Automated meeting room

Information

  • Patent Grant
  • 9516022
  • Patent Number
    9,516,022
  • Date Filed
    Tuesday, October 1, 2013
    11 years ago
  • Date Issued
    Tuesday, December 6, 2016
    8 years ago
Abstract
Methods and systems for automatic setup and initiation of meeting resources are described herein. A meeting room, area, or resource may be equipped with a camera or other proximity based sensor to determine when a user enters the meeting area. The camera may perform initial recognition of a user, e.g., based on facial or body recognition. The system may then authenticate the user as the meeting organizer using a second recognition technique, e.g., voice recognition. Based on the user authentication, the system may query the meeting organizer's calendar (or other resource) for meeting information, download an associated meeting presentation from cloud storage, initiate meeting (e.g., screen sharing) software, notify any missing attendees that the meeting has begun, and launch the presentation on a shared screen. The meeting organizer may then control the presentation using video and/or voice. All may be completed without the meeting organizer being required to touch anything.
Description
FIELD

This application generally relates to an apparatus and method of automating meeting presentation such as photos, digitally stored images, or presentation slides. In particular, this application relates to automatically authenticating and accessing meeting collaboration resources without the meeting presenter or organizer having to have a direct physical interaction with any of the associated meeting collaboration resources.


BACKGROUND

Meeting presenters in the past have faced a variety of obstacles in being able to seamlessly present multimedia presentations. These obstacles required significant time and/or expertise to overcome and required that the presenter arrive a significant time prior to the start of the meeting in order to assure a seamless presentation. Some of these challenges included (1) having to log into the computer in the meeting area; (2) configuring the projector or other display devices to work with the computer; (3) preparing the computer with the presentation which could include installing the appropriate presentation software; (4) initializing and running any internet presentation software such as GoToMeeting, WebEx, and the like; and (5) making sure any remote attendees are connected. While the time needed to overcome some of these obstacles could be shortened by the presenter using a dedicated computer previously configured with all the appropriate software, this significantly lengthened the time to overcome other obstacles such as configuring the projector or other display devices to work with a computer to which they had never previously been connected. All of these obstacles required the presenter to expend significant time and resources prior to the meeting in order to have a seamless presentation and not waste the time of the attendees in waiting for these obstacles to be overcome once the meeting was scheduled to start.


SUMMARY

The following presents a simplified summary of the disclosure in order to provide a basic understanding of some aspects. It is not intended to identify key or critical elements of the disclosure or to delineate the scope of the disclosure. The following summary merely presents some concepts of the disclosure in a simplified form as a prelude to the more detailed description provided below.


To overcome the above described problems in the prior methods of meeting presentation described above, and to overcome other limitations that will be apparent upon reading and understanding the present specification, aspects described herein are directed to an automated manner of configuring the meeting room computer and all associated equipment and software needed for a presentation, e.g., upon entry of the meeting presenter into the meeting area without the meeting presenter ever physically touching a computer or associated equipment in the meeting room.


A first aspect provides for the automated detection and biometric identification of the meeting presenter upon entry into the meeting area. This aspect further authenticates the presenter's identity, automatically configures the hardware and software necessary for the presentation, and contacts attendees not currently present at the meeting without the presenter having to turn on, login or initialize any software on any computer or turn on and configure any associated hardware with any computer.


A second aspect provides for the automated detection of visual or audible cues from the presenter to advance through the material prepared for presentation at the meeting without the presenter having to directly interact with computer or associated input/output device and thus freeing the presenter from the tether of the range of the input/output device and allowing the presenter to freely roam throughout the meeting area during the presentation.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of illustrative embodiments and the advantages thereof may be acquired by referring to the following description in consideration of the accompanying drawings, in which like reference numbers indicate like features, and wherein:



FIG. 1 illustrates an example operating environment in which various aspects of the disclosure may be implemented.



FIG. 2 illustrates a device that may be used in accordance with one or more illustrative aspects described herein.



FIG. 3 illustrates a device that may be used in accordance with one or more illustrative aspects described herein.



FIG. 4 illustrates a device that may be used in accordance with one or more illustrative aspects described herein.



FIG. 5 illustrates flowchart of a method that may be followed in accordance with one or more illustrative aspects described herein.





DETAILED DESCRIPTION

In the following description of the various embodiments, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration various embodiments in which aspects described herein may be practiced. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope and spirit of the present disclosure.


As will be appreciated by one of skill in the art upon reading the following disclosure, various aspects described herein may be embodied as a method, a data processing system, or a computer program product. Accordingly, those aspects may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, such aspects may take the form of a computer program product stored by one or more computer-readable storage media having computer-readable program code, or instructions, embodied in or on the storage media. Any suitable computer readable storage media may be utilized, including hard disks, CD-ROMs, optical storage devices, magnetic storage devices, and/or any combination thereof. As used in this description computer-readable media refers to all computer-readable media with the sole exception being a transitory propagating signal.



FIG. 1 illustrates an example block diagram of a generic computing device 101 in an example computing environment 100 that may be used according to one or more illustrative embodiments of the disclosure. The generic computing device 101 may have a processor 103 for controlling overall operation of the computing device and its associated components, including random access memory (RAM) 105, read-only memory (ROM) 107, input/output (I/O) module 109, and memory 115.


I/O module 109 may include a mouse, keypad, touch screen, scanner, optical reader, and/or stylus (or other input device(s)) through which a user of generic computing device 101 may provide input, and may also include one or more of a speaker for providing audio output and a video display device for providing textual, audiovisual, and/or graphical output. Software may be stored within memory 115 and/or other storage to provide instructions to processor 103 for enabling generic computing device 101 to perform various functions. For example, memory 115 may store software used by the generic computing device 101, such as an operating system 117, application programs 119, and an associated database 121. Alternatively, some or all of the computer executable instructions for generic computing device 101 may be embodied in hardware or firmware (not shown).


The generic computing device 101 may operate in a networked environment supporting connections to one or more other computing devices, such as computing devices 140. The computing devices 140 may be personal computers or servers that include many or all of the elements described above with respect to the generic computing device 101. The network connections depicted in FIG. 1 include a local area network (LAN) 125 and a wide area network (WAN) 129, but may also include other networks. When used in a LAN networking environment, the generic computing device 101 may be connected to the LAN 125 through a network interface or adapter 123. When used in a WAN networking environment, the generic computing device 101 may include a modem 127 or other network interface for establishing communications over the WAN 129, such as computer network 130 (e.g., the Internet). It will be appreciated that the network connections shown are illustrative and other means of establishing a communications link between the computers may be used.


Generic computing device 101 and/or 140 may also be mobile terminals (e.g., mobile phones, smartphones, PDAs, notebooks, etc.) including various other components, such as a battery, speaker, and antennas (not shown).


The disclosure is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well-known computing systems, environments, and/or configurations that may be suitable for use with the disclosure include, but are not limited to, personal computers, server computers, handheld or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.


One or more computing devices 101 and/or 140 can transmit data over a network 130 installed between machines and appliances within the computing environment 100. The network 130 can comprise one or more sub-networks, and can be installed between any combination of the computing devices 101 and/or 140, computing machines and appliances included within the computing environment 100. In some embodiments, the network 130 can be: a local-area network (LAN); a metropolitan area network (MAN); a wide area network (WAN); a primary network 104 comprised of multiple sub-networks located between the computing devices 101 and 140; a primary public network 130 (e.g., the Internet) with a private sub-network; a primary private network 130 with a public sub-network; or a primary private network 130 with a private sub-network. Still further embodiments include a network 130 that can be any of the following network types: a point to point network; a broadcast network; a telecommunications network; a data communication network; a computer network; an ATM (Asynchronous Transfer Mode) network; a SONET (Synchronous Optical Network) network; a SDH (Synchronous Digital Hierarchy) network; a wireless network; a wireline network; or a network that includes a wireless link where the wireless link can be an infrared channel or satellite band. The network topology of the network 130 can differ within different embodiments, possible network topologies include: a bus network topology; a star network topology; a ring network topology; a repeater-based network topology; or a tiered-star network topology. Additional embodiments may include a network of mobile telephone networks that use a protocol to communicate among mobile devices, where the protocol can be any one of the following: AMPS; TDMA; CDMA; GSM; GPRS UMTS; or any other protocol able to transmit data among mobile devices.


According to one or more aspects, generic computing device 101 may be a server 106a in a single-server or multi-server desktop virtualization system configured to provide virtual machines for client access devices. One or more of the computing devices 140 may be client devices and may be in communication with one or more servers 106a-106n (generally referred to herein as “server(s) 106”). In some embodiments, the computing environment 100 may include an appliance installed between the server(s) 106 and client machine(s) 140. The appliance can manage client/server connections, and in some cases can load balance client connections amongst a plurality of backend servers 106.


The client machine(s) 140 can in some embodiments be referred to as a single client machine 140 or a single group of client machines 140, while server(s) 106 may be referred to as a single server 106 or a single group of servers 106. In some embodiments a single client machine 140 communicates with more than one server 106, while in other embodiments a single server 106 communicates with more than one client machine 140. In yet other embodiments, a single client machine 140 communicates with a single server 106.


A client machine 140 can, in some embodiments, be referenced by any one of the following terms: client machine(s) 140; client(s); client computer(s); client device(s); client computing device(s); local machine; remote machine; client node(s); endpoint(s); endpoint node(s); or a second machine. The server 106, in some embodiments, may be referenced by any one of the following terms: server(s), local machine; remote machine; server farm(s), host computing device(s), or a first machine(s).


In some embodiments, the client machine 140 may be a virtual machine. The virtual machine may be any virtual machine, while in some embodiments the virtual machine may be any virtual machine managed by a hypervisor developed by Citrix Systems, IBM, VMware, or any other hypervisor. In some aspects, the virtual machine may be managed by a hypervisor, while in aspects the virtual machine may be managed by a hypervisor executing on a server 106 or a hypervisor executing on a client 140.


The client machine 140 may execute, operate or otherwise provide an application that can be any one of the following: software; a program; executable instructions; a virtual machine; a hypervisor; a web browser; a web-based client; a client-server application; a thin-client computing client; an ActiveX control; a Java applet; software related to voice over internet protocol (VoIP) communications like a soft IP telephone; an application for streaming video and/or audio; an application for facilitating real-time-data communications; a HTTP client; a FTP client; an Oscar client; a Telnet client; or any other set of executable instructions. Still other embodiments include a client device 140 that displays application output generated by an application remotely executing on a server 106 or other remotely located machine. In these embodiments, the client device 140 can display the application output in an application window, a browser, or other output window. In one example, the application is a desktop, while in other examples the application is an application that generates a desktop. A desktop may include a graphical shell providing a user interface for an instance of an operating system in which local and/or remote applications can be integrated. Applications, as used herein, are programs that execute after an instance of an operating system (and, optionally, also the desktop) has been loaded.


The server 106, in some embodiments, executes a remote presentation client or other client or program that uses a thin-client or remote-display protocol to capture display output generated by an application executing on a server 106 and transmits the application display output to a remote client 140. The thin-client or remote-display protocol can be any one of the following protocols: the Independent Computing Architecture (ICA®) protocol manufactured by Citrix Systems, Inc. of Ft. Lauderdale, Fla.; or the Remote Desktop Protocol (RDP) manufactured by the Microsoft Corporation of Redmond, Wash.


The computing environment can include more than one server 106A-106N such that the servers 106A-106N are logically grouped together into a server farm 106. The server farm 106 can include servers 106 that are geographically dispersed and logically grouped together in a server farm 106, or servers 106 that are located proximate to each other and logically grouped together in a server farm 106. Geographically dispersed servers 106A-106N within a server farm 106 can, in some embodiments, communicate using a WAN, MAN, or LAN, where different geographic regions can be characterized as: different continents; different regions of a continent; different countries; different states; different cities; different campuses; different rooms; or any combination of the preceding geographical locations. In some embodiments the server farm 106 may be administered as a single entity, while in other embodiments the server farm 106 can include multiple server farms 106.


In some embodiments, a server farm 106 can include servers 106 that execute a substantially similar type of operating system platform (e.g., WINDOWS NT, manufactured by Microsoft Corp. of Redmond, Wash., UNIX, LINUX, or MOUNTAIN LION) In other embodiments, the server farm 106 can include a first group of servers 106 that execute a first type of operating system platform, and a second group of servers 106 that execute a second type of operating system platform. The server farm 106, in other embodiments, can include servers 106 that execute different types of operating system platforms.


The server 106, in some embodiments, can be any server type. In other embodiments, the server 106 can be any of the following server types: a file server; an application server; a web server; a proxy server; an appliance; a network appliance; a gateway; an application gateway; a gateway server; a virtualization server; a deployment server; a SSL VPN server; a firewall; a web server; an application server or as a master application server; a server 106 executing an active directory; or a server 106 executing an application acceleration program that provides firewall functionality, application functionality, or load balancing functionality. In some embodiments, a server 106 may be a RADIUS server that includes a remote authentication dial-in user service. In embodiments where the server 106 comprises an appliance, the server 106 can be an appliance manufactured by any one of the following manufacturers: the Citrix Application Networking Group; Silver Peak Systems, Inc.; Riverbed Technology, Inc.; F5 Networks, Inc.; or Juniper Networks, Inc. Some embodiments include a first server 106A that receives requests from a client machine 140, forwards the request to a second server 106n, and responds to the request generated by the client machine 140 with a response from the second server 106n. The first server 106A can acquire an enumeration of applications available to the client machine 140 and well as address information associated with an application server 106 hosting an application identified within the enumeration of applications. The first server 106A can then present a response to the client's request using a web interface, and communicate directly with the client 140 to provide the client 140 with access to an identified application.


The server 106 can, in some embodiments, execute any one of the following applications: a thin-client application using a thin-client protocol to transmit application display data to a client; a remote display presentation application; any portion of the CITRIX ACCESS SUITE by Citrix Systems, Inc. like the METAFRAME® or CITRIX PRESENTATION SERVER; MICROSOFT WINDOWS Terminal Services manufactured by the Microsoft Corporation; or an ICA® client, developed by Citrix Systems, Inc. Another embodiment includes a server 106 that is an application server such as: an email server that provides email services such as MICROSOFT EXCHANGE manufactured by the Microsoft Corporation; a web or Internet server; a desktop sharing server; a collaboration server; or any other type of application server. Still other embodiments include a server 106 that executes any one of the following types of hosted server applications: GOTOMEETING® provided by Citrix Online Division, Inc.; WEBEX provided by WebEx, Inc. of Santa Clara, Calif.; or Microsoft Office LIVE MEETING provided by Microsoft Corporation.


Client machines 140 can, in some embodiments, be a client node that seeks access to resources provided by a server 106. In other embodiments, the server 106 may provide clients 140 or client nodes with access to hosted resources. The server 106, in some embodiments, functions as a master node such that it communicates with one or more clients 140 or servers 106. In some embodiments, the master node can identify and provide address information associated with a server 106 hosting a requested application, to one or more clients 140 or servers 106. In still other embodiments, the master node can be a server farm 106, a client 140, a cluster of client nodes 140, or an appliance.


As previously described, FIG. 1 may illustrate a high-level architecture of an illustrative system. As shown, the system may be single-server or multi-server system, including at least one server 106 configured to provide applications to one or more client access devices 140. As used herein, a desktop refers to a graphical environment or space in which one or more applications may be hosted and/or executed. A desktop may include a graphical shell providing a user interface for an instance of an operating system in which local and/or remote applications can be integrated. Applications, as used herein, are programs that execute after an instance of an operating system (and, optionally, also the desktop) has been loaded. Each instance of the operating system may be physical (e.g., one operating system per device) or virtual (e.g., many instances of an OS running on a single device). Each application may be executed on a local device, or executed on a remotely located device (e.g., remoted).


Illustrated in FIG. 2 is an embodiment of a computing device 200, where the computing devices 101 and 140 illustrated in FIG. 1 may be deployed as and/or executed on any embodiment of the computing device 200 illustrated and described herein. Included within the computing device 200 is a system bus 250 that communicates with the following components: a central processing unit 221; a main memory 222; storage memory 228; an input/output (I/O) controller 223; display devices 224A-224N; an installation device 216; and a network interface 218. In one embodiment, the storage memory 228 includes: an operating system, software routines, and a client agent 220. The I/O controller 223, in some embodiments, is further connected to a keyboard 226, and a pointing device 227. Other embodiments may include an I/O controller 223 connected to more than one input/output device 230A-230N.



FIG. 3 illustrates one embodiment of a computing device 300, where the computing devices 101 and 140 illustrated in FIG. 1 can be deployed as and/or executed on any embodiment of the computing device 300 illustrated and described herein. Included within the computing device 300 is a system bus 350 that communicates with the following components: a bridge 370, and a first I/O device 330a. In another embodiment, the bridge 370 is in further communication with the main central processing unit 321, where the central processing unit 321 can further communicate with a second I/O device 330b, a main memory 322, and a cache memory 340. Included within the central processing unit 321, are I/O ports, a memory port 303, and a main processor.


Embodiments of the computing machine 300 can include a central processing unit 321 characterized by any one of the following component configurations: logic circuits that respond to and process instructions fetched from the main memory unit 322; a microprocessor unit, such as: those manufactured by Intel Corporation; those manufactured by Motorola Corporation; those manufactured by Transmeta Corporation of Santa Clara, Calif.; those manufactured by International Business Machines; a processor such as those manufactured by Advanced Micro Devices; or any other combination of logic circuits. Still other embodiments of the central processing unit 321 may include any combination of the following: a microprocessor, a microcontroller, a central processing unit with a single processing core, a central processing unit with two processing cores, or a central processing unit with more than two processing cores.


While FIG. 3 illustrates a computing device 300 that includes a single central processing unit 321, in some embodiments the computing device 300 can include one or more processing units 321. In these embodiments, the computing device 300 may store and execute firmware or other executable instructions that, when executed, direct the one or more processing units 321 to simultaneously execute instructions or to simultaneously execute instructions on a single piece of data. In other embodiments, the computing device 300 may store and execute firmware or other executable instructions that, when executed, direct the one or more processing units to each execute a section of a group of instructions. For example, each processing unit 321 may be instructed to execute a portion of a program or a particular module within a program.


In some embodiments, the processing unit 321 can include one or more processing cores. For example, the processing unit 321 may have two cores, four cores, eight cores, etc. In some embodiments, the processing unit 321 may comprise one or more parallel processing cores. The processing cores of the processing unit 321 may, in some embodiments, access available memory as a global address space, or in other embodiments, memory within the computing device 300 can be segmented and assigned to a particular core within the processing unit 321. In some embodiments, the one or more processing cores or processors in the computing device 300 can each access local memory. In still other embodiments, memory within the computing device 300 can be shared amongst one or more processors or processing cores, while other memory can be accessed by particular processors or subsets of processors. In embodiments where the computing device 300 includes more than one processing unit, the multiple processing units can be included in a single integrated circuit (IC). These multiple processors, in some embodiments, can be linked together by an internal high speed bus, which may be referred to as an element interconnect bus.


In embodiments where the computing device 300 includes one or more processing units 321, or a processing unit 321 including one or more processing cores, the processors can execute a single instruction simultaneously on multiple pieces of data (SIMD), or in other embodiments can execute multiple instructions simultaneously on multiple pieces of data (MIMD). In some embodiments, the computing device 100 can include any number of SIMD and MIMD processors.


The computing device 300, in some embodiments, can include a graphics processor or a graphics processing unit (Not Shown). The graphics processing unit can include any combination of software and hardware, and can further input graphics data and graphics instructions, render a graphic from the inputted data and instructions, and output the rendered graphic. In some embodiments, the graphics processing unit can be included within the processing unit 321. In other embodiments, the computing device 300 can include one or more processing units 321, where at least one processing unit 321 is dedicated to processing and rendering graphics.


One embodiment of the computing machine 300 includes a central processing unit 321 that communicates with cache memory 340 via a secondary bus also known as a backside bus, while another embodiment of the computing machine 300 includes a central processing unit 321 that communicates with cache memory via the system bus 350. The local system bus 350 can, in some embodiments, also be used by the central processing unit to communicate with more than one type of I/O device 330a-330n. In some embodiments, the local system bus 350 can be any one of the following types of buses: a VESA VL bus; an ISA bus; an EISA bus; a MicroChannel Architecture (MCA) bus; a PCI bus; a PCI-X bus; a PCI-Express bus; or a NuBus. Other embodiments of the computing machine 300 include an I/O device 330a-330n that includes a video display 224 that communicates with the central processing unit 321. Still other versions of the computing machine 300 include a processor 321 connected to an I/O device 330a-330n via any one of the following connections: HyperTransport, Rapid I/O, or InfiniBand. Further embodiments of the computing machine 300 include a processor 321 that communicates with one I/O device 330a using a local interconnect bus and a second I/O device 330b using a direct connection.


The computing device 300, in some embodiments, includes a main memory unit 322 and cache memory 340. The cache memory 340 can be any memory type, and in some embodiments can be any one of the following types of memory: SRAM; BSRAM; or EDRAM. Other embodiments include cache memory 340 and a main memory unit 322 that can be any one of the following types of memory: Static random access memory (SRAM), Burst SRAM or SynchBurst SRAM (BSRAM); Dynamic random access memory (DRAM); Fast Page Mode DRAM (FPM DRAM); Enhanced DRAM (EDRAM), Extended Data Output RAM (EDO RAM); Extended Data Output DRAM (EDO DRAM); Burst Extended Data Output DRAM (BEDO DRAM); Enhanced DRAM (EDRAM); synchronous DRAM (SDRAM); JEDEC SRAM; PC100 SDRAM; Double Data Rate SDRAM (DDR SDRAM); Enhanced SDRAM (ESDRAM); SyncLink DRAM (SLDRAM); Direct Rambus DRAM (DRDRAM); Ferroelectric RAM (FRAM); or any other type of memory. Further embodiments include a central processing unit 321 that can access the main memory 322 via: a system bus 350; a memory port 303; or any other connection, bus or port that allows the processor 321 to access memory 322.


One embodiment of the computing device 200/300 provides support for any one of the following installation devices 216: a CD-ROM drive, a CD-R/RW drive, a DVD-ROM drive, a BLU-RAY drive, tape drives of various formats, USB device, a bootable medium, a bootable CD, a bootable CD for GNU/Linux distribution such as KNOPPIX®, a hard-drive or any other device suitable for installing applications or software. Applications can in some embodiments include a client agent 220, or any portion of a client agent 220. The computing device 200/300 may further include a storage device 228 that can be either one or more hard disk drives, or one or more redundant arrays of independent disks; where the storage device is configured to store an operating system, software, programs applications, or at least a portion of the client agent 220. A further embodiment of the computing device 200, 300 includes an installation device 216 that is used as the storage device 228.


The computing device 200, 300 may further include a network interface 218 to interface to a Local Area Network (LAN), Wide Area Network (WAN) or the Internet through a variety of connections including, but not limited to, standard telephone lines, LAN or WAN links (e.g., 802.11, T1, T3, 56 kb, X.25, SNA, DECNET), broadband connections (e.g., ISDN, Frame Relay, ATM, Gigabit Ethernet, Ethernet-over-SONET), wireless connections, or some combination of any or all of the above. Connections can also be established using a variety of communication protocols (e.g., TCP/IP, IPX, SPX, NetBIOS, Ethernet, ARCNET, SONET, SDH, Fiber Distributed Data Interface (FDDI), RS232, RS485, IEEE 802.11, IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, CDMA, GSM, WiMax and direct asynchronous connections). One version of the computing device 200, 300 includes a network interface 218 able to communicate with additional computing devices 200′, 300′ via any type and/or form of gateway or tunneling protocol such as Secure Socket Layer (SSL) or Transport Layer Security (TLS), or the Citrix Gateway Protocol manufactured by Citrix Systems, Inc. Versions of the network interface 218 can comprise any one of: a built-in network adapter; a network interface card; a PCMCIA network card; a card bus network adapter; a wireless network adapter; a USB network adapter; a modem; or any other device suitable for interfacing the computing device 200, 300 to a network capable of communicating and performing the methods and systems described herein.


Embodiments of the computing device 200, 300 include any one of the following I/O devices 230a-230n: a keyboard 226; a pointing device 227; mice; trackpads; an optical pen; trackballs; microphones; drawing tablets; video displays; speakers; inkjet printers; laser printers; and dye-sublimation printers; or any other input/output device able to perform the methods and systems described herein. An I/O controller 223 may in some embodiments connect to multiple I/O devices 230a-230n to control the one or more I/O devices. Some embodiments of the I/O devices 230a-230n may be configured to provide storage or an installation medium 216, while others may provide a universal serial bus (USB) interface for receiving USB storage devices such as the USB Flash Drive line of devices manufactured by Twintech Industry, Inc. Still other embodiments include an I/O device 230 that may be a bridge between the system bus 250 and an external communication bus, such as: a USB bus; an Apple Desktop Bus; an RS-232 serial connection; a SCSI bus; a FireWire bus; a FireWire 800 bus; an Ethernet bus; an AppleTalk bus; a Gigabit Ethernet bus; an Asynchronous Transfer Mode bus; a HIPPI bus; a Super HIPPI bus; a SerialPlus bus; a SCI/LAMP bus; a FibreChannel bus; or a Serial Attached small computer system interface bus.


In some embodiments, the computing machine 200, 300 can connect to multiple display devices 224a-224n, in other embodiments the computing device 100 can connect to a single display device 224, while in still other embodiments the computing device 200, 300 connects to display devices 224a-224n that are the same type or form of display, or to display devices that are different types or forms. Embodiments of the display devices 224a-224n can be supported and enabled by the following: one or multiple I/O devices 230a-230n; the I/O controller 223; a combination of I/O device(s) 230a-230n and the I/O controller 223; any combination of hardware and software able to support a display device 224a-224n; any type and/or form of video adapter, video card, driver, and/or library to interface, communicate, connect or otherwise use the display devices 224a-224n. The computing device 200, 300 may in some embodiments be configured to use one or multiple display devices 224A-224N, these configurations include: having multiple connectors to interface to multiple display devices 224A-224N; having multiple video adapters, with each video adapter connected to one or more of the display devices 224A-224N; having an operating system configured to support multiple displays 224A-224N; using circuits and software included within the computing device 200 to connect to and use multiple display devices 224A-224N; and executing software on the main computing device 200 and multiple secondary computing devices to enable the main computing device 200 to use a secondary computing device's display as a display device 224A-224N for the main computing device 200. Still other embodiments of the computing device 200 may include multiple display devices 224A-224N provided by multiple secondary computing devices and connected to the main computing device 200 via a network. Display devices 224 include, but are not limited to, projectors, monitors, and the like.


In some embodiments, the computing machine 200 can execute any operating system, while in other embodiments the computing machine 200 can execute any of the following operating systems: versions of the MICROSOFT WINDOWS operating systems such as WINDOWS 3.x; WINDOWS 95; WINDOWS 98; WINDOWS 2000; WINDOWS NT 3.51; WINDOWS NT 4.0; WINDOWS CE; WINDOWS XP; WINDOWS VISTA; WINDOWS 7; and WINDOWS 8; the different releases of the Unix and Linux operating systems; any version of the MAC OS manufactured by Apple Computer; OS/2, manufactured by International Business Machines; any embedded operating system; any real-time operating system; any open source operating system; any proprietary operating system; any operating systems for mobile computing devices; or any other operating system. In still another embodiment, the computing machine 200 can execute multiple operating systems. For example, the computing machine 200 can execute PARALLELS or another virtualization platform that can execute or manage a virtual machine executing a first operating system, while the computing machine 200 executes a second operating system different from the first operating system.


The computing machine 200 can be embodied in any one of the following computing devices: a computing workstation; a desktop computer; a laptop or notebook computer; a server; a handheld computer; a mobile telephone; a portable telecommunication device; a media playing device; a gaming system; a mobile computing device; a netbook; a device of the IPOD family of devices manufactured by Apple Computer; any one of the PLAYSTATION family of devices manufactured by the Sony Corporation; any one of the Nintendo family of devices manufactured by Nintendo Co; any one of the XBOX family of devices manufactured by the Microsoft Corporation; or any other type and/or form of computing, telecommunications or media device that is capable of communication and that has sufficient processor power and memory capacity to perform the methods and systems described herein. In other embodiments the computing machine 100 can be a mobile device such as any one of the following mobile devices: a JAVA-enabled cellular telephone or personal digital assistant (PDA), such as the i55sr, i58sr, i85s, i88s, i90c, i95cl, or the im1100, all of which are manufactured by Motorola Corp; the 6035 or the 7135, manufactured by Kyocera; the i300 or i330, manufactured by Samsung Electronics Co., Ltd; the TREO 180, 270, 600, 650, 680, 700p, 700w, or 750 smart phone manufactured by Palm, Inc.; any computing device that has different processors, operating systems, and input devices consistent with the device; or any other mobile computing device capable of performing the methods and systems described herein. In still other embodiments, the computing device 200 can be any one of the following mobile computing devices: any one series of Blackberry, or other handheld device manufactured by Research In Motion Limited; the iPhone manufactured by Apple Computer; Palm Pre; a Pocket PC; a Pocket PC Phone; or any other handheld mobile device.


In some embodiments, the computing device 200 may have different processors, operating systems, and input devices consistent with the device. For example, in one embodiment, the computing device 200 is a TREO 180, 270, 600, 650, 680, 700p, 700w, or 750 smart phone manufactured by Palm, Inc. In some of these embodiments, the TREO smart phone is operated under the control of the PalmOS operating system and includes a stylus input device as well as a five-way navigator device.


In other embodiments the computing device 200 is a mobile device, such as a JAVA-enabled cellular telephone or personal digital assistant (PDA), such as the i55sr, i58sr, i85s, i88s, i90c, i95cl, or the im1100, all of which are manufactured by Motorola Corp. of Schaumburg, Ill., the 6035 or the 7135, manufactured by Kyocera of Kyoto, Japan, or the i300 or i330, manufactured by Samsung Electronics Co., Ltd., of Seoul, Korea. In some embodiments, the computing device 200 is a mobile device manufactured by Nokia of Finland, or by Sony Ericsson Mobile Communications AB of Lund, Sweden.


In still other embodiments, the computing device 200 is a Blackberry handheld or smart phone, such as the devices manufactured by Research In Motion Limited, including the Blackberry 7100 series, 8700 series, 7700 series, 7200 series, the Blackberry 7520, or the Blackberry Pearl 8100. In yet other embodiments, the computing device 200 is a smart phone, Pocket PC, Pocket PC Phone, or other handheld mobile device supporting Microsoft Windows Mobile Software. Moreover, the computing device 200 can be any workstation, desktop computer, laptop or notebook computer, server, handheld computer, mobile telephone, any other computer, or other form of computing or telecommunications device that is capable of communication and that has sufficient processor power and memory capacity to perform the operations described herein.


In some embodiments, the computing device 200 is a digital audio player. In one of these embodiments, the computing device 200 is a digital audio player such as the Apple IPOD, IPOD Touch, IPOD NANO, and IPOD SHUFFLE lines of devices, manufactured by Apple Computer of Cupertino, Calif. In another of these embodiments, the digital audio player may function as both a portable media player and as a mass storage device. In other embodiments, the computing device 200 is a digital audio player such as the DigitalAudioPlayer Select MP3 players, manufactured by Samsung Electronics America, of Ridgefield Park, N.J., or the Motorola m500 or m25 Digital Audio Players, manufactured by Motorola Inc. of Schaumburg, Ill. In still other embodiments, the computing device 200 is a portable media player, such as the Zen Vision W, the Zen Vision series, the Zen Portable Media Center devices, or the Digital MP3 line of MP3 players, manufactured by Creative Technologies Ltd. In yet other embodiments, the computing device 200 is a portable media player or digital audio player supporting file formats including, but not limited to, MP3, WAV, M4A/AAC, WMA Protected AAC, AIFF, Audible audiobook, Apple Lossless audio file formats and .mov, .m4v, and .mp4 MPEG-4 (H.264/MPEG-4 AVC) video file formats.


In some embodiments, the computing device 200 comprises a combination of devices, such as a mobile phone combined with a digital audio player or portable media player. In one of these embodiments, the computing device 200 is a Motorola RAZR or Motorola ROKR line of combination digital audio players and mobile phones. In another of these embodiments, the computing device 200 is an iPhone smartphone, manufactured by Apple Computer of Cupertino, Calif.


While FIGS. 1-3 generally describe a remote virtualization environment, a locally virtualized machine may be used as well, e.g., using a type 1 or type 2 hypervisor. Alternatively, a traditional non-virtualized installation may be used as well.


Illustrated in FIG. 4 is an illustrative embodiment of a computing system 400 for use in various aspects. This computing system may include a facial identification database 401 and a voice identification database 402 which can be separate or portions of an overall larger database. The facial identification database 401 may store face prints for comparison, and the voice identification database 402 may store voice prints for comparison. Also within this system is a presentation storage memory 403 that stores the material for the presentation. This system 400 may further include program modules that interface with presentation storage memory 403, identification databases 401-402, and one or more sensors 417 connected to the computing devices (101 in FIG. 1). The sensors 417 may include, e.g., motion sensors, camera, microphones, presence detection sensors, and face tracking sensors.


The system 400 may further include software or hardware that controls an online meeting application 409 (e.g., GoToMeeting) and an email and calendar application 410 (e.g., Microsoft Exchange). The system 400 may also include software or hardware that facilitate various aspects. The system 400 may include, e.g., a credential provider 411 that provides user credentials for the system; an orchestration agent 412 that orchestrates interaction between the components or other servers such as orchestration server 413; and a rules engine 414 that provides the decision-making that is followed in the procedure implemented by one or more embodiments described herein.


The computing system may also include a facial identification biometric interface 404 in communication with the facial identification database 401; a speech recognition interface 405; a speaker verification biometric interface 406 in communication with the voice identification database 402; a cloud storage interface 407 in communication with a cloud storage data store 415; and a sensor interface 408 in communication with the one or more of the sensors 417. These components will be discussed in further detail below.


In general, any of the components of computing system 400 can be incorporated in any of the computing devices 101, 106, or 140 illustrated in FIG. 1 or even in computing devices/databases/servers not illustrated (e.g., somewhere in the cloud, in the computer network 130, or elsewhere). For example, any one or more of components 401-403, 410413, 415, or 417 could be incorporated in computer device 106, computer network 130, or the cloud. For further example, any one or more of components 404-409, 411-412, or 414 could be incorporated in computer device 140. As a further example all of the components of FIG. 4 could be implemented in a computing device 140 located in the meeting area wherein further connection to any of the remainder of the computer network 130 is accomplished via the orchestration server 413 that could be physically located in any portion of computer network 130.


The systems and architectures described above with reference to FIGS. 1-4, as well as other systems and architectures, may be used to implement the functionality described below.


Any device, including computing devices 101 (e.g., servers 106 and 140), another computing device, a sensor, etc. may detect the presence of a user. For the sake of brevity, the disclosure will describe computing device 140 as detecting users' presence. For example, computing device 140 may detect the user with a presence sensor, such as a camera (e.g., an RGB camera, an IR camera, a 3D camera), an audio sensor (e.g., a microphone), or any other sensor configured to detect the presence of a user. The sensors may be wholly or partially integrated with the computing device (e.g., a laptop having an integrated webcam) or may be stand-alone devices (e.g., an external webcam). In some aspects, the presence sensor may be a Microsoft Kinect or other device having multiple sensors.



FIG. 5 shows a flowchart of an illustrative method for displaying a meeting presentation automatically upon entry of the meeting organizer into the room or area where the presentation is to be displayed. The entry of the meeting organizer or presenter is registered (step 505) by a camera, microphone, biometric sensor, RFID reader, or other sensor 417 registering the entry of each user to the room or meeting area. The information that an individual entered the meeting area is sent from the sensor to a sensor interface 408. Upon receipt of information from the sensor 417, the sensor interface 408 transmits the information to an orchestration agent 412, which in turn transmits the information to the rules engine 414. Rules engine 414 then determines whether the person entering the room needs to be further authenticated as the meeting organizer or presenter (step 510) and transmits that determination to the orchestration agent 412. If so, orchestration agent 412 then instructs the meeting organizer to identify the specific information that is unique to each individual (step 515). After the sensor 417 captures any additional user-specific information, the sensor interface 408 transmits that information to the facial identification biometric interface 404 where, in step 520, the facial identification biometric interface queries the facial identification database 401 to determine the identity of the individual entering the meeting area. When the identity of the individual entering the meeting area is preliminary determined to be the meeting organizer by the query of the facial identification database, the facial identification database interface 404 transmits that preliminary match to the rules engine 414 via the orchestration agent 412. Upon receipt of the preliminary match information the rules engine 414 in step 525 may optionally request verification of identity of the individual through a second match of user specific information via a directed request to the individual through the orchestration 412 agent.


The speaker verification biometric interface 406 receives, via another sensor 417, the individual's response to the query and queries the voice identification database 402 to authenticate the identity of the individual. Upon successful authentication of the individual, this success is transmitted to the orchestration agent 412, which in turn transmits this information to the rules engine 414. After determining the identity of the user, the rules engine 414 directs the credential provider 411, via the orchestration agent 412, to log the individual in to the computer system (step 530). The orchestration server 413 then queries the electronic calendar of the individual (e.g., at the email and calendar application 410) and determines that the individual is hosting a meeting with an electronic presentation and directs the orchestration agent to set up a meeting with that specific electronic presentation and other meeting details (step 535). The orchestration agent 412, via the rules engine 414, requests a meeting presentation database (e.g., the cloud storage data store 415) to download the presentation for the meeting, configures the necessary physical connections and requests that any internet accessible online meeting application 409 (e.g., GoToMeeting, WebEx, LiveMeeting) start the meeting using the meeting details.


After the meeting is started, the orchestration agent 412 checks the meeting attendees and determines if any required attendees are not present (step 540). If required attendees are not present, the orchestration agent 412 notifies the required attendees. Once download of the presentation is completed, the rules engine 414 initiates the meeting and via the orchestration agent 412 and initiates display of the downloaded presentation commence (step 545).


The steps described above illustrate by way of example that the system may first utilize the facial identification database 401 to obtain preliminary match information and optionally request verification of the identity of the individual through a second match in response to a query of the voice identification database 402. It will be appreciated, however, that in some example embodiments, the system may first utilize the voice identification database 402 to obtain preliminary match information and optionally request verification of the identity of the individual through a second match in response to a query of the facial recognition database 401.


In some embodiments the presence of all individuals including the meeting organizer can be initially detected by a camera and using facial recognition techniques compared to the facial identification database 401. Other methods of initial detection and identification of individuals (through appropriate databases) may be used, e.g., biometric sensors, RFID cards, etc. When visual recognition systems are used for initial detection of the meeting organizer, aspects described herein can continue to use these systems to further automate the presentation. For example, the camera on a Microsoft Kinect or other similar systems such as smart TVs and other gaming platforms can follow the user throughout the presentation and based on interaction between the rules engine 414, the orchestration agent 412 and one or more of the sensors 401, may optionally automatically advance the presentation in step 550 by capturing and processing hand or other body movements of the presenter throughout the presentation


In some embodiments the authentication of the meeting presenter can be accomplished via recording of the individual's voice through an input device such as a microphone and using well-known voice recognition techniques utilizing the voice identification database 402. Other methods of authentication of the meeting presenter (through appropriate databases) include all the techniques described above that could be used for initial identification, or others that may be known in the art. Similarly, when initial detection or authentication of the meeting organizer is done through speech recognition, aspects described herein may continue to use these systems to further automate the presentation in step 550. For example, predetermined words (e.g., “Next”) from the presenter can be stored and when spoken by the presenter, processed via the rules engine and orchestrator engine to generate commands to automatically advance the presentation.


Some embodiments that query the electronic calendar of the user may be accomplished using the electronic calendar that a user may keep as part of their email system, such as OUTLOOK. Other methods and software used to keep electronic calendars that can be accessed include electronic calendars kept as part of other email software such as Lotus Notes, Gmail, or others.


In some aspects, the request that the meeting database download the presentation for the meeting would request the file from cloud storage data store 415, e.g., ShareFile. Any other similar type databases (e.g., DropBox, Box, SkyDrive) may be used. In some aspects, the orchestration agent 412 may configure VOIP connections or other similar connections and enable any online meeting applications (e.g., GoToMeeting, WebEx,) to start the online version of the meeting using the meeting details.


Some aspects that notify required attendees that are not currently attending the meeting include (1) checking social networking sites of the required attendees and automatically posting messages on those sites reminding the required attendee of the meeting; (2) automatically sending a reminder message to one or more of the required attendees email addresses; (3) or automatically texting the required attendee a reminder of the meeting. Other notification methods and technologies may be used.


Aspects described above reduce the significant amount of time it takes to authenticate and access collaboration resources, such as a meeting room PC, projector, online meeting applications, and any associated presentation for a meeting. For example, it can take up to 15 minutes when a user enters a meeting room before the user is actually ready to start a meeting. The user spends time on logging into the computer, configuring the projector to work with the computer, getting the presentation available, starting the online meeting application, dialing any remote attendees, and so on.


Thus, using aspects described herein, the user can easily switch to a new meeting so that the time spent on getting ready for a meeting is reduced from several minutes to a few seconds. In one illustrative embodiment, when a meeting organizer enters a meeting room, their physical presence is detected. The meeting organizer looks at a camera, and their face is recognized, which provides an initial biometric phase of authentication. Next, using another biometric mechanism, such as speaker verification, the user is fully authenticated (when second authentication is needed) into the meeting room and its resources. At this point the system knows the meeting organizer is present, queries the schedule of the organizer, determines where the presentation file for the meeting is located, and starts the meeting software. If any required attendee did not join the meeting, the system may automatically notify them about the meeting. If the attendee is not online in any social networks, the invention may send an email or text message about the meeting. The meeting organizer can interact with the presentation using speech recognition or hand gestures to progress through slides, all without the meeting organizer having to sit down at a computer at all.


The system software may execute on a meeting room computer or endpoint device. For example, Microsoft Windows-based implementations may be used. Implementations on other operating systems such as Mac OSX or Linux may also be used, but may depend on the availability of drivers for sensors such as the Microsoft Kinect or other sensors being used.


As shown in FIG. 4, some components of the system may include a camera sensor 417 such as Microsoft Kinect, which contains a camera, depth sensor and directional microphone array. With these components, the Microsoft Kinect is capable of face tracking and detection of human presence. A camera sensor may be the primary sensor through which the user of the system will interact for the duration of their meeting. Any combination of camera, depth detection and directional microphone system may be used. The Microsoft Kinect is just one example. Another component is the facial identification database storing face prints of those enrolled in the system. Another component is the voice identification database, which stores the voice prints of those enrolled in the system. ShareFile is an example of a cloud storage data store that may store presentations and other content to be displayed in a meeting.


The system 400 may include various components, such as the orchestration server 413. The orchestration server 413 keeps track of presence information for users of the system, and is responsible for managing devices and computers connected to the orchestration server.


The client-side components may be installed on each endpoint client device managed by the system 400, and may include the following components:

    • a. A sensor interface 408 controls the external sensors, which may include video and audio inputs such as a Microsoft Kinect. The sensor interface 408 may receive video frames and/or audio frames, and processes the frames so the facial identification biometric interface 404, speech recognition interface 405, and speaker verification biometric interface 406 can compare them to face prints and voice prints.
    • b. A facial identification biometric interface 404 controls the facial biometric software and is used to identify the face of someone entering the room.
    • c. A speaker verification biometric interface 406 controls the speaker verification biometric software and is used to verify the voice print of someone speaking to the system.
    • d. A speech recognition interface 405 controls speech recognition software used for interpreting what the user says, and provides a stream of recognized text to the rest of the system.
    • e. A cloud storage interface 407 is used to provide access to materials stored at a cloud storage data store, e.g., ShareFile. Materials may include presentation content, such as PowerPoint documents or other presentation materials. The cloud storage interface 407 ensures these materials are available on a client device by programmatically driving the cloud storage data store 415.
    • f. An online meeting application 409, e.g., GoToMeeting, is used as the collaboration mechanism to share meeting content among meeting attendees, as well as providing audio connectivity among attendees.
    • g. An orchestration agent 412 is the administrative component of the software on the endpoint client device. The orchestration agent 412 has knowledge of the other components of the system 400 and issues commands to the different components of the system. The orchestration agent 412 is responsible for actions such as receiving a notification that a person is fully authenticated and issuing one or more commands to the cloud storage interface 407 to retrieve the presentation content issuing one or more commands to the online meeting application 409 with meeting details obtained from the email and calendar server 410.
    • h. A rules engine 414 is the component that determines which action should be taken based upon events or input, such as in response to authenticating a user. The rules engine 414 indicates to the orchestration agent 412 which actions should be taken, and the orchestration agent 412 initiates those actions in response.
    • i. A credential provider 411 authenticates a user onto a client device after they have been biometrically authenticated. The credential provider 411 may be a Windows credential provider, and the client device may be a Windows workstation.


To illustrate how these components may work together, the following describes an illustrative use case scenario as someone walks into a room, is noticed by the system, gets authenticated, and automatically starts their meeting and content.


The system 400 may be running on the PC in a meeting room, and may be connected to a Microsoft Kinect sensor bar 417. When a person walks into the room, the Kinect 417 detects their presence, and indicates this by displaying skeletons that are identified and tracked. The sensor interface 408 receives this notification. The sensor interface 408 passes the notification to the orchestrator agent 412. The orchestrator agent 412 passes the notification to the rules engine 414. The rules engine 414 determines that at this point that the user needs to be authenticated, and indicates this result to the orchestrator agent 412. The orchestrator agent switches on facial detection. Video frames are passed from the Kinect to the sensor interface 408 and then to the facial identification biometric interface 404. The facial identification biometric interface 404 utilizes the facial identification database 401 to determine who has entered the room. When a facial identity has been determined, the facial identification biometric interface indicates this to the orchestrator agent 412, which passes the result to the rules engine 414. The rules engine determines to next verify the user's identity using speaker verification. The orchestration agent 412 indicates to the user an audible or visual response to provide in order to confirm their identity using their voice. The speech recognition interface 405 receives the audio stream from the Kinect via the sensor interface 408 and recognizes the phrase used for speaker verification. The recorded speech utterance is then passed to the speaker verification biometric interface 406, which utilizes the voice identification database 402 to verify the speaker's identity.


When the identity is successfully verified, the orchestration agent 412 receives a notification of successful verification, and passes this information to the rules engine 414. The rules engine 414 then determines that the user is someone who they claim to be, and indicates to the orchestrator agent to log them onto the client device using the credential provider 411. Once the orchestrator agent 412 has logged the user on, the orchestrator agent indicates to the orchestrator server 413 that the user is present on the client device in the meeting room. The orchestrator server 413 now knows the user is present on the client device, and will direct any actions or notifications to the client device in the meeting room. The orchestrator server 413 may analyze the calendar for the user, and determine that the individual is presently hosting a meeting with a PowerPoint presentation. The orchestration server 413 issues an instruction to the orchestration agent 412 to set up the meeting with the given content and meeting details. The orchestration agent 412 passes the request to the rules engine 414. The rules engine 414 provides the instructions regarding the meeting to the orchestrator agent 412. The orchestrator agent 412 issues a request to the cloud storage interface 407 to download the materials for the presentation from the cloud storage data store 415. The orchestrator agent 412 issues a request to the online meeting application 409 to start the meeting with the given details. The orchestration agent 412 may set up a VoIP connection. The orchestrator agent 412 checks the attendee list to determine if any required attendees are missing. If so, the orchestration agent 412 initiates a notification to the attendees that have not yet joined the meeting. Once the cloud storage interface 407 has obtained the materials for the presentation, the rules engine 414 determines to start the meeting and determines to enable the presentation. The orchestrator agent 412 issues a request to start PowerPoint in presentation mode and show the screen of the user's client device.


The above illustrative scenario is non-limiting, as steps may be added, removed, combined, split, and/or reordered. Other specific types of hardware and/or software may be used other than those recited above.


Various aspects described above allow organizations and user to detect the physical presence of a user in a meeting room as a trigger to begin the setup of a collaborative meeting. Other aspects combine multiple biometric and/or proximity mechanisms together that do not require physical touch, e.g., using biometrics that do not interrupt a user's work flow by requiring them to go to a particular point. Some aspects use a person's presence and calendar to actively initiate actions on the person's behalf. Some aspects use natural interaction mechanisms such as speech recognition and hand gestures to drive a meeting presentation. Some aspects combine all of these features together to create a frictionless user experience, which can dramatically improve the time to productivity in a meeting.


While certain illustrative embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the methods and systems described herein. Additionally, it is possible to implement the methods and systems described herein or some of its features in hardware, programmable devices, firmware, software or a combination thereof. The methods and systems described herein or parts of the methods and systems described herein may also be embodied in a processor-readable storage medium or machine-readable medium such as a magnetic (e.g., hard drive, floppy drive), optical (e.g., compact disk, digital versatile disk, etc.), or semiconductor storage medium (volatile and non-volatile). In addition, although method steps have been depicted in flowcharts in a particular order, the steps may be performed an order different than that shown, and one or more steps may be optional or omitted in accordance with various aspects of the disclosure.

Claims
  • 1. A method comprising: detecting a physical presence of a user in a predetermined meeting area, said detection using a proximity-based sensor;determining an identity of the user based on the proximity-based sensor by facial recognition;determining that the identity of the user corresponds to an identity of a meeting organizer;responsive to determining that the identity of the user corresponds to an identity of a meeting organizer, authenticating, by voice recognition, using a credential service on a networked computer system, the identity of the user to the identity of the meeting organizer;obtaining, using the credential service on the networked computer system, user credentials associated with the user responsive to authenticating the identity of the user to the identity of the meeting organizer;providing the user credentials to a computer located in the predetermined meeting area to automatically log the user in to the computer;starting one or more meeting resources used to present a presentation associated with the meeting organizer based on the authentication of the user, one of said resources comprising the computer located in the predetermined meeting area used to present the presentation;notifying any required meeting attendees determined not to be in attendance, said notifying based on a determination of whether each missing required meeting attendee is logged in to a social network and, when so, sending a message to the missing attendee via the social network, and, when not so, sending a message to the missing attendee via text message; andreceiving non-touch user input from the meeting organizer to progress through the presentation.
  • 2. The method of claim 1 wherein the proximity-based sensor comprises a camera; and wherein said facial recognition includes receiving video frames through the proximity-based sensor.
  • 3. The method of claim 2 wherein said facial recognition further includes comparing the video frames to face prints stored in a facial identification database.
  • 4. The method of claim 2 wherein said voice recognition includes: receiving the user's voice through a microphone; andrecording the user's voice received through the microphone to generate audio frames.
  • 5. The method of claim 4 wherein said voice recognition further includes comparing the audio frames to voice prints stored in a voice identification database.
  • 6. The method of claim 1 wherein required attendees are notified via one or more social networks.
  • 7. The method of claim 1 wherein required attendees are notified by text message.
  • 8. The method of claim 1 wherein said non-touch user input comprises speech.
  • 9. The method of claim 1 wherein said non-touch user input comprises detection and recognition of physical movement by the meeting organizer.
  • 10. An apparatus, comprising: at least one processor configured to execute computer-executable instructions; andat least one memory storing the computer-executable instructions, which when executed by the processor, cause the apparatus to perform: detecting a physical presence of a user in a predetermined meeting area, said detection using a proximity-based sensor;determining an identity of the user based on the proximity-based sensor by facial recognition;determining that the identity of the user corresponds to an identity of a meeting organizer;responsive to determining that the identity of the user corresponds to an identity of a meeting organizer, authenticating, by voice recognition, using a credential service on a networked computer system, the identity of the user to the identity of the meeting organizer;obtaining, using the credential service on the networked computer system, user credentials associated with the user responsive to authenticating the identity of the user as the meeting organizer;providing the user credentials to a computer located in the predetermined meeting area to automatically log the user in to the computer;starting one or more meeting resources used to present a presentation associated with the meeting organizer based on the authentication of the user, one of said resources comprising the computer located in the predetermined meeting area used to present the presentation;notifying any required meeting attendees determined not to be in attendance, said notifying based on a determination of whether each missing required meeting attendee is logged in to a social network and, when so, sending a message to the missing attendee via the social network, and, when not so, sending a message to the missing attendee via text message; andreceiving non-touch user input from the meeting organizer to progress through the presentation.
  • 11. The apparatus of claim 10 wherein the proximity-based sensor comprises a camera; and wherein said facial recognition includes receiving video frames through the proximity-based sensor.
  • 12. The apparatus of claim 11 wherein said facial recognition further includes comparing the video frames to face prints stored in a facial identification database.
  • 13. The apparatus of claim 11 wherein said voice recognition includes: receiving the user's voice through a microphone; andrecording the user's voice received through the microphone to generate audio frames.
  • 14. The apparatus of claim 13 wherein said voice recognition further includes comparing the audio frames to voice prints stored in a voice identification database.
  • 15. The apparatus of claim 10 wherein required attendees are notified via one or more social networks.
  • 16. The apparatus of claim 10, wherein required attendees are notified by email.
  • 17. The apparatus of claim 10 wherein required attendees are notified by text message.
  • 18. The apparatus of claim 10 wherein said non-touch user input comprises speech.
  • 19. The apparatus of claim 10 wherein said non-touch user input comprises detection and recognition of physical movement by the meeting organizer.
  • 20. One or more tangible computer readable media storing computer executable instructions that, when executed, configure a system to perform: detecting a physical presence of a user in a predetermined meeting area, said detection using a proximity-based sensor;determining an identity of the user based on the proximity-based sensor by facial recognition;determining that the identity of the user corresponds to an identity of a meeting organizer;responsive to determining that the identity of the user corresponds to an identity of a meeting organizer, authenticating, by voice recognition, using a credential service on a networked computer system, an identity of the user as a meeting organizer, said authenticating based on voice recognition;obtaining, using the credential service on the networked computer system, user credentials associated with the user responsive to authenticating the identity of the user as the meeting organizer;providing the user credentials to a computer located in the predetermined meeting area to automatically log the user in to the computer;starting one or more meeting resources used to present a presentation associated with the meeting organizer based on the authentication of the user, one of said resources comprising the computer located in the predetermined meeting area used to present the presentation;notifying any required meeting attendees determined not to be in attendance, said notifying based on a determination of whether each missing required meeting attendee is logged in to a social network and, when so, sending a message to the missing attendee via the social network, and, when not so, sending a message to the missing attendee via text message; andprogressing the presentation based on audio or video input received from the meeting organizer.
  • 21. The method of claim 1 further comprising: determining a storage location at which one of the meeting resources is stored; anddownloading that meeting resource from the storage location to the computer in the predetermined area.
  • 22. The method of claim 1, wherein authenticating the identity of the user to the identity of the meeting organizer comprises: authenticating, using the credential service on the networked computer system, the identity of the user to the identity of the meeting organizer based on user-specific information received from the user in response to a request for the user-specific information.
  • 23. The method of claim 5, wherein determining that the identity of the user corresponds to an identity of a meeting organizer includes querying an electronic calendar of the user and determining that the user is host of an online meeting, and further comprising: determining, by a rules engine, responsive to determining that the identity of the user corresponds to the identity of the meeting organizer, that the user needs to be further authenticated as the meeting organizer; andwherein authenticating the identity of the user to the identity of the meeting organizer by voice recognition is responsive to the rules engine determining that the user needs to be further authenticated as the meeting organizer.
  • 24. A method comprising: detecting a physical presence of a user in a predetermined meeting area, said detection using a proximity-based sensor;determining an identity of the user based on the proximity-based sensor by facial recognition;determining that the identity of the user corresponds to an identity of a meeting organizer;responsive to determining that the identity of the user corresponds to an identity of a meeting organizer, authenticating, by voice recognition, using a credential service on a networked computer system, the identity of the user to the identity of the meeting organizer;obtaining, using the credential service on the networked computer system, user credentials associated with the user responsive to authenticating the identity of the user to the identity of the meeting organizer;providing the user credentials to a computer located in the predetermined meeting area to automatically log the user in to the computer;starting one or more meeting resources used to present a presentation associated with the meeting organizer based on the authentication of the user, one of said resources comprising the computer located in the predetermined meeting area used to present the presentation;notifying any required meeting attendees determined not to be in attendance;receiving non-touch user input from the meeting organizer to progress through the presentation;checking social network sites of each of the required attendees to determine whether each of the required attendees are online in one of the social networks; andwherein notifying any required meeting attendees determined not to be in attendance includes posting meeting reminder messages in the one or more social networks for those of the required attendees that are determined not to be in attendance that are online in one of the social networks, andsending electronic mail reminder meeting reminder messages to those of the required attendees that are determined not to be in attendance that are not online in one of the social networks.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application No. 61/713,554 entitled “Automated Meeting Room” and filed on Oct. 14, 2012, which is incorporated by reference in its entirety herein.

US Referenced Citations (474)
Number Name Date Kind
5805803 Birrell et al. Sep 1998 A
6151606 Mendez Nov 2000 A
6154172 Piccionelli et al. Nov 2000 A
6480096 Gutman et al. Nov 2002 B1
6609198 Wood et al. Aug 2003 B1
6621766 Brewer et al. Sep 2003 B2
6751738 Wesinger, Jr. et al. Jun 2004 B2
6801610 Malik Oct 2004 B1
6859879 Henn et al. Feb 2005 B2
6883098 Roman et al. Apr 2005 B1
7043453 Stefik et al. May 2006 B2
7065652 Xu et al. Jun 2006 B1
7159120 Muratov et al. Jan 2007 B2
7240015 Karmouch et al. Jul 2007 B1
7254831 Saunders et al. Aug 2007 B2
7269605 Nguyen et al. Sep 2007 B1
7340772 Panasyuk et al. Mar 2008 B2
7415498 Russo et al. Aug 2008 B2
7437752 Heard et al. Oct 2008 B2
7490073 Qureshi et al. Feb 2009 B1
7490352 Kramer et al. Feb 2009 B2
7496954 Himawan et al. Feb 2009 B1
7502861 Protassov et al. Mar 2009 B1
7509672 Horwitz et al. Mar 2009 B1
7526800 Wright et al. Apr 2009 B2
7529923 Chartrand et al. May 2009 B2
7596593 Mitchell et al. Sep 2009 B2
7599991 Vargas et al. Oct 2009 B2
7665125 Heard et al. Feb 2010 B2
7697737 Aull et al. Apr 2010 B2
7716240 Lim May 2010 B2
7761523 May et al. Jul 2010 B2
7774323 Helfman Aug 2010 B2
7779408 Papineau Aug 2010 B1
7779458 Heiderscheit et al. Aug 2010 B1
7788535 Bussa et al. Aug 2010 B2
7788536 Qureshi et al. Aug 2010 B1
7865888 Qureshi et al. Jan 2011 B1
7904468 Neil et al. Mar 2011 B2
7950066 Zuili May 2011 B1
7966323 Bocking et al. Jun 2011 B2
7966652 Ganesan Jun 2011 B2
7970386 Bhat et al. Jun 2011 B2
7970923 Pedersen et al. Jun 2011 B2
8001278 Huggahalli et al. Aug 2011 B2
8012219 Mendez et al. Sep 2011 B2
8037421 Scott et al. Oct 2011 B2
8051180 Mazzaferri et al. Nov 2011 B2
8060074 Danford et al. Nov 2011 B2
8060596 Wootton et al. Nov 2011 B1
8078713 Kim Dec 2011 B1
8085891 Owen Dec 2011 B2
8095517 Sandoval et al. Jan 2012 B2
8095786 Kshirsagar et al. Jan 2012 B1
8126128 Hicks, III et al. Feb 2012 B1
8126506 Roundtree Feb 2012 B2
8181010 Uchil et al. May 2012 B1
8200626 Katzer et al. Jun 2012 B1
8214887 Clark et al. Jul 2012 B2
8238256 Nugent Aug 2012 B2
8239918 Cohen Aug 2012 B1
8245285 Ravishankar et al. Aug 2012 B1
8272030 Annan et al. Sep 2012 B1
8285681 Prahlad et al. Oct 2012 B2
8296239 Nonaka Oct 2012 B2
8296821 Nakae Oct 2012 B2
8332464 Dispensa et al. Dec 2012 B2
8359016 Lindeman et al. Jan 2013 B2
8365258 Dispensa Jan 2013 B2
8365266 Bogner Jan 2013 B2
8402011 Bodenhamer Mar 2013 B1
8406748 Raleigh et al. Mar 2013 B2
8418238 Platt et al. Apr 2013 B2
8463253 Chipalkatti et al. Jun 2013 B2
8463946 Ferguson et al. Jun 2013 B2
8468090 Lesandro et al. Jun 2013 B2
8468455 Jorgensen et al. Jun 2013 B2
8495746 Fissel et al. Jul 2013 B2
8528059 Labana et al. Sep 2013 B1
8549656 Blaisdell et al. Oct 2013 B2
8560709 Shokhor et al. Oct 2013 B1
8578443 Narain et al. Nov 2013 B2
8584114 Rabinovich et al. Nov 2013 B2
8601562 Milas Dec 2013 B2
8613070 Borzycki et al. Dec 2013 B1
8650303 Lang et al. Feb 2014 B1
8650620 Chawla et al. Feb 2014 B2
8660530 Sharp et al. Feb 2014 B2
8719898 Barton et al. May 2014 B1
8799994 Barton et al. Aug 2014 B2
8806570 Barton et al. Aug 2014 B2
8843734 Lim Sep 2014 B2
8850010 Qureshi Sep 2014 B1
8850049 Qureshi Sep 2014 B1
8856909 Chickering Oct 2014 B1
8863297 Sharma et al. Oct 2014 B2
8863298 Akella et al. Oct 2014 B2
8863299 Sharma et al. Oct 2014 B2
8881228 Qureshi Nov 2014 B2
8881229 Barton et al. Nov 2014 B2
8918834 Samuelsson Dec 2014 B1
8931038 Pulier et al. Jan 2015 B2
9213850 Barton et al. Dec 2015 B2
20010042045 Howard et al. Nov 2001 A1
20020112047 Kushwaha et al. Aug 2002 A1
20030031319 Abe et al. Feb 2003 A1
20030037103 Salmi et al. Feb 2003 A1
20030046366 Pardikar et al. Mar 2003 A1
20030065947 Song et al. Apr 2003 A1
20030131245 Linderman Jul 2003 A1
20030157947 Fiatal et al. Aug 2003 A1
20030188193 Venkataramappa Oct 2003 A1
20030229623 Chang et al. Dec 2003 A1
20040006706 Erlingsson Jan 2004 A1
20040010579 Freese Jan 2004 A1
20040083273 Madison et al. Apr 2004 A1
20040111640 Baum Jun 2004 A1
20040117651 Little et al. Jun 2004 A1
20040123153 Wright et al. Jun 2004 A1
20040205233 Dunk Oct 2004 A1
20040230807 Baird et al. Nov 2004 A1
20050027843 Bozak et al. Feb 2005 A1
20050055578 Wright et al. Mar 2005 A1
20050076082 Le Pennec et al. Apr 2005 A1
20050076085 Budd et al. Apr 2005 A1
20050097608 Penke et al. May 2005 A1
20050149340 Murakami et al. Jul 2005 A1
20050172241 Daniels et al. Aug 2005 A1
20050193222 Greene Sep 2005 A1
20050255838 Adams et al. Nov 2005 A1
20050262429 Elder et al. Nov 2005 A1
20050265548 Tsuchimura Dec 2005 A1
20050273592 Pryor et al. Dec 2005 A1
20060005250 Chu et al. Jan 2006 A1
20060070114 Wood et al. Mar 2006 A1
20060075123 Burr et al. Apr 2006 A1
20060085826 Funk et al. Apr 2006 A1
20060094400 Beachem et al. May 2006 A1
20060112428 Etelapera May 2006 A1
20060117104 Taniguchi et al. Jun 2006 A1
20060120526 Boucher et al. Jun 2006 A1
20060141985 Patel et al. Jun 2006 A1
20060147043 Mann et al. Jul 2006 A1
20060161635 Lamkin et al. Jul 2006 A1
20060185004 Song et al. Aug 2006 A1
20060224742 Shahbazi Oct 2006 A1
20060225142 Moon Oct 2006 A1
20060242685 Heard et al. Oct 2006 A1
20060248577 Beghian et al. Nov 2006 A1
20060259755 Kenoyer Nov 2006 A1
20060282889 Brown et al. Dec 2006 A1
20070005713 LeVasseur et al. Jan 2007 A1
20070006327 Lal et al. Jan 2007 A1
20070011749 Allison et al. Jan 2007 A1
20070016771 Allison et al. Jan 2007 A1
20070038764 Maillard Feb 2007 A1
20070049297 Gopalan et al. Mar 2007 A1
20070054627 Wormald Mar 2007 A1
20070056043 Onyon et al. Mar 2007 A1
20070072598 Coleman et al. Mar 2007 A1
20070074033 Adams et al. Mar 2007 A1
20070109983 Shankar et al. May 2007 A1
20070118558 Kahandaliyanage May 2007 A1
20070156897 Lim Jul 2007 A1
20070180447 Mazzaferri et al. Aug 2007 A1
20070186106 Ting et al. Aug 2007 A1
20070198656 Mazzaferri et al. Aug 2007 A1
20070199051 Parikh et al. Aug 2007 A1
20070204153 Tome et al. Aug 2007 A1
20070204166 Tome et al. Aug 2007 A1
20070208936 Ramos Robles Sep 2007 A1
20070214272 Isaacson Sep 2007 A1
20070226034 Khan Sep 2007 A1
20070226225 Yiu et al. Sep 2007 A1
20070226227 Helfman Sep 2007 A1
20070226773 Pouliot Sep 2007 A1
20070244987 Pedersen et al. Oct 2007 A1
20070245409 Harris et al. Oct 2007 A1
20070248085 Volpano Oct 2007 A1
20070266422 Germano et al. Nov 2007 A1
20070283324 Geisinger Dec 2007 A1
20070285504 Hesse Dec 2007 A1
20080027982 Subramanian et al. Jan 2008 A1
20080040187 Carraher Feb 2008 A1
20080046580 Lafuente et al. Feb 2008 A1
20080047006 Jeong et al. Feb 2008 A1
20080047015 Cornwall et al. Feb 2008 A1
20080052395 Wright et al. Feb 2008 A1
20080066020 Boss et al. Mar 2008 A1
20080066177 Bender Mar 2008 A1
20080070495 Stricklen et al. Mar 2008 A1
20080092215 Soukup et al. Apr 2008 A1
20080127292 Cooper et al. May 2008 A1
20080133729 Fridman et al. Jun 2008 A1
20080134292 Ariel et al. Jun 2008 A1
20080141335 Thomas Jun 2008 A1
20080163188 Siskind et al. Jul 2008 A1
20080163286 Rudolph et al. Jul 2008 A1
20080194296 Roundtree Aug 2008 A1
20080196038 Antonio et al. Aug 2008 A1
20080196082 Sandoval et al. Aug 2008 A1
20080209506 Ghai et al. Aug 2008 A1
20080214300 Williams et al. Sep 2008 A1
20080229117 Shin et al. Sep 2008 A1
20080235760 Broussard et al. Sep 2008 A1
20080263224 Gilhuly et al. Oct 2008 A1
20080270240 Chu Oct 2008 A1
20080304665 Ma et al. Dec 2008 A1
20080313648 Wang et al. Dec 2008 A1
20080317292 Baker Dec 2008 A1
20080318616 Chipalkatti et al. Dec 2008 A1
20090006232 Gallagher et al. Jan 2009 A1
20090028049 Boudreau et al. Jan 2009 A1
20090030968 Boudreau et al. Jan 2009 A1
20090037686 Mendonca Feb 2009 A1
20090037976 Teo et al. Feb 2009 A1
20090049425 Liepert et al. Feb 2009 A1
20090064292 Carter et al. Mar 2009 A1
20090075630 McLean Mar 2009 A1
20090077638 Norman et al. Mar 2009 A1
20090083374 Saint Clair Mar 2009 A1
20090089379 Pegg Apr 2009 A1
20090119773 D'Amore et al. May 2009 A1
20090121890 Brown et al. May 2009 A1
20090170532 Lee et al. Jul 2009 A1
20090172789 Band et al. Jul 2009 A1
20090178111 Moriconi et al. Jul 2009 A1
20090199178 Keller et al. Aug 2009 A1
20090199277 Norman et al. Aug 2009 A1
20090210934 Innes Aug 2009 A1
20090221278 Spelta et al. Sep 2009 A1
20090222880 Mayer et al. Sep 2009 A1
20090228714 Fiske et al. Sep 2009 A1
20090228954 Hu et al. Sep 2009 A1
20090228963 Pearce et al. Sep 2009 A1
20090249359 Caunter et al. Oct 2009 A1
20090253410 Fitzgerald et al. Oct 2009 A1
20090265554 Robles et al. Oct 2009 A1
20090282127 Leblanc et al. Nov 2009 A1
20090282473 Karlson et al. Nov 2009 A1
20090323916 O'Sullivan et al. Dec 2009 A1
20090325615 McKay et al. Dec 2009 A1
20100064341 Aldera Mar 2010 A1
20100077469 Furman et al. Mar 2010 A1
20100100825 Sharoni Apr 2010 A1
20100100925 Hinton Apr 2010 A1
20100124196 Bonar et al. May 2010 A1
20100146523 Brigaut et al. Jun 2010 A1
20100146582 Jaber et al. Jun 2010 A1
20100150341 Dodgson et al. Jun 2010 A1
20100154025 Esteve Balducci et al. Jun 2010 A1
20100162232 Bhatia et al. Jun 2010 A1
20100173607 Thornton et al. Jul 2010 A1
20100180346 Nicolson et al. Jul 2010 A1
20100192212 Raleigh Jul 2010 A1
20100228825 Hegde Sep 2010 A1
20100229197 Yi et al. Sep 2010 A1
20100248699 Dumais Sep 2010 A1
20100257580 Zhao et al. Oct 2010 A1
20100279652 Sharp et al. Nov 2010 A1
20100287619 Chase Nov 2010 A1
20100299152 Batchu et al. Nov 2010 A1
20100299376 Batchu et al. Nov 2010 A1
20100317336 Ferren et al. Dec 2010 A1
20100318992 Kushwaha et al. Dec 2010 A1
20100319053 Gharabally Dec 2010 A1
20100325097 Er et al. Dec 2010 A1
20100333165 Basak et al. Dec 2010 A1
20110030044 Kranendonk et al. Feb 2011 A1
20110072492 Mohler et al. Mar 2011 A1
20110145833 De Los Reyes et al. Jun 2011 A1
20110154266 Friend Jun 2011 A1
20110154477 Parla et al. Jun 2011 A1
20110154498 Fissel et al. Jun 2011 A1
20110179484 Tuvell et al. Jul 2011 A1
20110208797 Kim Aug 2011 A1
20110208838 Thomas et al. Aug 2011 A1
20110209064 Jorgensen et al. Aug 2011 A1
20110209194 Kennedy Aug 2011 A1
20110219124 Allen et al. Sep 2011 A1
20110225417 Maharajh et al. Sep 2011 A1
20110239125 Kristensen et al. Sep 2011 A1
20110252232 De Atley et al. Oct 2011 A1
20110252459 Walsh et al. Oct 2011 A1
20110258301 McCormick et al. Oct 2011 A1
20110270963 Saito et al. Nov 2011 A1
20110271279 Pate Nov 2011 A1
20110276683 Goldschlag et al. Nov 2011 A1
20110276699 Pedersen Nov 2011 A1
20110277027 Hayton et al. Nov 2011 A1
20110283347 Bhuta et al. Nov 2011 A1
20110295970 Miyazawa Dec 2011 A1
20110314534 James Dec 2011 A1
20120002813 Wei et al. Jan 2012 A1
20120005476 Wei et al. Jan 2012 A1
20120005724 Lee Jan 2012 A1
20120005745 Wei et al. Jan 2012 A1
20120005746 Wei et al. Jan 2012 A1
20120023506 Maeckel et al. Jan 2012 A1
20120036347 Swanson et al. Feb 2012 A1
20120036370 Lim et al. Feb 2012 A1
20120042036 Lau et al. Feb 2012 A1
20120052954 Zhu et al. Mar 2012 A1
20120054853 Gupta et al. Mar 2012 A1
20120066691 Branton Mar 2012 A1
20120079475 Hicks, III et al. Mar 2012 A1
20120079556 Wahl Mar 2012 A1
20120084184 Raleigh et al. Apr 2012 A1
20120088540 Smith et al. Apr 2012 A1
20120096533 Boulos et al. Apr 2012 A1
20120096544 Hosoda Apr 2012 A1
20120102195 Adams et al. Apr 2012 A1
20120109384 Stepanian May 2012 A1
20120110317 Scheer et al. May 2012 A1
20120117622 Gronholm et al. May 2012 A1
20120129503 Lindeman et al. May 2012 A1
20120131116 Tu et al. May 2012 A1
20120131343 Choi et al. May 2012 A1
20120131685 Broch et al. May 2012 A1
20120151033 Baliga et al. Jun 2012 A1
20120154265 Kim et al. Jun 2012 A1
20120154413 Kim et al. Jun 2012 A1
20120157165 Kim et al. Jun 2012 A1
20120157166 Kim et al. Jun 2012 A1
20120159139 Kim et al. Jun 2012 A1
20120165075 Kim et al. Jun 2012 A1
20120166516 Simmons et al. Jun 2012 A1
20120166524 Watakabe et al. Jun 2012 A1
20120166997 Cho et al. Jun 2012 A1
20120167118 Pingili et al. Jun 2012 A1
20120167159 Mefford, Jr. et al. Jun 2012 A1
20120174237 Krzyzanowski Jul 2012 A1
20120179802 Narasimhan et al. Jul 2012 A1
20120179909 Sagi et al. Jul 2012 A1
20120185910 Miettinen et al. Jul 2012 A1
20120185913 Martinez et al. Jul 2012 A1
20120191716 Omoigui Jul 2012 A1
20120198570 Joa et al. Aug 2012 A1
20120204220 Lavi Aug 2012 A1
20120210443 Blaisdell et al. Aug 2012 A1
20120214472 Tadayon et al. Aug 2012 A1
20120222120 Rim et al. Aug 2012 A1
20120233130 Vedachalam et al. Sep 2012 A1
20120238257 Anson Sep 2012 A1
20120240183 Sinha Sep 2012 A1
20120254768 Aggarwal et al. Oct 2012 A1
20120255026 Baca et al. Oct 2012 A1
20120265792 Salters Oct 2012 A1
20120270522 Laudermilch et al. Oct 2012 A1
20120272221 Pessoa et al. Oct 2012 A1
20120278454 Stewart et al. Nov 2012 A1
20120284325 Erb Nov 2012 A1
20120284779 Ingrassia, Jr. et al. Nov 2012 A1
20120290694 Marl et al. Nov 2012 A9
20120291114 Poliashenko et al. Nov 2012 A1
20120303476 Krzyzanowski et al. Nov 2012 A1
20120303778 Ahiska et al. Nov 2012 A1
20120304310 Blaisdell Nov 2012 A1
20120311154 Morgan Dec 2012 A1
20120311659 Narain et al. Dec 2012 A1
20120317185 Shah et al. Dec 2012 A1
20120321087 Fleischman et al. Dec 2012 A1
20120324568 Wyatt et al. Dec 2012 A1
20120331088 O'Hare et al. Dec 2012 A1
20120331527 Walters et al. Dec 2012 A1
20120331528 Fu et al. Dec 2012 A1
20130002725 Kim et al. Jan 2013 A1
20130007245 Malik et al. Jan 2013 A1
20130007842 Park et al. Jan 2013 A1
20130013653 Thompson Jan 2013 A1
20130013688 Wang et al. Jan 2013 A1
20130013932 Kong et al. Jan 2013 A1
20130014239 Pieczul et al. Jan 2013 A1
20130014267 Farrugia et al. Jan 2013 A1
20130019018 Rice Jan 2013 A1
20130019282 Rice et al. Jan 2013 A1
20130024424 Prahlad et al. Jan 2013 A1
20130024928 Burke et al. Jan 2013 A1
20130035063 Fisk et al. Feb 2013 A1
20130042294 Colvin et al. Feb 2013 A1
20130054922 Tuch et al. Feb 2013 A1
20130054962 Chawla et al. Feb 2013 A1
20130055378 Chang et al. Feb 2013 A1
20130059284 Giedgowd, Jr. et al. Mar 2013 A1
20130066960 Fieremans et al. Mar 2013 A1
20130066978 Bentley Mar 2013 A1
20130067229 German et al. Mar 2013 A1
20130074142 Brennan et al. Mar 2013 A1
20130084847 Tibbitts et al. Apr 2013 A1
20130086684 Mohler Apr 2013 A1
20130091543 Wade et al. Apr 2013 A1
20130097421 Lim Apr 2013 A1
20130097660 Das et al. Apr 2013 A1
20130111540 Sabin May 2013 A1
20130117240 Taylor et al. May 2013 A1
20130117563 Grabelkovsky May 2013 A1
20130117805 Kent et al. May 2013 A1
20130117840 Roesner et al. May 2013 A1
20130124673 Hjelm et al. May 2013 A1
20130130651 Deasy et al. May 2013 A1
20130130652 Deasy et al. May 2013 A1
20130130653 Deasy et al. May 2013 A1
20130132457 Diwakar May 2013 A1
20130132941 Lindeman et al. May 2013 A1
20130133061 Fainkichen et al. May 2013 A1
20130138766 Draluk et al. May 2013 A1
20130138810 Binyamin et al. May 2013 A1
20130139241 Leeder May 2013 A1
20130142043 Tapia et al. Jun 2013 A1
20130145448 Newell Jun 2013 A1
20130151598 Fu et al. Jun 2013 A1
20130167247 Brown et al. Jun 2013 A1
20130171967 Ashour et al. Jul 2013 A1
20130212212 Addepalli et al. Aug 2013 A1
20130219176 Akella et al. Aug 2013 A1
20130219211 Gopinath et al. Aug 2013 A1
20130219456 Sharma et al. Aug 2013 A1
20130227636 Bettini et al. Aug 2013 A1
20130227659 Raleigh Aug 2013 A1
20130232541 Kapadia et al. Sep 2013 A1
20130254262 Udall Sep 2013 A1
20130254660 Fujioka Sep 2013 A1
20130254831 Roach et al. Sep 2013 A1
20130263208 Challa Oct 2013 A1
20130263209 Panuganty Oct 2013 A1
20130268676 Martins et al. Oct 2013 A1
20130283335 Lakshminarayanan et al. Oct 2013 A1
20130288656 Schultz et al. Oct 2013 A1
20130290709 Muppidi et al. Oct 2013 A1
20130291052 Hadar et al. Oct 2013 A1
20130297604 Sutedja et al. Nov 2013 A1
20130297662 Sharma et al. Nov 2013 A1
20130298185 Koneru et al. Nov 2013 A1
20130298201 Aravindakshan et al. Nov 2013 A1
20130298242 Kumar et al. Nov 2013 A1
20130303194 Rowles Nov 2013 A1
20130305337 Newman Nov 2013 A1
20130311593 Prince et al. Nov 2013 A1
20130311597 Arrouye et al. Nov 2013 A1
20130318345 Hengeveld Nov 2013 A1
20130333005 Kim et al. Dec 2013 A1
20130346268 Pereira et al. Dec 2013 A1
20130347130 Sima Dec 2013 A1
20140006347 Qureshi et al. Jan 2014 A1
20140006512 Huang et al. Jan 2014 A1
20140007183 Qureshi et al. Jan 2014 A1
20140007214 Qureshi et al. Jan 2014 A1
20140007215 Romano et al. Jan 2014 A1
20140020062 Tumula et al. Jan 2014 A1
20140020073 Ronda et al. Jan 2014 A1
20140032691 Barton et al. Jan 2014 A1
20140032733 Barton et al. Jan 2014 A1
20140032758 Barton et al. Jan 2014 A1
20140032759 Barton et al. Jan 2014 A1
20140033271 Barton et al. Jan 2014 A1
20140040638 Barton et al. Feb 2014 A1
20140040656 Ho et al. Feb 2014 A1
20140040977 Barton et al. Feb 2014 A1
20140040978 Barton et al. Feb 2014 A1
20140040979 Barton et al. Feb 2014 A1
20140047535 Parla et al. Feb 2014 A1
20140059640 Raleigh et al. Feb 2014 A9
20140059642 Deasy et al. Feb 2014 A1
20140096199 Dave et al. Apr 2014 A1
20140108649 Barton et al. Apr 2014 A1
20140130174 Celi, Jr. et al. May 2014 A1
20140162614 Lindeman et al. Jun 2014 A1
20140173700 Awan et al. Jun 2014 A1
20140181934 Mayblum et al. Jun 2014 A1
20140189808 Mahaffey et al. Jul 2014 A1
20140298401 Batson et al. Oct 2014 A1
20140315536 Chow et al. Oct 2014 A1
20150026827 Kao et al. Jan 2015 A1
20150087270 Richardson et al. Mar 2015 A1
Foreign Referenced Citations (14)
Number Date Country
1465039 Oct 2004 EP
2403211 Jan 2012 EP
2428894 Mar 2012 EP
2523107 Nov 2012 EP
2411320 Aug 2005 GB
2462442 Feb 2010 GB
9914652 Mar 1999 WO
02084460 Oct 2002 WO
2004107646 Dec 2004 WO
2007113709 Oct 2007 WO
2008086611 Jul 2008 WO
2009021200 Feb 2009 WO
2010054258 May 2010 WO
2010115289 Oct 2010 WO
Non-Patent Literature Citations (17)
Entry
International Search Report and Written Opinion issued in PCT/US2013/063363, dated Dec. 20, 2013.
“Citrix XenMobile Technology Overview: White Paper,” Citrix White Papers online, Jul. 31, 2012, pp. 1-14; retrieved from http://insight.com/content/aam/insight/en—US/pdfs/citrix/xenmobile-tech-overview.pdf, retrieved Jan. 27, 2014.
Andreas, Digging into the Exchange ActiveSync Protocol, Mobility Dojo.net, Oct. 25, 2010, http://mobilitydojo.net/2010/03/17/digging-into-the-exchange-activesync-protocol/.
Apple Inc., iPad User Guide for iOS 6.1 Software, Jan. 2013, Chapter 26, Accessibility, pp. 107-108.
Lowe, “Application-Specific VPNs,” Dec. 13, 2005.
Mysore et al., “The Liquid Media System—a Multi-Device Streaming Media Orchestration Framework”, Ubicomp 2003 Workshop, pp. 1-4.
Na et al., “Personal Cloud Computing Security Framework,” 2010 IEEE Asia-Pacific Computing Conference, 2010, pp. 671-675.
Ranjan et al., “Programming Cloud Resource Orchestration Framework: Operations and Research Challenges”, arvix.org, 2012, pp. 1-19.
Wilson et al., “Unified Security Framework”, In proceedings of the 1st International Symposium on Information and Communication Technologies, pp. 500-505. Trinity College Dublin, 2003.
Wright et al., “Your Firm's Mobile Devices: How Secure are They?”. Journal of Corporate Accounting and Finance. Jul. 1, 2011. Willey Periodicals. pp. 13-21.
Xuetao Wei, et al., “Malicious Android Applications in the Enterprise: What Do They Do and How Do We Fix It?,”• ICDE Workshop on Secure Data Management on Smartphones and Mobiles, Apr. 2012, 4 pages.
Laverty, Joseph Packy, et al., Comparative Analysis of Mobile Application Development and Security Models, [Online] 2011, Issues in Information Systems vol. XII, No. 1, [Retrieved from the Internet] <http://iacis.org/iis/2011/301-312—AL2011—1694.pclf> pp. 301-312.
Potharaju, Rahul, et al., Plagiarizing smartphone applications: attack strategies and defense techniques, [Online] 2012, Engineering Secure Software and Systems, Springer Berlin Heidelberg, [Retrieved from the Internet] <http://link.springer.com/chapter/10.1007/978-3-642-28166-2—11#> pp. 106-120.
Peine, H., Security concepts and implementation in the Ara mobile agent system, [Online] 1998, Enabling Technologies: Infrastructure for Collaborative Enterprises, 1998 Seventh IEEE International Workshops on Jun. 17-19, 1998, [Retrieved from the Internet] <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=725699&isnumber=15665> pp. 236-242.
Shah et al., Securing Java-Based Mobile Agents through Byte Code Obfuscation Techniques, [Online] Dec. 23-24, 2006, Multitopic Conference, 2006, INMIC '06. IEEE, [Retrieved from the Internet] <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4196425&isnumber=414013> pp. 305-308.
Administration Guide for Symantec Endpoint Protection and Symantec Network Access Control; 2008; Retrieved from the Internet <URL:ftp.symantec.com/public/english—us—canada/products/symantec—endpoint—protection/11.0/manals/administration—guide.pdf>; pp. 1-615.
Symantec Network Access Control Enforcer Implementation Guide; 2007; Retrieved from the Internet <URL:ftp.symantec.com/public/english—us—canada/products/symantec—network—access—control/11.0/manuals/enforcer—implementation—guide.pdf>; pp. 1-132.
Related Publications (1)
Number Date Country
20140109210 A1 Apr 2014 US
Provisional Applications (1)
Number Date Country
61713554 Oct 2012 US