the conductivity of electrodes should be kept consistent under cycling strain. Sheet resistance can vary from 25 k to 125 k as with screen printing; with a production flexographic tool, the consistency can be well controlled.












TABLE 1








100% XY strain



Initial
Removal of
manipulation for 10


Printing Process
reading
liner
times


















Screen printing
550
1700
4500


Flexographic printing
65
64
70









Alternatively, similar net structures may be made through control of ink surface tension, creation of proper mechanical pre-tension of the dielectric film, or taking advantage of some other printing processes, such as ink jet/aerosol jet/curtain/slot/wire coating. The pattern on the roller is also a design factor with possibilities of cell pattern or line (curve) patterns with different angles. Controlling the density of the fibrillated structure may allow one conductive material to be used for charge distribution, with or without an additional coating of lower conductivity ink as electrodes.


The inventive fibrillated microstructure may be built up for use as electrodes or bus lines by certain printing processes or wetting/dewetting patterns from controlling the surface tension of the materials. A complicated mask or template may not be necessary to produce such a net pattern.



FIGS. 8-10, show the inventive concept of using a web flex frame with open precut patterns sandwich with stretched silicone film, loading of substrates for printing multiple layers, and final lamination. The substrates may be loaded continuously or advanced in a step and repeat fashion. As shown in FIG. 8, web frame 82 holds pre-strained silicone film 86 in shape without deformation during web movement. The web frame 82 is similar to a rigid aluminum frame; but the web frame is continuous with flexibility in the Z direction so it can be driven by rolls 88. There are two sets of web frames 81, 82 on the top 81 and the bottom 82 of the silicone film 86. Surface tension, blocking forces, magnetic force (permanent or electro-driven), or mechanical interlocks may be used to sandwich the silicone film between web frames 81, 82. The web frame holder material may include rubber coated metal foil as a composite material allowing flexibility in the Z direction to move as the web and rigidity in the X-Y directions to hold the film. The rubber or coating surface may be designed to be released from silicone film after lamination is completed so that the debris of silicone film after device singulation can be easily cleaned before starting another cycle.


As shown in FIG. 9, several printing stations 92, 94 may be aligned sequentially on the web 90; lamination module 196 is the last step on the web. Through the open window precut on the web frame, there is a printing station 92 to deposit inks on silicone film. The printing direction may be perpendicular to the web movement direction to conserve space so the line may be shorter. There may be curing or drying stations (not shown) between printing station(s). To save time or shorten the length of the web path, the ink may only be dried or partially cured instead of fully cured before the film moves to a subsequent printing station.


After adhesive printing 94, there is a laminating station 196 that may be arranged in a perpendicular direction as well. A rotary die cutting station (not shown) may be used to make patterns of frame layers on a roll. The pre-cut frame pattern may have pressure sensitive adhesive on one or both sides so it is ready for lamination.


An example process flow for the lamination process for a four-layer electroactive polymer transducer is as follows:

    • 1. The precut frame layer is transferred to the lamination station as the frame top layer;
    • 2. layer 4 with adhesive on the web frame holder is transferred to the lamination station, pressure/heat is applied and the web frame holder is removed;
    • 3. step 2 is repeated with layers 3, 2, 1, sequentially,
    • 4. the precut frame bottom layer is laminated to the stack.


The frame layers may be precut on a rotary die cutter. The lamination station may have a thermal heating function to pre-cure adhesive in-between layers such that each new layer adheres to previous layers tightly. After lamination, the entire sheet of cartridge stack may be sent to the curing station for final full cure and singulation with a die cutter.


The layers may have different patterns of electrode and bus bar. This may be done without introducing extra printing steps. One way to do this, for example, is to make the electrode/bus left on the left half of screen and electrode/bus right on right half of the layer. Many other combinations may be envisioned to produce this on one single continuous web.


As shown in FIG. 10, in one embodiment, layout of the line is as follows: stretching→sandwiching→printing(s)→lamination.


The web movement on the sandwiched frame-film-frame may be more complex than as illustrated. For example, a means to flip the web may be included so both sides of film may be printed with screen printing or flexographic printing. If non-contact printing is applied, such as aerosol jetting, both sides may be printed simultaneously to simplify the web design.


As for other details of the present invention, materials and alternate related configurations may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to process-based aspects of the invention in terms of additional acts as commonly or logically employed. In addition, though the invention has been described in reference to several examples, optionally incorporating various features, the invention is not to be limited to that which is described or indicated as contemplated with respect to each variation of the invention. Various changes may be made to the invention described and equivalents (whether recited herein or not included for the sake of some brevity) may be substituted without departing from the true spirit and scope of the invention. Any number of the individual parts or subassemblies shown may be integrated in their design. Such changes or others may be undertaken or guided by the principles of design for assembly.


Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “an,” “said,” and “the” include plural referents unless the specifically stated otherwise. In other words, use of the articles allow for “at least one” of the subject item in the description above as well as the claims below. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Without the use of such exclusive terminology, the term “comprising” in the claims shall allow for the inclusion of any additional element—irrespective of whether a given number of elements are enumerated in the claim, or the addition of a feature could be regarded as transforming the nature of an element set forth in the claims. Stated otherwise, unless specifically defined herein, all technical and scientific terms used herein are to be given as broad a commonly understood meaning as possible while maintaining claim validity.

Claims
  • 1. A process for producing a patterned deformable polymer film for use in a deformable polymer device, the process comprising: supporting a deformable film section such that the deformable film section comprises a supported portion and an unsupported portion;positioning an intermediary layer between the unsupported portion of the deformable film and a process tooling; andprinting at least one electrode on the unsupported portion of the deformable film by depositing an ink to form the at least one electrode on a first surface of the unsupported portion of the deformable film, wherein the intermediary layer permits release of the unsupported portion of the deformable film from the process tooling subsequent to the printing process.
  • 2. The process according to claim 1, wherein the ink is deposited by one selected from the group consisting of screen printing, pad printing, gravure printing, ink jet printing, flexographic printing and aerosol jet printing.
  • 3. The process according to one of claims 1 or 2, wherein the intermediary layer comprises at least one selected from the group consisting of an engineered surface, a removable liner, a compliant layer and a deformable layer.
  • 4. The process according to claim 3, wherein the engineered surface is a surface selected from the group consisting of a parchment paper, a textured surface, a non-stick surface, screen mesh and a polymer sheet.
  • 5. The process according to claim 3, wherein the deformable layer comprises a foam material.
  • 6. The process according to claim 3, wherein the deformable layer comprises a plurality of cavities, wherein the cavities permit regions of varying pressure during screen printing, and wherein the process further comprises depositing ink at varying levels on the first surface of the deformable film.
  • 7. The process according to claim 1, wherein the deformable polymer film comprises an electroactive polymer film.
  • 8. The process according to claim 1 further comprising: advancing a deformable film of an elastomeric material from a supply of elastomeric material;mechanically straining the deformable film to create a first pre-strained film section remaining continuous with the supply of elastomeric material;depositing ink to create at least a first electrode on a first side of an unsupported portion of the first pre-strained film section, wherein supporting a deformable film section comprises supporting the first pre-strained film section such that the first pre-strained film section comprises a supported portion of the first pre-strained film section and the unsupported portion of the first pre-strained film section;depositing ink to create at least a second electrode on a second side of the unsupported portion of the first pre-strained film section opposing the first electrode and forming at least one opposing electrode pair to complete at least a first section of electroactive polymeric film; andcollecting the first section of electroactive polymeric film.
  • 9. The process according to claim 8, further comprising: mechanically straining the deformable film to create a second pre-strained film section remaining continuous with the deformable film;supporting the second pre-strained film section such that the second pre-strained film section comprises a supported portion and an unsupported portion;depositing ink to create at least a first electrode on a first side of the unsupported portion of the second pre-strained film section; andcollecting the second section of electroactive polymeric film.
  • 10. The process according to claim 9, further comprising stacking or laminating the first and second sections of electroactive polymeric film together.
  • 11. The process according to claim 8 further comprising applying at least one structural component selected from the group consisting of output bars, frames and flexures.
  • 12. The process according to claim 8, wherein the film of elastomeric material comprises a first and second belt member on respective near and far edges of the film, and wherein each belt member comprises a material having a Young's Modulus greater than a Young's Modulus of the film.
  • 13. The process according to claim 12, wherein the first and second belt members comprise perforated belt members and wherein perforation rollers are used to mechanically strain the film.
  • 14. The process according to claim 8, wherein the film of elastomeric material is mechanically strained substantially in a direction selected from the group consisting of transverse to the direction of travel of the advancing film, parallel to the direction of travel of the advancing film, equally in transverse and parallel directions, or in an unequal combination of transverse and parallel directions.
  • 15. The process according to claim 8, wherein the film is advanced in a stepwise fashion.
  • 16. The process according to claim 8, wherein collecting the first section of electroactive polymer film comprises winding a plurality of sections of electroactive polymer film to form a roll of electroactive polymer films.
  • 17. The process according to claim 16 further comprising feeding at least two rolls of electroactive polymer films into a lamination station and applying at least one selected from the group consisting of a frame, an output bar, and a flexure to at least the first layer of electroactive polymer films to assemble a multi layered electroactive polymer actuator device.
  • 18. The process according to claim 8, wherein supporting the first pre-strained film section comprises applying a supporting layer to the first pre-strained film section.
  • 19. The process according to claim 1, wherein the deformable film comprises a pre-strained electroactive polymer.
  • 20. The process according to claim 1 wherein the polymer is selected from the group consisting of silicone, polyurethane, acrylate, hydrocarbon rubber, olefin copolymer, polyvinylidene fluoride copolymer, fluoroelastomer, styrenic copolymer, and adhesive elastomer.
RELATED APPLICATIONS

This application is a U.S. national stage application, filed under 35 U.S.C. §371, of PCT/US2012/027188, which was filed on Mar. 1, 2012 entitled “AUTOMATED MANUFACTURING PROCESSES FOR PRODUCING DEFORMABLE POLYMER DEVICES AND FILMS,” and claims the benefit, under 35 USC §119(e), of U.S. Provisional Application No. 61/477,675 filed Apr. 21, 2011 entitled “AUTOMATED EPAM MANUFACTURING PROCESSES”; 61/477,709 filed Apr. 21, 2011 entitled “LINER-LESS PRINTING”; 61/482,751 filed May 5, 2011 entitled “LINER-LESS PRINTING II”; 61/447,832 filed Mar. 1, 2011 entitled, “FIBRILLATED STRUCTURE FOR ELECTRODE”; 61/546,683 filed Oct. 13, 2011 “MODIFIED SOFT TOOLING AND EFFECT OF TROUGHS IN PRINT THICKNESS”; 61/549,799 filed Oct. 21, 2011 entitled, “USE CONTINUOUS WEB FRAME BELT FOR ROLL-TO-ROLL CARTRIDGE PRINTING/PROCESS”, and 61/556,408 filed Nov. 7, 2011 the entirety of each of which are incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2012/027188 3/1/2012 WO 00 2/3/2014
Publishing Document Publishing Date Country Kind
WO2012/118916 9/7/2012 WO A
US Referenced Citations (718)
Number Name Date Kind
2430013 Hansell Nov 1947 A
2967914 Pye Jan 1961 A
3050034 Benton Aug 1962 A
3056932 Wood Oct 1962 A
3303750 Powell Feb 1967 A
3304773 Rogallo Feb 1967 A
3400281 Malik Sep 1968 A
3403234 Barnes, Jr. et al. Sep 1968 A
3463942 Mellon Aug 1969 A
3509714 Walton May 1970 A
3516846 Matson Jun 1970 A
3539841 Riff Nov 1970 A
3558936 Horan Jan 1971 A
3606241 Bornholdt Sep 1971 A
3699963 Zaffaroni Oct 1972 A
3783480 Booe Jan 1974 A
3798473 Murayama et al. Mar 1974 A
3801839 Yo Apr 1974 A
3816774 Ohnuki et al. Jun 1974 A
3821967 Sturman et al. Jul 1974 A
3832580 Yamamuro et al. Aug 1974 A
3851363 Booe Dec 1974 A
3903733 Murayama et al. Sep 1975 A
3935485 Yoshida et al. Jan 1976 A
3940637 Ohigashi et al. Feb 1976 A
3943614 Yoshikawa et al. Mar 1976 A
3947644 Uchikawa Mar 1976 A
3965757 Barrus Jun 1976 A
4011474 O'Neill Mar 1977 A
4028566 Franssen et al. Jun 1977 A
4051395 Taylor Sep 1977 A
4056742 Tibbetts Nov 1977 A
4088915 Kodama May 1978 A
4089927 Taylor May 1978 A
4127749 Atoji et al. Nov 1978 A
4140936 Bullock Feb 1979 A
4155950 Berezuk et al. May 1979 A
4158787 Forward Jun 1979 A
4170742 Itagaki et al. Oct 1979 A
4190336 Frank et al. Feb 1980 A
4216403 Krempl et al. Aug 1980 A
4227347 Tam Oct 1980 A
4234813 Iguchi et al. Nov 1980 A
4236416 Barcita Dec 1980 A
4240535 Pierce et al. Dec 1980 A
4245815 Willis Jan 1981 A
4257594 Conrey et al. Mar 1981 A
4266339 Kalt May 1981 A
4283461 Wooden et al. Aug 1981 A
4283649 Heinouchi Aug 1981 A
4284921 Lemonon et al. Aug 1981 A
4290983 Sasaki et al. Sep 1981 A
4297394 Wooden et al. Oct 1981 A
4315433 Edelman et al. Feb 1982 A
4322877 Taylor Apr 1982 A
4326762 Hockenbrock et al. Apr 1982 A
4330730 Kurz et al. May 1982 A
4342936 Marcus et al. Aug 1982 A
4344743 Bessman et al. Aug 1982 A
4346505 Lemonon et al. Aug 1982 A
4363991 Edelman Dec 1982 A
4376302 Miller Mar 1983 A
4384394 Lemonon et al. May 1983 A
4387318 Kolm et al. Jun 1983 A
4400634 Micheron Aug 1983 A
4401911 Ravinet et al. Aug 1983 A
4404490 Taylor et al. Sep 1983 A
4413202 Krempl et al. Nov 1983 A
4433359 Hamabe et al. Feb 1984 A
4434452 Hamabe et al. Feb 1984 A
4435667 Kolm et al. Mar 1984 A
4442372 Roberts Apr 1984 A
4469920 Murphy Sep 1984 A
4469978 Hamada et al. Sep 1984 A
4472255 Millington et al. Sep 1984 A
4473806 Johnston Sep 1984 A
4500377 Broussoux et al. Feb 1985 A
4518555 Ravinet et al. May 1985 A
4566135 Schmidt Jan 1986 A
4588998 Yamamuro et al. May 1986 A
4592383 Rikuta Jun 1986 A
4595338 Kolm et al. Jun 1986 A
4598338 Van Devender et al. Jul 1986 A
4605167 Maehara Aug 1986 A
4626730 Hubbard, Jr. Dec 1986 A
4638207 Radice Jan 1987 A
4654554 Kishi Mar 1987 A
4678955 Toda Jul 1987 A
4686440 Hatamura et al. Aug 1987 A
4689614 Strachan Aug 1987 A
4704556 Kay Nov 1987 A
4715396 Fox Dec 1987 A
4733121 Hebert Mar 1988 A
4748366 Taylor May 1988 A
4762733 Thiel et al. Aug 1988 A
4783888 Fujii et al. Nov 1988 A
4784479 Ikemori Nov 1988 A
4785837 Hansen et al. Nov 1988 A
4786837 Kalnin et al. Nov 1988 A
4787411 Moldenhauer Nov 1988 A
4793588 Laverty, Jr. Dec 1988 A
4803671 Rochling et al. Feb 1989 A
4814661 Ratzlaff et al. Mar 1989 A
4820236 Berliner et al. Apr 1989 A
4824107 French Apr 1989 A
4825116 Itoh et al. Apr 1989 A
4833659 Geil et al. May 1989 A
4835747 Billet May 1989 A
4839872 Gragnolati et al. Jun 1989 A
4843275 Radice Jun 1989 A
4849668 Crawley et al. Jul 1989 A
4868447 Lee et al. Sep 1989 A
4869282 Sittler et al. Sep 1989 A
4870868 Gastgeb et al. Oct 1989 A
4877957 Okada et al. Oct 1989 A
4877988 McGinniss et al. Oct 1989 A
4879698 Langberg Nov 1989 A
4885783 Whitehead et al. Dec 1989 A
4885830 Ohtaka Dec 1989 A
4904222 Gastgeb et al. Feb 1990 A
4906886 Breimesser et al. Mar 1990 A
4911057 Fishman Mar 1990 A
4911995 Belanger et al. Mar 1990 A
4958100 Crawley et al. Sep 1990 A
4961956 Simopoulos et al. Oct 1990 A
4969197 Takaya Nov 1990 A
4971287 Shaw Nov 1990 A
4980597 Iwao Dec 1990 A
4989951 Miyano et al. Feb 1991 A
5024872 Wilson et al. Jun 1991 A
RE33651 Blonder et al. Jul 1991 E
5030874 Saito et al. Jul 1991 A
5048791 Ellison et al. Sep 1991 A
5065067 Todd et al. Nov 1991 A
5076538 Mohr et al. Dec 1991 A
5085401 Botting et al. Feb 1992 A
5090246 Colla et al. Feb 1992 A
5090794 Hatano et al. Feb 1992 A
5100100 Benson et al. Mar 1992 A
5119840 Shibata Jun 1992 A
5132582 Hayashi et al. Jul 1992 A
5142510 Rodda Aug 1992 A
5148735 Veletovac Sep 1992 A
5149514 Sanjurjo Sep 1992 A
5153820 MacFarlane et al. Oct 1992 A
5153859 Chatigny et al. Oct 1992 A
5156885 Budd Oct 1992 A
5170089 Fulton Dec 1992 A
5171734 Sanjurjo et al. Dec 1992 A
5172024 Broussoux et al. Dec 1992 A
5188447 Chiang et al. Feb 1993 A
5199641 Hohm et al. Apr 1993 A
5206557 Bobbio Apr 1993 A
5229979 Scheinbeim et al. Jul 1993 A
5232196 Hutchings et al. Aug 1993 A
5240004 Walinsky et al. Aug 1993 A
5244707 Shores Sep 1993 A
5250784 Muller et al. Oct 1993 A
5254296 Perlman Oct 1993 A
5258201 Munn et al. Nov 1993 A
5281885 Watanabe et al. Jan 1994 A
5288551 Sato et al. Feb 1994 A
5291335 Ogino Mar 1994 A
5302318 Dutta et al. Apr 1994 A
5305178 Binder et al. Apr 1994 A
5321332 Toda Jun 1994 A
5350966 Culp Sep 1994 A
5352574 Guiseppi-Elie Oct 1994 A
5356500 Scheinbeim et al. Oct 1994 A
5361240 Pearce Nov 1994 A
5368704 Madou et al. Nov 1994 A
5369995 Scheinbeim et al. Dec 1994 A
5377258 Bro Dec 1994 A
5380396 Shikida et al. Jan 1995 A
5410210 Sato et al. Apr 1995 A
5417235 Wise et al. May 1995 A
5424596 Mendenhall et al. Jun 1995 A
5428523 McDonnal Jun 1995 A
5430565 Yamanouchi et al. Jul 1995 A
5438553 Wilson et al. Aug 1995 A
5440194 Beurrier Aug 1995 A
5452878 Gravesen et al. Sep 1995 A
5481152 Buschulte Jan 1996 A
5488872 McCormick Feb 1996 A
5493372 Mashtare et al. Feb 1996 A
5495137 Park et al. Feb 1996 A
5499127 Tsubota et al. Mar 1996 A
5500635 Mott Mar 1996 A
5504388 Kimura et al. Apr 1996 A
5509888 Miller Apr 1996 A
5515341 Toda et al. May 1996 A
5548177 Carroll Aug 1996 A
5559387 Beurrier Sep 1996 A
5563466 Rennex et al. Oct 1996 A
5571148 Loeb et al. Nov 1996 A
5578889 Epstein Nov 1996 A
5589725 Haertling Dec 1996 A
5591986 Niigaki et al. Jan 1997 A
5593462 Gueguen et al. Jan 1997 A
5632841 Hellbaum et al. May 1997 A
5636072 Shibata et al. Jun 1997 A
5636100 Zheng et al. Jun 1997 A
5642015 Whitehead et al. Jun 1997 A
5647245 Takei Jul 1997 A
5668703 Rossi et al. Sep 1997 A
5678571 Brown Oct 1997 A
5682075 Bolleman et al. Oct 1997 A
5684637 Floyd Nov 1997 A
5696663 Unami et al. Dec 1997 A
5703295 Ishida et al. Dec 1997 A
5717563 MacDougall et al. Feb 1998 A
5722418 Bro Mar 1998 A
5744908 Kyushima Apr 1998 A
5751090 Henderson May 1998 A
5755909 Gailus May 1998 A
5761782 Sager Jun 1998 A
5766934 Guiseppi-Elie Jun 1998 A
5777540 Dedert et al. Jul 1998 A
5788468 Dewa et al. Aug 1998 A
5800421 Lemelson Sep 1998 A
5801475 Kimura Sep 1998 A
5814921 Carroll Sep 1998 A
5828157 Miki et al. Oct 1998 A
5831371 Bishop Nov 1998 A
5835453 Wynne et al. Nov 1998 A
5847690 Boie et al. Dec 1998 A
5857694 Lazarus et al. Jan 1999 A
5876675 Kennedy Mar 1999 A
5883466 Suyama et al. Mar 1999 A
5889354 Sager Mar 1999 A
5892314 Sager et al. Apr 1999 A
5896287 Mihara et al. Apr 1999 A
5897097 Biegelsen et al. Apr 1999 A
5900572 Aaroe May 1999 A
5902836 Bennett et al. May 1999 A
5910107 Iliff Jun 1999 A
5912499 Diem et al. Jun 1999 A
5913310 Brown Jun 1999 A
5914901 Pascucci Jun 1999 A
5915377 Coffee Jun 1999 A
5918502 Bishop Jul 1999 A
5928262 Harber Jul 1999 A
5928547 Shea et al. Jul 1999 A
5933170 Takeuchi et al. Aug 1999 A
5971355 Biegelsen et al. Oct 1999 A
5977685 Kurita et al. Nov 1999 A
5984760 Marine Nov 1999 A
5988902 Holehan Nov 1999 A
6012961 Sharpe, III et al. Jan 2000 A
6037707 Gailus et al. Mar 2000 A
6040356 Kanki et al. Mar 2000 A
6048276 Vandergrift Apr 2000 A
6048622 Hagood, IV et al. Apr 2000 A
6055859 Kozuka et al. May 2000 A
6059546 Brenan et al. May 2000 A
6060811 Fox et al. May 2000 A
6069420 Mizzi et al. May 2000 A
6074178 Bishop et al. Jun 2000 A
6075504 Stoller Jun 2000 A
6078126 Rollins et al. Jun 2000 A
6084321 Hunter et al. Jul 2000 A
6089701 Hashizume et al. Jul 2000 A
6093078 Cook Jul 2000 A
6093995 Lazarus et al. Jul 2000 A
6094988 Aindow Aug 2000 A
6097821 Yokoyama et al. Aug 2000 A
6108275 Hughes et al. Aug 2000 A
6111743 Lavene Aug 2000 A
6117396 Demers Sep 2000 A
6130510 Kurihara et al. Oct 2000 A
6133398 Bhat et al. Oct 2000 A
6140131 Sunakawa et al. Oct 2000 A
6140740 Porat et al. Oct 2000 A
6140746 Miyashita et al. Oct 2000 A
6148842 Kappel et al. Nov 2000 A
6156842 Hoenig et al. Dec 2000 A
6157528 Anthony Dec 2000 A
6161966 Chang et al. Dec 2000 A
6165126 Merzenich et al. Dec 2000 A
6168133 Heinz et al. Jan 2001 B1
6181351 Merrill et al. Jan 2001 B1
6184044 Sone et al. Feb 2001 B1
6184608 Cabuz et al. Feb 2001 B1
6184609 Johansson et al. Feb 2001 B1
6184844 Filipovic et al. Feb 2001 B1
6190805 Takeuchi et al. Feb 2001 B1
6194815 Carroll Feb 2001 B1
6196935 Spangler et al. Mar 2001 B1
6198203 Hotomi Mar 2001 B1
6198204 Pottenger Mar 2001 B1
6201398 Takada Mar 2001 B1
6210827 Dopp et al. Apr 2001 B1
6228533 Ohashi et al. May 2001 B1
6232702 Newnham et al. May 2001 B1
6239535 Toda et al. May 2001 B1
6239536 Lakin May 2001 B1
6240814 Boyd et al. Jun 2001 B1
6248262 Kubotera et al. Jun 2001 B1
6249076 Madden et al. Jun 2001 B1
6252221 Kaneko et al. Jun 2001 B1
6252334 Nye et al. Jun 2001 B1
6252336 Hall Jun 2001 B1
6255758 Cabuz et al. Jul 2001 B1
6262516 Fukuda et al. Jul 2001 B1
6268219 McBride et al. Jul 2001 B1
6282074 Anthony Aug 2001 B1
6284435 Cao Sep 2001 B1
6286961 Ogawa Sep 2001 B1
6291155 Raguse et al. Sep 2001 B1
6291928 Lazarus et al. Sep 2001 B1
6294859 Jaenker Sep 2001 B1
6297579 Martin et al. Oct 2001 B1
6311950 Kappel et al. Nov 2001 B1
6316084 Claus et al. Nov 2001 B1
6319019 Kwon Nov 2001 B1
6321428 Toda et al. Nov 2001 B1
6330463 Hedrich Dec 2001 B1
6333595 Horikawa et al. Dec 2001 B1
6334673 Kitahara et al. Jan 2002 B1
6336367 Raisanen Jan 2002 B1
6336880 Agner Jan 2002 B1
6339527 Farooq et al. Jan 2002 B1
6343129 Pelrine et al. Jan 2002 B1
6345840 Meyer et al. Feb 2002 B1
6349141 Corsaro Feb 2002 B1
6355185 Kubota Mar 2002 B1
6358021 Cabuz Mar 2002 B1
6359370 Chang Mar 2002 B1
6366193 Duggal et al. Apr 2002 B2
6369954 Berge et al. Apr 2002 B1
6375857 Ng et al. Apr 2002 B1
6376971 Pelrine et al. Apr 2002 B1
6377383 Whitehead et al. Apr 2002 B1
6379393 Mavroidis et al. Apr 2002 B1
6379809 Simpson et al. Apr 2002 B1
6385021 Takeda et al. May 2002 B1
6385429 Weber et al. May 2002 B1
6388043 Langer et al. May 2002 B1
6388553 Shea et al. May 2002 B1
6388856 Anthony May 2002 B1
6400065 Toda et al. Jun 2002 B1
6404107 Lazarus et al. Jun 2002 B1
6411009 Jaenker Jun 2002 B2
6411013 Horning Jun 2002 B1
6424079 Carroll Jul 2002 B1
6429573 Koopmann et al. Aug 2002 B2
6429576 Simes Aug 2002 B1
6433689 Hovind et al. Aug 2002 B1
6434245 Zimmermann Aug 2002 B1
6435840 Sharma et al. Aug 2002 B1
6436531 Kollaja et al. Aug 2002 B1
6437489 Shinke et al. Aug 2002 B1
6457697 Kolze Oct 2002 B1
6459088 Yasuda et al. Oct 2002 B1
6471185 Lewin et al. Oct 2002 B2
6475931 Bower et al. Nov 2002 B2
6486589 Dujari et al. Nov 2002 B1
6492762 Pant et al. Dec 2002 B1
6495945 Yamaguchi et al. Dec 2002 B2
6499509 Berger et al. Dec 2002 B2
6502803 Mattes Jan 2003 B1
6504286 Porat et al. Jan 2003 B1
6509802 Kasperkovitz Jan 2003 B2
6514237 Maseda Feb 2003 B1
6522516 Anthony Feb 2003 B2
6523560 Williams et al. Feb 2003 B1
6528925 Takeuchi et al. Mar 2003 B1
6528928 Burns et al. Mar 2003 B1
6530266 Adderton et al. Mar 2003 B1
6532145 Carlen et al. Mar 2003 B1
6540893 Wakida et al. Apr 2003 B1
6543110 Pelrine et al. Apr 2003 B1
6545384 Pelrine et al. Apr 2003 B1
6562513 Takeuchi et al. May 2003 B1
6583533 Pelrine et al. Jun 2003 B2
6586859 Kornbluh et al. Jul 2003 B2
6590267 Goodwin-Johansson et al. Jul 2003 B1
6593155 Mohler et al. Jul 2003 B2
6613816 Mahdi et al. Sep 2003 B2
6617759 Zumeris et al. Sep 2003 B1
6617765 Lagier et al. Sep 2003 B1
6619799 Blum et al. Sep 2003 B1
6628040 Pelrine et al. Sep 2003 B2
6631068 Lobo Oct 2003 B1
6637276 Adderton et al. Oct 2003 B2
6640402 Vooren et al. Nov 2003 B1
6644027 Kelly Nov 2003 B1
6646077 Lyons Nov 2003 B1
6650455 Miles Nov 2003 B2
6652938 Nishikawa et al. Nov 2003 B1
6654004 Hoggarth Nov 2003 B2
6664718 Pelrine et al. Dec 2003 B2
6668109 Nahum et al. Dec 2003 B2
6673533 Wohlstadter et al. Jan 2004 B1
6680825 Murphy et al. Jan 2004 B1
6682500 Soltanpour et al. Jan 2004 B2
6690101 Magnussen et al. Feb 2004 B2
6700314 Cuhat et al. Mar 2004 B2
6701296 Kramer et al. Mar 2004 B1
6707236 Pelrine et al. Mar 2004 B2
6720710 Wenzel et al. Apr 2004 B1
6733130 Blum et al. May 2004 B2
6743273 Chung et al. Jun 2004 B2
6762050 Fukushima et al. Jul 2004 B2
6768246 Pelrine et al. Jul 2004 B2
6781284 Pelrine et al. Aug 2004 B1
6784227 Simon et al. Aug 2004 B2
6791205 Woodbridge Sep 2004 B2
6796639 Sugahara Sep 2004 B2
6800155 Senecal et al. Oct 2004 B2
6804068 Sasaki et al. Oct 2004 B2
6806621 Heim et al. Oct 2004 B2
6806806 Anthony Oct 2004 B2
6806808 Watters et al. Oct 2004 B1
6809462 Pelrine et al. Oct 2004 B2
6809928 Gwin et al. Oct 2004 B2
6812624 Pei et al. Nov 2004 B1
6824689 Wang et al. Nov 2004 B2
6847153 Balizer Jan 2005 B1
6847155 Schwartz et al. Jan 2005 B2
6856305 Nagano Feb 2005 B2
6864592 Kelly Mar 2005 B1
6866242 Hirota Mar 2005 B2
6867533 Su et al. Mar 2005 B1
6869275 Dante et al. Mar 2005 B2
6876125 Basheer et al. Apr 2005 B2
6876135 Pelrine et al. Apr 2005 B2
6879318 Chan et al. Apr 2005 B1
6882086 Kornbluh et al. Apr 2005 B2
6891317 Pei et al. May 2005 B2
6902048 Chung Jun 2005 B1
6911764 Pelrine et al. Jun 2005 B2
6935287 Shinogle Aug 2005 B2
6938945 Wald et al. Sep 2005 B2
6940211 Pelrine et al. Sep 2005 B2
6940212 Mueller Sep 2005 B2
6940221 Matsukiyo et al. Sep 2005 B2
6944931 Shcheglov et al. Sep 2005 B2
6952313 Schrader Oct 2005 B2
6967430 Johansson Nov 2005 B2
6994314 Garnier et al. Feb 2006 B2
6997870 Couvillon, Jr. Feb 2006 B2
7008838 Hosking et al. Mar 2006 B1
7011378 Maluf et al. Mar 2006 B2
7011760 Wang et al. Mar 2006 B2
7029056 Browne et al. Apr 2006 B2
7034432 Pelrine et al. Apr 2006 B1
7037270 Seward May 2006 B2
7038357 Goldenberg et al. May 2006 B2
7049732 Pei et al. May 2006 B2
7052594 Pelrine et al. May 2006 B2
7062055 Pelrine et al. Jun 2006 B2
7063268 Chrysler et al. Jun 2006 B2
7063377 Brei et al. Jun 2006 B2
7064472 Pelrine et al. Jun 2006 B2
7071596 Krill Jul 2006 B2
7075162 Unger Jul 2006 B2
7075213 Krill Jul 2006 B2
7092238 Saito et al. Aug 2006 B2
7099141 Kaufman et al. Aug 2006 B1
7104146 Benslimane et al. Sep 2006 B2
7109643 Hirai et al. Sep 2006 B2
7113318 Onuki et al. Sep 2006 B2
7113848 Hanson Sep 2006 B2
7115092 Park et al. Oct 2006 B2
7140180 Gerber et al. Nov 2006 B2
7141888 Sabol et al. Nov 2006 B2
7142368 Kim et al. Nov 2006 B2
7142369 Wu et al. Nov 2006 B2
7144616 Unger et al. Dec 2006 B1
7148789 Sadler et al. Dec 2006 B2
7164212 Leijon et al. Jan 2007 B2
7166952 Topliss et al. Jan 2007 B2
7166953 Heim et al. Jan 2007 B2
7170665 Kaneko et al. Jan 2007 B2
7190016 Cahalen et al. Mar 2007 B2
7193350 Blackburn et al. Mar 2007 B1
7195393 Potter Mar 2007 B2
7195950 Taussig Mar 2007 B2
7196688 Schena Mar 2007 B2
7199302 Raisanen Apr 2007 B2
7199501 Pei et al. Apr 2007 B2
7205704 Audren et al. Apr 2007 B2
7205978 Poupyrev et al. Apr 2007 B2
7209280 Goossens Apr 2007 B2
7211937 Kornbluh et al. May 2007 B2
7220785 Saito May 2007 B2
7224106 Pei et al. May 2007 B2
7233097 Rosenthal et al. Jun 2007 B2
7235152 Bell et al. Jun 2007 B2
7237524 Pelrine et al. Jul 2007 B2
7242106 Kelly Jul 2007 B2
7242141 Pschenitzka et al. Jul 2007 B2
7245440 Peseux Jul 2007 B2
7256943 Kobrin et al. Aug 2007 B1
7259495 Asai et al. Aug 2007 B2
7259503 Pei et al. Aug 2007 B2
7276090 Shahinpoor et al. Oct 2007 B2
7291512 Unger Nov 2007 B2
7298054 Hirsch Nov 2007 B2
7298559 Kato et al. Nov 2007 B2
7298603 Mizuno et al. Nov 2007 B2
7301261 Ifuku et al. Nov 2007 B2
7310874 Higuchi et al. Dec 2007 B2
7312917 Jacob Dec 2007 B2
7320457 Heim et al. Jan 2008 B2
7321185 Schultz Jan 2008 B2
7323790 Taylor et al. Jan 2008 B2
7332688 Browne et al. Feb 2008 B2
7339285 Negron Crespo Mar 2008 B2
7339572 Schena Mar 2008 B2
7342573 Ryynanen Mar 2008 B2
7355293 Bernhoff et al. Apr 2008 B2
7359124 Fang et al. Apr 2008 B1
7362031 Maita et al. Apr 2008 B2
7362032 Pelrine et al. Apr 2008 B2
7362889 Dubowsky et al. Apr 2008 B2
7368862 Pelrine et al. May 2008 B2
7371596 Warner, Jr. et al. May 2008 B2
7373454 Noe May 2008 B1
7378783 Pelrine et al. May 2008 B2
7392876 Browne et al. Jul 2008 B2
7394182 Pelrine et al. Jul 2008 B2
7394282 Sinha et al. Jul 2008 B2
7394641 Won et al. Jul 2008 B2
7397166 Morgan et al. Jul 2008 B1
7401846 Browne et al. Jul 2008 B2
7411332 Kornbluh et al. Aug 2008 B2
7426340 Seo Sep 2008 B2
7429074 McKnight et al. Sep 2008 B2
7429495 Wan Sep 2008 B2
7436099 Pei et al. Oct 2008 B2
7436646 Delince et al. Oct 2008 B2
7442421 Li et al. Oct 2008 B2
7442760 Roberts et al. Oct 2008 B2
7444072 Seo Oct 2008 B2
7446926 Sampsell Nov 2008 B2
7449821 Dausch Nov 2008 B2
7454820 Nakamura Nov 2008 B2
7456549 Heim et al. Nov 2008 B2
7468575 Pelrine et al. Dec 2008 B2
7481120 Gravesen et al. Jan 2009 B2
7492076 Heim et al. Feb 2009 B2
7498729 Ogino Mar 2009 B2
7499223 Berge et al. Mar 2009 B2
7511706 Schena Mar 2009 B2
7513624 Yavid et al. Apr 2009 B2
7515350 Berge et al. Apr 2009 B2
7518284 Benslimane et al. Apr 2009 B2
7521840 Heim Apr 2009 B2
7521847 Heim Apr 2009 B2
7537197 Heim et al. May 2009 B2
7548015 Benslimane et al. Jun 2009 B2
7548232 Shahoian et al. Jun 2009 B2
7567681 Pelrine et al. Jul 2009 B2
7573064 Benslimane et al. Aug 2009 B2
7585122 Eromaki et al. Sep 2009 B2
7586242 Yokoyama et al. Sep 2009 B2
7595580 Heim Sep 2009 B2
7608989 Heydt et al. Oct 2009 B2
7626319 Heim Dec 2009 B2
7646544 Batchko et al. Jan 2010 B2
7648118 Ukpai et al. Jan 2010 B2
7659918 Turner Feb 2010 B2
7679267 Heim Mar 2010 B2
7679839 Polyakov et al. Mar 2010 B2
7690622 Ito et al. Apr 2010 B2
7702227 Ito et al. Apr 2010 B2
7703740 Franklin Apr 2010 B1
7703742 Heim et al. Apr 2010 B2
7703839 McKnight et al. Apr 2010 B2
7705521 Pelrine et al. Apr 2010 B2
7714701 Altan et al. May 2010 B2
7732999 Clausen et al. Jun 2010 B2
7733575 Heim et al. Jun 2010 B2
7745374 Tanaka et al. Jun 2010 B2
7750532 Heim Jul 2010 B2
7750617 Omi Jul 2010 B2
7761981 Rosenthal et al. Jul 2010 B2
7772745 Kawakubo et al. Aug 2010 B2
7785656 Pei et al. Aug 2010 B2
7787646 Pelrine et al. Aug 2010 B2
7813047 Wang et al. Oct 2010 B2
7824580 Boll et al. Nov 2010 B2
7886993 Bachmaier et al. Feb 2011 B2
7893965 Heim et al. Feb 2011 B2
7898159 Heydt et al. Mar 2011 B2
7911115 Pelrine et al. Mar 2011 B2
7911761 Biggs et al. Mar 2011 B2
7915789 Smith Mar 2011 B2
7915790 Heim et al. Mar 2011 B2
7921541 Pei et al. Apr 2011 B2
7923064 Pelrine et al. Apr 2011 B2
7923902 Heim Apr 2011 B2
7923982 Sumita Apr 2011 B2
7940476 Polyakov et al. May 2011 B2
7952261 Lipton et al. May 2011 B2
7958789 Hayakawa et al. Jun 2011 B2
7971850 Heim et al. Jul 2011 B2
7980671 Nystrom et al. Jul 2011 B2
7986466 Lee et al. Jul 2011 B2
7990022 Heim Aug 2011 B2
7997260 Kaakkola et al. Aug 2011 B2
8004339 Barrow Aug 2011 B2
8007986 Zhang et al. Aug 2011 B2
8026023 Hamada Sep 2011 B2
8033324 Mukasa et al. Oct 2011 B2
8042264 Rosenthal et al. Oct 2011 B2
8049333 Alden et al. Nov 2011 B2
8050601 Lin et al. Nov 2011 B2
8054566 Heim et al. Nov 2011 B2
8058861 Pelrine et al. Nov 2011 B2
8072121 Heim et al. Dec 2011 B2
8074939 Hyde et al. Dec 2011 B2
8093783 Rosenthal et al. Jan 2012 B2
8127437 Lipton et al. Mar 2012 B2
8133932 Kijlstra et al. Mar 2012 B2
8164835 Heim et al. Apr 2012 B2
8172998 Bennett et al. May 2012 B2
8183739 Heim May 2012 B2
8211054 Dewey Jul 2012 B2
8221944 Shirasaki et al. Jul 2012 B2
8222799 Polyakov et al. Jul 2012 B2
8237324 Pei et al. Aug 2012 B2
8248750 Biggs et al. Aug 2012 B2
8258238 Boersma et al. Sep 2012 B2
8283839 Heim Oct 2012 B2
8294600 Peterson et al. Oct 2012 B2
8310444 Peterson et al. Nov 2012 B2
8316526 Pei et al. Nov 2012 B2
8319403 Lipton et al. Nov 2012 B2
8419822 Li Apr 2013 B2
8421316 Tryson et al. Apr 2013 B2
8508109 Pelrine et al. Aug 2013 B2
8545987 Strader et al. Oct 2013 B2
8585007 Schapeler et al. Nov 2013 B2
8594839 Hanson Nov 2013 B2
8679575 Biggs et al. Mar 2014 B2
8679621 Blaiszik et al. Mar 2014 B2
8773373 Sato et al. Jul 2014 B2
8779650 Jenninger et al. Jul 2014 B2
8842355 Lipton et al. Sep 2014 B2
8975888 Pelrine et al. Mar 2015 B2
8981621 Pelrine et al. Mar 2015 B2
RE45464 Kornbluh et al. Apr 2015 E
9195058 Zarrabi et al. Nov 2015 B2
20010007449 Kobachi et al. Jul 2001 A1
20020083858 MacDiarmid et al. Jul 2002 A1
20040014860 Meier et al. Jan 2004 A1
20040046739 Gettemy Mar 2004 A1
20040124738 Pelrine et al. Jul 2004 A1
20040201122 O'Brien Oct 2004 A1
20050002113 Berge Jan 2005 A1
20050046312 Miyoshi Mar 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050113892 Sproul May 2005 A1
20050140922 Bekerman et al. Jun 2005 A1
20050200984 Browne et al. Sep 2005 A1
20060045991 Kokeguchi Mar 2006 A1
20060057377 Harrison et al. Mar 2006 A1
20060079619 Wang et al. Apr 2006 A1
20060091796 Shirogane May 2006 A1
20060108416 Hirai May 2006 A1
20060122954 Podlasek et al. Jun 2006 A1
20060138371 Garnier Jun 2006 A1
20060163725 Haba et al. Jul 2006 A1
20060197741 Biggadike Sep 2006 A1
20060238069 Maruyama et al. Oct 2006 A1
20060258912 Belson et al. Nov 2006 A1
20070080435 Lin Apr 2007 A1
20070122132 Misawa et al. May 2007 A1
20070152982 Kim et al. Jul 2007 A1
20070170910 Chang et al. Jul 2007 A1
20070173602 Brinkman et al. Jul 2007 A1
20070189667 Wakita et al. Aug 2007 A1
20070200457 Heim et al. Aug 2007 A1
20070219285 Kropp et al. Sep 2007 A1
20070230222 Drabing et al. Oct 2007 A1
20080043318 Whitesides Feb 2008 A1
20080062589 Drabing Mar 2008 A1
20080143696 Goulthorpe Jun 2008 A1
20080152921 Kropp Jun 2008 A1
20080191832 Tsai Aug 2008 A1
20080303782 Grant et al. Dec 2008 A1
20090028491 Fillion et al. Jan 2009 A1
20090104448 Thompson et al. Apr 2009 A1
20090184606 Rosenthal et al. Jul 2009 A1
20090250021 Zarrabi et al. Oct 2009 A1
20090297829 Pyles et al. Dec 2009 A1
20100006827 Buckley Jan 2010 A1
20100236843 Englund Sep 2010 A1
20100265031 Yen Oct 2010 A1
20110021917 Morita Jan 2011 A1
20110128239 Polyakov et al. Jun 2011 A1
20110155307 Pelrine et al. Jun 2011 A1
20110256383 Cochet et al. Oct 2011 A1
20110285247 Lipton et al. Nov 2011 A1
20120126959 Zarrabi et al. May 2012 A1
20120128960 Büsgen May 2012 A1
20140014715 Moran et al. Jan 2014 A1
20140176753 Hillis et al. Jun 2014 A1
20140319971 Yoo et al. Oct 2014 A1
20140322522 Yoo Oct 2014 A1
20140352879 Yoo et al. Dec 2014 A1
20150009009 Zarrabi et al. Jan 2015 A1
20150034237 Biggs et al. Feb 2015 A1
20150043095 Lipton et al. Feb 2015 A1
20150084483 Yoo et al. Mar 2015 A1
20150096666 Yoo et al. Apr 2015 A1
20150221851 Biggs et al. Aug 2015 A1
20150221852 Biggs et al. Aug 2015 A1
20150221861 Biggs et al. Aug 2015 A1
20150231802 Quan et al. Aug 2015 A1
20150270791 Sutherland et al. Sep 2015 A1
20150295175 Hitchcock et al. Oct 2015 A1
20150319514 Hitchcock et al. Nov 2015 A1
20160025429 Muir et al. Jan 2016 A1
20160185085 Spigaroli Jun 2016 A1
Foreign Referenced Citations (170)
Number Date Country
2329804 Nov 1999 CA
2330384 Nov 1999 CA
2769441 Feb 2011 CA
1447365 Oct 2003 CN
2535833 Feb 1977 DE
4408618 Sep 1995 DE
19636909 Mar 1998 DE
19952062 May 2000 DE
10058096 Jun 2002 DE
10161349 Jul 2003 DE
10335019 Feb 2005 DE
0196839 Oct 1986 EP
0295907 Dec 1988 EP
0522882 Jan 1993 EP
0833182 Apr 1998 EP
0980103 Feb 2000 EP
1050955 Nov 2000 EP
1090835 Apr 2001 EP
1323925 Jul 2004 EP
1528609 May 2005 EP
1698876 Sep 2006 EP
1843406 Oct 2007 EP
1976036 Oct 2008 EP
2119747 Nov 2009 EP
2511314 Oct 2012 EP
2208461 Jun 1974 FR
2745476 Sep 1997 FR
2338513 Dec 1999 GB
2470006 Nov 2010 GB
S 5181120 Jul 1976 JP
S 52120840 Oct 1977 JP
S 5445593 Apr 1979 JP
S 5542474 Mar 1980 JP
S 5565569 May 1980 JP
S 5661679 May 1981 JP
S 56101788 Aug 1981 JP
S 59126689 Jul 1984 JP
S 6199499 May 1986 JP
S 61239799 Oct 1986 JP
S 6397100 Apr 1988 JP
H 02162214 Jun 1990 JP
02222019 Sep 1990 JP
03173022 Jul 1991 JP
H 05244782 Sep 1993 JP
H 07111785 Apr 1995 JP
H 07240544 Sep 1995 JP
H 09275688 Oct 1997 JP
H 10137655 May 1998 JP
H 10207616 Aug 1998 JP
H 10321482 Dec 1998 JP
H 112764 Jan 1999 JP
11134109 May 1999 JP
H 11133210 May 1999 JP
2000-081504 Mar 2000 JP
2000-331874 Nov 2000 JP
2001-130774 May 2001 JP
2001-136598 May 2001 JP
2001-286162 Oct 2001 JP
2001-291906 Oct 2001 JP
2003-040041 Feb 2003 JP
3501216 Mar 2004 JP
2004-205827 Jul 2004 JP
2004-221742 Aug 2004 JP
2004-296154 Oct 2004 JP
2004-353279 Dec 2004 JP
2005-001885 Jan 2005 JP
2005-202707 Jul 2005 JP
3709723 Aug 2005 JP
2005-260236 Sep 2005 JP
2006-048302 Feb 2006 JP
2006-509052 Mar 2006 JP
2006-178434 Jul 2006 JP
2006-244490 Sep 2006 JP
2007-206362 Aug 2007 JP
2007-287670 Nov 2007 JP
2008-262955 Oct 2008 JP
2008-277729 Nov 2008 JP
2009-077618 Apr 2009 JP
2009-249313 Oct 2009 JP
2010-273524 Dec 2010 JP
5415442 Feb 2014 JP
2004-0097921 Dec 2004 KR
10-0607839 Aug 2006 KR
10-0650190 Nov 2006 KR
2008-0100757 Nov 2008 KR
2010-0121801 Nov 2010 KR
20110122244 Nov 2011 KR
11269615 Dec 2006 TW
I272194 Feb 2007 TW
WO 8707218 Dec 1987 WO
WO 8902658 Mar 1989 WO
WO 9418433 Aug 1994 WO
WO 9508905 Mar 1995 WO
WO 9626364 Aug 1996 WO
WO 9715876 May 1997 WO
WO 9819208 May 1998 WO
WO 9835529 Aug 1998 WO
WO 9845677 Oct 1998 WO
WO 9917929 Apr 1999 WO
WO 9923749 May 1999 WO
WO 9937921 Jul 1999 WO
WO 0101025 Jan 2001 WO
WO 0106575 Jan 2001 WO
WO 0106579 Jan 2001 WO
WO 0158973 Aug 2001 WO
WO 0159852 Aug 2001 WO
WO 0191100 Nov 2001 WO
WO 0237660 May 2002 WO
WO 0237892 May 2002 WO
WO 02071505 Sep 2002 WO
WO 03056274 Jul 2003 WO
WO 03056287 Jul 2003 WO
WO 03081762 Oct 2003 WO
WO 03107523 Dec 2003 WO
WO 2004009363 Jan 2004 WO
WO 2004027970 Apr 2004 WO
WO 2004053782 Jun 2004 WO
WO 2004074797 Sep 2004 WO
WO 2004079832 Sep 2004 WO
WO 2004086289 Oct 2004 WO
WO 2004093763 Nov 2004 WO
WO 2005027161 Mar 2005 WO
WO 2005053002 Jun 2005 WO
WO 2005079187 Sep 2005 WO
WO 2005079353 Sep 2005 WO
WO 2005081676 Sep 2005 WO
WO 2005086249 Sep 2005 WO
WO 2006040532 Apr 2006 WO
WO 2006102273 Sep 2006 WO
WO 2006121818 Nov 2006 WO
WO 2006123317 Nov 2006 WO
WO 2007018877 Feb 2007 WO
WO 2007029275 Mar 2007 WO
WO 2007072411 Jun 2007 WO
WO 2008039658 Apr 2008 WO
WO 2008052559 May 2008 WO
WO 2008105861 Sep 2008 WO
WO 2008150817 Dec 2008 WO
WO 2009006318 Jan 2009 WO
WO 2009056497 May 2009 WO
WO 2009076477 Jun 2009 WO
WO 2009112988 Sep 2009 WO
WO 2010054014 May 2010 WO
WO 2010104953 Sep 2010 WO
WO 2010115549 Oct 2010 WO
WO 2011097020 Aug 2011 WO
WO 2011118315 Sep 2011 WO
WO 2012032437 Mar 2012 WO
WO 2012044419 Apr 2012 WO
WO 2012099854 Jul 2012 WO
WO 2012129357 Sep 2012 WO
WO 2012148644 Nov 2012 WO
WO 2013044195 Mar 2013 WO
WO 2013055733 Apr 2013 WO
WO 2013103470 Jul 2013 WO
WO 2013142552 Sep 2013 WO
WO 2013155377 Oct 2013 WO
WO 2013192143 Dec 2013 WO
WO 2014028819 Feb 2014 WO
WO 2014028822 Feb 2014 WO
WO 2014028825 Feb 2014 WO
WO 2014062776 Apr 2014 WO
WO 2014066576 May 2014 WO
WO 2014074554 May 2014 WO
WO 2014089388 Jun 2014 WO
WO 2014187976 Nov 2014 WO
WO 2015020698 Feb 2015 WO
WO 2015051291 Apr 2015 WO
WO 2015126928 Aug 2015 WO
WO 2015126928 Dec 2015 WO
Non-Patent Literature Citations (188)
Entry
WO2012118916 ISR, Sep. 9, 2012, WIPO.
U.S. Appl. No. 14/771,371, filed Aug. 28, 2015.
U.S. Appl. No. 14/892,762, filed Nov. 20, 2015.
Ajluni, Cheryl, “Pressure Sensors Strive to Stay on Top, New Silicon Micromachining Techniques and Designs Promise Higher Performance,” Electronic Design—Advanced Technology Series, Oct. 3, 1994, pp. 67-74.
Akle, Barbar J., et al., “Ionic Electroactive Hybrid Transducers,” Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD), Proceedings of SPIE, Bellingham, WA, vol. 5759, 2005, pp. 153-164.
Anderson, R.A., “Mechanical Stress in a Delectric Solid From a Uniform Electric Field,” The American Physical Society, 1986, pp. 1302-1307.
Aramaki, S., S. Kaneko, K. Arai, Y. Takahashi, H. Adachi, and K. Yanagisawa. 1995. “Tube Type Micro Manipulator Using Shape Memory Alloy (SMA),” Proceedings of the IEEE Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 115-120.
Ashley, S., “Artificial Muscles”, Scientific American 2003, pp. 53-59.
Ashley, S., “Smart Skis and Other Adaptive Structures,” Mechanical Engineering, Nov. 1995, pp. 77-81.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymers, EAP (Artifical Muscles) Newsletter, vol. 1, No. 1, Jun. 1999.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymers, EAP (Artifical Muscles) Newsletter, vol. 1, No. 2, Dec. 1999.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymers, EAP (Artifical Muscles) Newsletter, vol. 2, No. 1, Jul. 2000.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymers, EAP (Artifical Muscles) Newsletter, vol. 2, No. 2, Dec. 2000.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymers, EAP (Artifical Muscles) Newsletter, vol. 3, No. 1, Jun. 2001.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymer Actuators Webhub webpages 1-7, http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/EAP-web.htm, downloaded Jul. 23, 2001 (7 pages).
Baughman, R., L. Shacklette, R. Elsenbaumer, E. Plichta, and C. Becht “Conducting Polymer Electromechanical Actuators,” Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics and Molecular Electronics, eds. J.L. Bredas and R.R. Chance, Kluwer Academic Publishers, The Netherlands, pp. 559-582, 1990.
Baughman, R.H., L.W. Shacklette, R.L. Elsenbaumer, E.J. Plichta, and C. Becht “Micro electromechanical actuators based on conducting polymers,” in Molecular Electronics, Materials and Methods, P.I. Lazarev (ed.), Kluwer Academic Publishers, pp. 267-289 (1991).
Beckett, J., “New Robotics Tap the Mind, Help the Heart, SRI shows of latest technologies,” San Francisco Chronicle, Aug. 27, 1998.
Begley, M. et al., “The Electro-Mechanical Response to Highly Compliant Substrates and Thin Stiff Films with Periodic Cracks,” International Journal of Solids and Structures, 42:5259-5273, 2005.
Benslimane, M and P. Gravesen, “Mechanical Properties of Dielectric Elastomer Actuators with Smart Metallic Compliant Electrodes,” Proceedings of SPIE, International Society for Optical Engineering, vol. 4695, Jan. 1, 2002, pp. 150-157.
Bharti, V., Y. Ye, T.-B. Xu and Q.M. Zhang, “Correlation Between Large Electrostrictive Strain and Relaxor Behavior with Structural Changes Induced in P(VDF-TrFE) Copolymer by Electron Irradiation,” Mat. Res. Soc. Symp. Proc. vol. 541, pp. 653-659 (1999).
Bharti, V., Z.-Y.Cheng S. Gross, T.-B. Xu and Q.M. Zhang, “High Electrostrictive Strain Under High Mechanical Stress in Electron-Irradiated Poly(vinylidene fluoride-trifluoroethylene) Copolymer,” Applied Physics Letters, vol. 75, No. 17, pp. 2653-2655 (Oct. 25, 1999).
Bharti, V., H.S. Xu, G. Shanthi and Q.M. Zhang, “Polarization and Structural Properties of High Energy Electron Irradiated Poly(vinylidene fluoride-trifluoroethylene) Copolymer Films,” to be published in J. Appl. Phys. (2000).
Bharti, V.,X.-Z. Zhao, Q.M. Zhang, T. Romotowski, F. Tito, and R. Ting, “Ultrahigh Field Induced Strain and Polarization Response in Electron Irradiated Poly(Vinylidene Fluoride-Trifluoroethylene) Copolymer,”Mat. Res. Innovat. vol. 2, pp. 57-63 (1998).
Biomimetic Products, Inc., hhtp://www.biomimetic.com, Jun. 6, 2001.
Bobbio, S., M. Kellam, B. Dudley, S. Goodwin Johansson, S. Jones, J. Jacobson, F. Tranjan, and T. DuBois, “Integrated Force Arrays,” in Proc. IEEE Micro Electro Mechanical Systems Workshop, Fort Lauderdale, Florida, Feb. 7-10, 1993, pp. 146-154.
Bohon, K. and S. Krause, “An Electrorheological Fluid and Siloxane Gel Based Electromechanical Actuator: Working Toward an Artificial Muscle,” to be published in J. Polymer Sci., Part B. Polymer Phys. (2000).
Boyle, W. et al., “Departure from Paschen's Law of Breakdown in Gases,” The Physical Review, Second Series, 97(2): 255-259, Jan. 15, 1955.
Brock, D.L., “Review of Artifical Muscle based on Contractile Polymers,” MIT Artificial Intelligence Laboratory, A.I. Memo No. 1330, Nov. 1991.
Caldwell, D., G. Medrano-Cerda, and M. Goodwin, “Characteristics and Adaptive Control of Pneumatic Muscle Actuators for a Robotic Elbow,” Proc. IEEE Int. Conference on Robotics and Automation, San Diego, California (May 8-13, 1994).
Calvert, P. and Z. Liu, “Electrically Stimulated Bilayer Hydrogels as Muscles,” Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Plymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, California, USA, pp. 236-241.
Campolo, D., et al., “Efficient Charge Recovery Method for Driving Piezoelectric Actuators with Quasi-Square Waves,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, IEE, US, vol. 50, No. 3, Mar. 1, 2003, pp. 237-244.
Chen et al., “Active control of low-frequency sound radiation from vibrating panel using planar sound sources,” Journal of Vibration and Acoustics, vol. 124, pp. 2-9, Jan. 2002.
Chen, Zheng et al., “Quasi-Static Positioning of Ionic Polymer-Metal Composite (IPMC) Actuators,” Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, California, Jul. 24-28, 2005, pp. 60-65.
Cheng, Z.-Y., H.S. Xu, J. Su, Q. M, Zhjang, P.-C. Wang and A.G. MacDiarmid, “High Performance of All-Polymer Electrostrictive Systems,” Proceedings of the SPIE Ineternational Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, California, USA, pp. 140-148.
Cheng, Z.-Y., T.-B. Xu, V. Bharti, S. Wang, and Q.M. Zhang, “Transverse Strain Responses in the Electrostrictive Poly(Vinylidene Fluoride-Trifluorethylene) Copolymer,” Appl. Phs. Lett. vol. 74, No. 13, pp. 1901-1903, Mar. 29, 1999.
Chiarelli, P., A. Della Santa, D. DeRossi, and A. Mazzoldi, “Actuation Properties of Electrochemically Driven Polypyrrole Free-Standing Films,” Journal of Intelligent Material Systems and Structures, vol. 6, pp. 32-37, Jan. 1995.
Delille, R. et al., “Novel Compliant Electrodes Based on Platinum Salt Reduction,” Smart Structures and Materials 2006: Electroactive Polymer Actuators and Devices (EAPAD), edited by Yoseph Bar-Cohen, Proceedings of SPIE, 6168 (6168Q), 2006.
De Rossi, D., and P. Chiarelli, “Biomimetic Macromolecular Actuators,” Macro-Ion Characterization, American Chemical Society Symposium Series, vol. 548, Ch. 40, pp. 517-530 (1994).
Dowling, K., Beyond Faraday-NonTraditional Actuation, available on the World Wide Web at http://www.frc.ri.cmu.edu/˜nivek/OTH/beyond-faraday/beyondfaraday.html, 9 pages, 1994.
Egawa, S. and T. Higuchi, “Multi-Layered Electrostatic Film Actuator,” Proc. IEEE Micro Electra Mechanical Systems, Napa Valley, California, pp. 166-171 (Feb. 11-14, 1990).
Elhami, K. B. Gauthier-Manuel, “Electrostriction of the Copolymer of Vinylidene-Fluoride and Trifluoroethylene,” J. Appl. Phys. vol. 77 (8), 3987-3990, Apr. 15, 1995.
Flynn, Anita M., L.S. Tavrow, S.F. Bart, R.A. Brooks, D.J. Ehrlich, Kr.R. Udayakumar, and L.E. Cross. 1992. “Piezoelectric Micromotors for Microrobots,” IEEE Journal of Microelectromechanical Systems, vol. 1, No. 1, pp. 44-51 (Mar. 1992); also published as MIT Al Laboratory Memo 1269, Massachusetts Institute of Technology (Feb. 1991).
Ford, V. and J. Kievet, “Technical Support Package on Traveling-Wave Rotary Actuators”, NASA Tech Brief, vol. 21, No. 10, Item #145, from JPL New Technology Report NPO-19261, Oct. 1997.
Full, R.J. and K. Meijer, “Artificial Muscles Versus Natural Actuators from Frogs to Flies,” Proceedings of the 7th SPIE Symposium on Smart Structures and Materials-Electroactive Polymers and Devices (EAPAD) Conference, Mar. 6-8, 2000, Newport Beach, California, USA, pp. 2-9.
Furuhata, T., T. Hirano, and H. Fujita, “Array-Driven Ultrasonic Microactuators,” Solid State Sensors and Actuators, 1991, Digest of Tech. Papers, Transducers, pp. 1056-1059.
Furukawa, T. and N. Seo, “Electrostriction as the Origin of Piezoelectricity in Ferroelectric Polymers,” Japanese J. Applied Physics, vol. 29, No. 4, pp. 675-680 (Apr. 1990).
Gardner, J.W., “Microsensors: Principles and Applications,” John Wiley, 1994. (Book—not attached).
Ghaffarian, S.R., et al., “Electrode Structures in High Strain Actuator Technology,” Journal of Optoelectronics and Advanced Materials, Nov. 2007, 9(11), pp. 3585-3591.
Gilbertson, R.G. and J.D. Busch. “Survey of MicroActuator Technologies for Future Spacecraft Missions,” presented a the conference entitled “Practical Robotic Interstellar Flight: Are We Ready?” New York University and the United Nations, New York. (Aug. 29 and Sep. 1, 1994); also published on the World Wide Web at http://nonothinc.com/nanosci/microtech/mems/ten-actuators/gilbertson.html.
Goldberg, Lee, “Adaptive-Filtering Developments Extend Noise-Cancellation Applications,” Electronic Design, Feb. 6, 1995, pp. 34 and 36.
Greene, M. J.A. Willett, and R. Kornbluh, “Robotic Systems,” in ONR Report 32198-2, Ocean Engineering and Marine Systems 1997 Program (Dec. 1997).
Greenland, P. Allegro Microsystems Inc., and B. Carsten, Bruce Carsten Associates, “Stacked Flyback Converters Allow Lower Voltage MOSFETs for High AC Line Voltage Operation,” Feature PCIM Article, PCIM, Mar. 2000.
Hansen, G., “High Aspect Ratio Sub-Micron and Nano-Scale Metal Filaments,” Sampe Journal, 41(2): 24-33, 2005.
Heydt, R., R. Pelrine, J. Joseph, J. Eckerle, and R. Kornbluh, “Acoustical Performance of an Electrostrictive Polymer Film Loudspeaker,” Journal of the Acoustical Society of America, vol. 107(2), pp. 833-839 (Feb. 2000).
Heydt, R., R. Kornbluh, R. Pelrine, and B. Mason, “Design and Performance of an Electrostrictive Polymer Film Acoustic Actuator,” Journal of Sound and Vibration (1998) 215(2), 297-311.
Hirano, M., K. Yanagisawa, H. Kuwano, and S. Nakano, “Microvalve with Ultra-Low Leakage,” Tenth Annual International Workshop on Micro Electromechanical Systems, Nagoya, Japan, IEEE Proceedings (Jan. 26-30, 1997), pp. 323-326.
Hirose, S., Biologically Inspired Robots: Snake-like Locomotors and Manipulators, “Development of the Acm as a Manipulator,” Oxford University Press, New York, 1993, pp. 170-172.
http://www.neurosupplies.com/pdf—files/transducers.pdf, printed from web Jul. 25, 2001.
Huang, Cheng et al., “Colossal Dielectric and Electromechanical Responses in Self-Assembled Polymeric Nanocomposites”, Applied Physics Letters 87, 182901 (2005), pp. 182901-1 through 182901-3.
Hunter, I.W. and S. Lafontaine, “A Comparison of Muscle with Artificial Actuators,” Technical Digest of the IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, South Carolina, Jun. 22-25, 1992, pp. 178-185.
Hunter, I., S. Lafontaine, J. Hollerbach, and P. Hunter, “Fast Reversible NiTi Fibers for Use in MicroRobotics,” Proc. 1991 IEEE Micro Electro Mechanical Systems—MEMS '91, Nara, Japan, pp. 166-170.
Jacobsen, S., R. Price, J. Wood, T. Rytting and M. Rafaelof, “A Design Overview of an Eccentric-Motion Electrostatic Microactuator (the Wobble Motor)”, Sensors and Actuators, 20 (1989) pp. 1-16.
Joseph, J., R. Pelrine, J. Eckerle, J. Bashkin, and P. Mulgaonkar, “Micro Electrochemical Composite Sensor”, SRI International, printed from web Jul. 25, 2001.
Kaneto, K., M. Kaneko, Y. Min, and A.G. MacDiarmid, “Artifical Muscle: Electromechanical Actuators Using Polyaniline Films,” Synthetic Metals 71, pp. 2211-2212, 1995.
Kawamura, S., K. Minani, and M. Esashi, “Fundamental Research of Distributed Electrostatic Micro Actuator,” Technical Digest of the 11th Sensor Symposium, pp. 27-30 (1992).
Khuri-Yakub et al., “Silicon micromachined ultrasonic transducers,” Japan Journal of Applied Physics, vol. 39 (2000), pp. 2883-2887, par 1, No. 5B, May 2000.
Kinsler et al., Fundamentals of Acoustics, Third Edition, John Wiley and Sons, 1982.
Kondoh, Y., and T. Ono. 1991. “Bimorph Type Actuators using Lead Zinc Niobate-based Ceramics,” Japanese Journal of Applied Physics, vol. 30, No. 9B, pp. 2260-2263, Sep. 1991.
Kornbluh, R., R. Pelrine, R. Heydt, and Q. Pei, “Acoustic Actuators Based on the Field-Activated Deformation of Dielectric Elastomers,” (2000).
Kornbluh, R., G. Andeen, and J. Eckerle, “Artificial Muscle: the Next Generation of Robotic Actuators,” presented at the Fourth World Conference on Robotics Research, SME Paper M591-331, Pittsburgh, PA, Sep. 17-19, 1991.
Kornbluh, R., “Description of Children's Tour,” Aug. 20, 2000.
Kornbluh, R. D and R. E. Pelrine., “Dexterous Multiarticulated Manipulator with Electrostrictive Polymer Artificial Muscle,” ITAD-7247-QR-96-175, SRI Project No. 7247, Prepared for Office of Naval Research, Nov. 1996.
Kornbluh, R., R. Pelrine, J. Joseph, “Elastomeric Dielectric Artificial Muscle Actuators for Small Robots,” Proceedings of the Third Iasted International Conference on Robotics and Manufacturing, Jun. 14-16, 1995, Cancun, Mexico.
Kornbluh, R., R. Pelrine, Q. Pei, and V. Shastri “Electroactive Polymer (EAP) Actuators as Artificial Muscles—Reality, Potential and Challenges”, Chapter 16, Application of Dielectric EAP Actuators, SPIE Press, May 2001.
Kornbluh, R. et al., “Electroactive polymers: An emerging technology for MEMS,” (invited) in MEMS/MOEMS Components and Their Applications, eds. S. Janson, W. Siegfried, and A. Henning, Proc. SPIE, 5344:13-27, 2004.
Kornbluh, R. et al., “Electroelastonners: Applications of dielectric elastomer transducers for actuation, generation and smart structures,” Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, ed., A. McGowan, Proc. SPIE, 4698:254-270, 2002.
Kornbluh, R., Pelrine, R., Eckerie, J., Joseph, J., “Electrostrictive Polymer Artificial Muscle Actuators,” IEEE International Conference on Robotic and Automation, Leuven, Belgium, 1998.
Kornbluh, R., R. Pelrine, Jose Joseph, Richard Heydt, Qibing Pei, Seiki Chiba, 1999. “High-Field Electrostriction of Elastomeric Polymer Dielectrics for Actuation”, Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, California, USA. pp. 149-161.
Kornbluh et al., “Medical Applications of New Electroactive Polymer Artificial Muscles,” SRI International, Menlo Park, CA, JSPP, v. 16, 2004.
Kornbluh, Roy D., Robotic Systems, Ocean Engineering and Marine Systems, 2000 Program, Jan. 2001, Office of Naval Research Public Release, ONR-32100-1.
Kornbluh, Roy D., Robotic Systems, Ocean Engineering and Marine Systems, 1999 Program, Feb. 2000, Office of Naval Research Public Release, ONR-32100-2.
Kornbluh, Roy D., Robotic Systems, Ocean Engineering and Marine Systems, 1997 Program, Dec. 1997, Office of Naval Research Public Release, ONR-32198-2.
Kornbluh, Roy D., Robotic Systems, Ocean Engineering and Marine Systems, 1998 Program, Feb. 1999, Office of Naval Research Public Release, ONR-32199-4.
Kornbluh, R., “Presentation to Colin Corporation”, Jan. 1997.
Kornbluh, R. Presentation to Medtronic, “Elastomeric Polymer Actuator and Transducers: The Principles, Performance and Applications of a New High-Strain Smart Material Technology”, SRI International Medtronic Forum, Brooklyn Center, Minnesota, Jan. 2000.Jan. 2000.
Kornbluh, R. et al., “Shape control of large lightweight mirrors with dielectric elastomer actuation,” Actuation Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices, ed. Y. Bar-Cohen, Proc. SPIE, 5051, 2003.
Kornbluh, R., Pelrine, R. Joseph, J., Pei, Q. and Chiba., “Ultra-High Strain Response of Elastomeric Polymer Dielectrics”, Proc. Materials Res. Soc., Fall meeting, Boston, MA, pp. 1-12, Dec. 1999.
Kornbluh, R., R. Pelrine, Q. Pei, S. Oh, and J. Joseph, 2000. “Ultrahigh Strain Response of Field-Actuated Elastomeric Polymers,” Proceedings of the 7th SPIE Symposium on Smart Structures and Materials-Electroactive Polymers and Devices (EAPAD) Conference, Mar. 6-8, 2000, Newport Beach, California, USA, pp. 51-64.
Kornbluh, R., “Use of Artificial Muscle Butterfly for Chronicle Newpaper Photograph,” Aug. 1998.
Ktech's PVDF Sensors, http://www.ktech.com/pvdf.htm, Jun. 6, 2001, pp. 1-5.
Kymissis et al., “Parasitic Power Harvesting in Shoes,” XP-010312825—Abstract, Physics and Media Group, MIT Media Laboratory E15-410, Cambridge, MA, Oct. 19, 1998, pp. 132-139.
Lacour, S. et al., “Mechanisms of Reversible Stretchability of Thin Metal Films on Elastomeric Substrates, ”Applied Physics Letters 88, 204103, 2006.
Lacour, S. et al., “Stretchable Interconnects for Elastic Electronic Surfaces,” Proceedings of the IEEE on Flexible Electronics Technology, 93(8): 1459-1467, 2005.
Lakes, R.S., “Extreme damping in compliant composites with a negative stiffness phase” or “Extreme Damping in Composite Materials with Negative Stiffness Inclusions”, Nature, 410, 565-567, Mar. 2001.
Lakes, R.S., “Extreme damping in compliant composites with a negative stiffness phase”, Philosophical Magazine Letters, 81, 95-100 (2001).
Lakes, R.S., “Extreme damping in compliant composites with a negative stiffness phase” or “Extreme Damping in Composite Materials with a Negative Stiffness Phase”, Physical Review Letters, 86, 2897-2900, Mar. 26, 2001.
Lang, J, M. Schlect, and R. Howe, “Electric Micromotors: Electromechanical Characteristics,” Proc. IEEE Micro Robots and Teleoperators Workshop, Hyannis, Massachusetts (Nov. 9-11, 1987).
Lawless, W. and R. Arenz, “Miniature Solid-state Gas Compressor,” Rev. Sci Instrum., 58(8), pp. 1487-1493, Aug. 1987.
Liu, C., Y. Bar-Cohen, and S. Leary, “Electro-statically stricted polymers (ESSP),” Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, California, USA., pp. 186-190.
Liu, C. & Y. Bar-Cohen, “Scaling Laws of Microactuators and Potential Aplications of Elecroactive Polymers in MEMS”, SPIE, Conference on Electroactive Polymer Actuators and Devices, Newport Beach, CA Mar. 1999.
Liu, Y., T. Zeng, Y.X. Wang, H. Yu, and R. Claus, “Self-Assembled Flexible Electrodes on Electroactive Polymer Actuators,” Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, California, USA., pp. 284-288.
Madden et al., “Conducting polymer actuators as engineering materials,” SPIE: Smart Materials and Structures, ed. Yoseph Bar-Cohen, Bellingham, WA, pp. 176-190, Pub 2002.
Madden, J.D. et al., “Fast contracting polypyrrole actuators”, Jan. 6, 2000, Elsevier Science S.A., pp. 185-192.
Martin, J. and R. Anderson, 1999. “Electrostriction in Field-Structured Composites: Basit for a Fast Artificial Muscle?”, The Journal of Chemical Physics, vol. 111, No. 9, pp. 4273-4280, Sep. 1, 1999.
Measurements Specialties, Inc.-Piezo Home, http://www.msiusa.com/piezo/index.htm, Jun. 6, 2001.
Möller, S. et al., A Polymer/semiconductor write-once read-many-times memory, Nature, vol. 26, Nov. 13, 2003, pp. 166-169, Nature Publishing Group.
Nguyen, T.B., C.K. DeBolt, S.V. Shastri and A. Mann, “Advanced Robotic Search,” in ONR Ocean, Atmosphere, and Space Fiscal Year 1999 Annual Reports (Dec. 1999).
Nguyen, T., J. A. Willett and Kornbluh, R., “Robotic systems,” in ONR Ocean, Atmosphere, and Space Fiscal Year 1998 Annual Reports (Dec. 1998).
Nguyen, T., Green, M., and Kornbluh, R., “Robotic Systems,” in ONR Ocean, Atmosphere, and Space Fiscal Year 1999 Annual Reports (Dec. 1999).
Nguyen, T., Green, M., and Kornbluh, R., “Robotic Systems,” in ONR Ocean, Atmosphere, and Space Fiscal Year 2000 Annual Reports (Jan. 2001). (Cited in U.S. Pat. No. 7,211,937 however, unable to locate).
Nihon Kohden Corporation, Operators Manual, available Oct. 1, 2001.
NXT plc, Huntingdon, UK (www.nxtsound.com) Sep. 17, 2008.
Ohara, K., M. Hennecke, and J. Fuhrmann, “Electrostriction of polymethylmethacrylates,” Colloid & Polymer Sci. vol. 280, 164-168 (1982).
Olsson, A., G. Stemme, and E. Stemme, “The First Valve-less Diffuser Gas Pump,” Tenth Annual International Workshop on Micro Electromechanical Systems, Nagoya, Japan, IEEE Proceedings (Jan. 26-30, 1997), pp. 108-113.
Olsson, A., O. Larsson, J. Holm, L. Lundbladh, O. Ohinan, and G. Stemme. 1997. “Valve-less Diffuser Micropumps Fabricated using Thermoplastic Replication,” Proc. IEEE Micro Electro Mechanical Systems, Nagoya, Japan, pp. 305-310 (Jan. 26-30, 1997).
Osterbacka, R. et al., “Two-Dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals,” Science, vol. 287:839-842, Feb. 4, 2000.
Otero, T.F., J. Rodriguez, E. Angulo and C. Santamaria, “Artificial Muscles from Bilayer Structures,” Synthetic Metals, vol. 55-57, pp. 3713-3717 (1993).
Otero, T.F., J. Rodriguez, and C. Santamaria, “Smart Muscle Under Electrochemical Control of Molecular Movement in Polypyrrole Films,” Materials Research Society Symposium Proceedings, vol. 330, pp. 333-338, 1994.
Park, S.E., and T. Shrout., “Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals,” J. Appl. Phys., vol. 82, No. 4, pp. 1804-1811, Aug. 15, 1997.
Pei, Q., O. Inganäs, and I. Lundström, “Bending Bilayer Strips Built From Polyaniline for Artificial Electrochemical Muscles,” Smart Materials and Structures, vol. 2, pp. 1-6., Jan. 22, 1993.
Pei, Qibing “Description of Conference Demonstration” Mar. 2001.
Pei et al., “Electrochemical Applications of the Bending Beam Method. 1. Mass Transport and Volume Changes in Polypyrrole During Redox,” J. Phys. Chem., 1992, 96, pp. 10507-10514.
Pei, Q. et al., “Multifunctional Electroelastomer Roll Actuators and Their Application for Biomimetic Walking Robots,” Smart Structures and Materials 2003. Electroactive Polymer Actuators and Devices, San Diego, CA, USA, Mar. 2003, vol. 5051, 2003, pp. 281-290, XP002291729, Proceedings of the SPIE, ISSN: 0277-786X, the whole document.
Pei, Q. et al., “Multifunctional Electroelastomer Rolls,” Mat. Res. Soc. Symp. Proc., vol. 698, Nov. 26-30, 2001, Boston, MA, pp. 165-170.
Pei, Q., Pelrine, R., Kornbluh, R., Jonasdottir, S., Shastri, V., Full, R., “Multifunctional Electroelastomers: Electroactive Polymers Combining Structural, Actuating, and Sensing Functions,” ITAD-433-PA-00-123, University of California at Berkeley, Berkeley, CA, available at www.sri.com-publications, Jan. 17, 2001.
Pei, Q. et al., “Recent Progress on Electroelastomer Artificial Muscles and Their Application for Biomimetic Robots”, SPIE, Pub. Jun. 2004, 11 pages.
Pelrine, R. et al., “Applications of dielectric elastomer actuators,” (invited paper) in Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, ed., Y. Bar Cohen, Proc. SPIE, 4329:335-349, 2001.
Pelrine, R. and Kornbluh, R., and. 1995. “Dexterous Multiarticulated Manipulator with Electrostrictive Polymer Artificial Muscle Actuator,” EMU 95-023, SRI International, Menlo Park, California, Apr. 28, 1995.
Pelrine, R., R. Kornbluh, and J. Joseph, “Electrostriction of Polymer Dielectrics with Compliant Electrodes as a Means of Actuation,” Sensors and Actuators A: Physical, vol. 64, No. 1, 1998, pp. 77-85.
Pelrine, R., R. Kornbluh, J. Joseph and S. Chiba, “Electrostriction of Polymer Films for Microactuators,” Proc. IEEE Tenth Annual International Workshop on Micro Electro Mechanical Systems, Nagoya, Japan, Jan. 26-30, 1997, pp. 238-243.
Pelrine et al., “Electrostrictive Polymer Artificial Muscle Actuators,” May 1998, Proc. of the 1998 IEEE Conf. on Robotics & Automation, pp. 2147-2154.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1992 Final Report on Artifical Muscle for Small Robots, ITAD-3393-FR-93-063, SRI International, Menlo Park, California, Mar. 1993.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1993 Final Report on Artifical Muscle for Small Robots, ITAD-4570-FR-94-076, SRI International, Menlo Park, California, 1994.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1994 Final Report on Artifical Muscle for Small Robots, ITAD-5782-FR-95-050, SRI International, Menlo Park, California, 1995.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1995 Final Report on Artifical Muscle for Small Robots, ITAD-7071-FR-96-047, SRI International, Menlo Park, California, 1996.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1996 Final Report on Artifical Muscle for Small Robots, ITAD-7228-FR-97-058, SRI International, Menlo Park, California, 1997.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1997 Final Report on Artifical Muscle for Small Robots, ITAD-1612-FR-98-041, SRI International, Menlo Park, California, 1998.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1998 Final Report on Artifical Muscle for Small Robots, ITAD-3482-FR-99-36, SRI International, Menlo Park, California, 1999.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1999 Final Report on Artifical Muscle for Small Robots, ITAD-10162-FR-00-27, SRI International, Menlo Park, California, 2000.
Pelrine, R., R. Kornbluh, Q. Pei, and J. Joseph, “High Speed Electrically Actuated Elastomers with Over 100% Strain,” Science, vol. 287, No. 5454, pp. 1-21, 2000.
Pelrine, R., R. Kornbluh, Q. Pei, and J. Joseph. “High Speed Electrically Actuated Elastomers with Strain Greater Than 100%”, Science, Reprint Series, Feb. 4, 2000, vol. 287, pp. 836-839.
Pelrine, R., R. Kornbluh, and G. Kofod, “High Strain Actuator Materials Based on Dielectric Elastomers,” submitted to Advanced Materials (May 2000).
Pelrine, R., Roy Kornbluh, Jose Joseph, Qibing Pei, Seiki Chiba “Recent Progress in Artificial Muscle Micro Actuators,” SRI Interational, Tokyo, 1999 MITI/NEEDOIMNIC, 1999.
Pelrine, R., R. Kornbluh, J. Joseph and S. Chiba, “Review of Artificial Muscle Approaches,” invited paper, in Proc. Third International Symposium on Micro Machine and Human Science, Nagoya, Japan, Oct. 14-16, 1992.
Piezoflex(TM) PVDF Polymer Sensors, http://www.airmar.com/piezo/pvdf.htm. Jun. 6, 2001.
Polyoxymethylene urea NPL docyument, retrieved Nov. 11, 2015.
PowerLab ADInstruments, MLT001 High-Sensitivity Force Transducers, AD Instruments Transducers Series, printed from web Jul. 25, 2001.
Prahlad, H. et al., “Programmable Surface Deformation: Thickness-Mode Electroactive Polymer Actuators and their Applications,” Proc. SPIE, vol. 5759, 102, 2005, 12 pages.
Puers et al, “A Capacitive Pressure Sensor with Low Impedance Output and Active Suppression of Parasitic Effects,” Sensors and Actuators, A21-A23 (1990) 108-114.
Puers, Robert, “Capacitive sensors: when and how to use them,” Sensors and Actuators A, 37-38 (1993) 93-105.
Reed, C. et al., “The Fundamentals of Aging HV Polymer-Film Capacitors,” IEEE Transactions on Dielectrics and Electrical Insulation, 1(5): 904-922, 1994.
Sakarya, S., “Micromachining Techniques for Fabrication of Integrated Light Modulting Devices”, Netherlands 2003, pp. 1-133.
Scheinbeim, J., B. Newman, Z. Ma, and J. Lee, “Electrostrictive Response of Elastomeric Polymers,” ACS Polymer Preprints, 33(2), pp. 385-386, 1992.
Schlaberg, H. I., and J. S. Duffy, “Piezoelectric Polymer Composite Arrays for Ultrasonic Medical Imaging Applications,” Sensors and Actuators, A 44, pp. 111-117, Feb. 22, 1994.
Seoul et al., “Electrospinning of Poly(vinylidene fluoride) Dimethylformamide Solutions with Carbon Nanotubes,” Department of Textile Engineering, Inha University, Mar. 31, 2003.
Shahinpoor, M., “Micro-electro-mechanics of Ionic Polymer Gels as Electrically Controllable Artificial Muscles,” J. Intelligent Material Systems and Structures, vol. 6, pp. 307-314, May 1995.
Shkel, Y. and D. Klingenberg, “Material Parameters for Electrostriction,” J. Applied Physics, vol. 80(8), pp. 4566-4572, Oct. 15, 1996.
Smela, E., O. Inganas, and I. Lundstrom, “Controlled Folding of Micrometer-size Structures,” Science, vol. 268, pp. 1735-1738 (Jun. 23, 1995).
Smela, E., O. Inganas, Q. Pei and I. Lundstrom, “Electrochemical Muscles: Micromachinging Fingers and Corkscrews,” Advanced Materials, vol. 5, No. 9, pp. 630-632, Sep. 1993.
Smith, S. et al., A low switching voltage organic-on-inorganic heterojunction memory element utilizing a conductive polymer fuse on a doped silicon substrate, Applied Physics Letters, vol. 84, No. 24, May 28, 2004, pp. 5019-5021.
Sokolova, M. et al., “Influence of a Bias Voltage on the Characteristics of Surface Discharges in Dry Air,” Plasma Processes and Polymers, 2: 162-169, 2005.
Sommer-Larsen, P. and A. Ladegaard Larsen, “Materials for Dielectric Elastomer Actuators,” SPIE, vol. 5385, Mar. 1, 2004, pp. 68-77.
Standard Test Methods for Rubber Deterioration—Cracking in an Ozone Controlled Environment, ASTM International, D 1149-07.
Su, J., Q.M. Zhang, C.H. Kim, R.Y. Ting and R. Capps, “Effects of Transitional Phenomena on the Electric Field induced Strain-electrostrictive Response of a Segmented Polyurethane elastomer,” pp. 1363-1370, Jan. 20, 1997.
Su, J, Z. Ounaies, J.S. Harrison, Y. Bara-Cohen and S. Leary, “Electromechanically Active Polymer Blends for Actuation,” Proceedings of 7th SPIE Symposium on Smart Structures and Materials-Electroactive Polymers and Devices (EAPAD) Conference, Mar. 6-8, 2000, Newport Beach, CA, USA, pp. 65-72.
Suzuki et al., “Sound radiation from convex and concave domes in infinite baffle,” Journal of the Acoustical Society of America, vol. 69(2), Jan. 1981.
Technology, http://www.micromuscle.com/html/technology.html, Jun. 6, 2001.
“The Rubbery Ruler”, http://www.ph.unimelb.edu.au, printed from web Jul. 25, 2001.
Tobushi, H., S. Hayashi, and S. Kojima, “Mechanical Properties of Shape Memory Polymer of Polyurethane Series,” in JSME International Journal, Series I, vol. 35, No. 3, 1992.
Todorov et al, “WWWeb Application for Ferropiezoelectric Ceramic Parameters Calculation”, Proceedings 24th International Conference on Microelectronics, vol. 1, May 2004, pp. 507-510.
Treloar, L.R.G., “Mechanics of Rubber Elasticity,” J Polymer Science, Polymer Symposium, No. 48, pp. 107-123, 1974.
Uchino, K. 1986. “Electrostrictive Actuators: Materials and Applicaions,” Ceramic Bulletin, 65(4), pp. 647-652, 1986.
Unger et al. (2000), “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science 288:113-116, no month.
Wade, Jr., W.L., R.J. Mannone and M. Binder, “Increased Dielectric Breakdown Strengths of Melt-Extruded Polyporphlene Films,” Polymer vol. 34, No. 5, pp. 1093-1094 (1993).
Wax, S.G. and R.R. Sands, “Electroactive Polymer Actuators and Devices,” Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, CA, USA, pp. 2-10.
Whitesides et al. (2001), “Flexible Methods for Microfluidics,” Physics Today 52(6):42-47, no month.
Winters, J., “Muscle as an Actuator for Intelligent Robots,” Robotics Research: Trans. Robotics International of SME, Scottsdale, AZ (Aug. 18-21, 1986).
Woodard, Improvements of ModalMax High-Fidelity Peizoelectric Audio Device (LAR-16321-1), NASA Tech Briefs, May 2005, p. 36.
Xia, Younan et al., “Triangular Nanoplates of Silver: Synthesis, Characterization, and Use as Sacrificial Templates for Generating Triangular Nanorings of Gold,” Adv. Mater., 2003, 15, No. 9, pp. 695-699.
Yam, P., “Plastics Get Wired,” Scientific American, vol. 273, pp. 82-87, Jul. 1995.
Yoshio, O., “Ablation Characteristics of Silicone Insulation,” Journal of Polymer Science: Part A: Polymer Chemistry, 36: 233-239, 1998.
Yuan, W. et al. “New Electrode Materials for Dielectric Elastomer Actuators, ” Proc. SPIE, 6524 (6524ON), 2007.
Zhang, Q.M., V. Bharti, Z.Y. Cheng, T.B. Xu, S. Wang, T.S. Ramotowski, F. Tito, and R. Ting, “Electromechanical Behavior of Electroactive P(VDF-TrFE) Copolymers,” Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, CA, USA, pp. 134-139.
Zhang, Q., V. Bharti and X. Zhao, “Giant Electrostriction and Relaxor Ferroelectric Behavior in Electron-irradiated Poly(vinylidene fluoride-trifluoroethylene) Copolymer,” Science, vol. 280, pp. 2101-2104 (Jun. 26, 1998).
Zhang, Q.M., Z.Y. Cheng, V. Bharti, T.B. Xu, H. Xu, T. Mai and S.J. Gross, “Piezoelectric and Electrostrictive Polymeric Actuator Materials,” Proceedings of the 7th SPIE Symposium on Smart Structures and Materials: Electroactive Polymers and Devices (EAPAD) Conference, Mar. 6-8, 2000, Newport Beach, CA, USA, pp. 34-50.
Zhenyi, M., J.I. Scheinbeim, J.W. Lee, and B.A. Newman. 1994. “High Field Electrostrictive Response of Polymers,” Journal of Polymer Sciences, Part B—Polymer Physics, vol. 32, pp. 2721-2731, 1994.
U.S. Appl. No. 15/131,579, filed Apr. 18, 2016.
Related Publications (1)
Number Date Country
20140290834 A1 Oct 2014 US
Provisional Applications (7)
Number Date Country
61447832 Mar 2011 US
61477709 Apr 2011 US
61477675 Apr 2011 US
61482751 May 2011 US
61546683 Oct 2011 US
61549799 Oct 2011 US
61556408 Nov 2011 US