Automated pipe racking process and apparatus

Information

  • Patent Grant
  • 6821071
  • Patent Number
    6,821,071
  • Date Filed
    Wednesday, September 25, 2002
    22 years ago
  • Date Issued
    Tuesday, November 23, 2004
    20 years ago
Abstract
An automated pipe racking apparatus for a drilling rig having an elevator suspended over a well bore. An arm support member is rotatable about an axis parallel to the well bore. A gripper arm extends from the arm support member along an axis normal to the axis of rotation of the arm support member. A gripper head assembly extends from the gripper arm, the gripper head assembly having a pair of opposed, arcuate gripper fingers, each said finger rotatable by a motor.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention is directed to an automatic pipe racking apparatus and process to couple and uncouple lengths of pipe or drill collars and to store and retrieve lengths of pipe or drill collars.




2. Prior Art




Drilling rigs utilize a mast with a string of drill pipes suspended therefrom and having a drill bit mounted on the lower end thereof. A drill collar or collars having a larger diameter than said drill pipes are also utilized.




It is periodically necessary to pull the drill string from the well bore in order to change the drill bit, to perform various testing, or to run other equipment into the well bore at the end of the drill string. In the standard process to pull drill pipe from the bore, an elevator is connected to the drill pipe and a traveling block is raised on the mast until a stand of pipe extends above the drilling rig floor. The stand may include three sections of pipe totaling up to 90 feet in length. The connection between the pipe stand and the remainder of the drill string is unthreaded. Thereafter, the lower end of the stand is moved onto a support pad or set back by personnel. In the normal procedure, a man positioned in the upper portion of the rig disconnects the upper end of the stand from the elevator and places the upper end of the stand between a set of racking fingers. The traveling block may then be lowered to pick up the drill string and the process is repeated.




The reverse process is performed when running the drill string back into the well bore. A man on a platform will remove a stand of pipe and connect it to the traveling block. When the traveling block is lifted, the lower end of the stand of pipe will swing into position above the well bore. The stand of pipe will then be connected to the remainder of the drill string.




There have been a number of attempts to automate the pipe racking procedure including that shown in Assignee's U.S. Pat. No. 4,725,179 which utilizes an arm assembly having a first arm and a second arm.




There remains a need to provide an automated pipe racking process and apparatus which will eliminate personnel on the mast.




There remains a need to provide an automated pipe racking process and apparatus which will grasp and move different diameters of pipe or drill collars. There also remains a need to provide an automated pipe racking apparatus which will accommodate either pipe or drill collars.




It is desirable to provide an automated pipe racking process and apparatus that maybe retrofit to existing manual racking systems on drilling rigs.




Finally, there remains a need to provide an automated pipe racking process and apparatus which may be alternated with a manual racking system as desired from time to time.




SUMMARY OF THE INVENTION




The present invention provides an automated pipe racking apparatus and process which will be utilized with a drilling rig having a mast with a traveling block suspended over the center line of a well bore. An elevator or set of elevators may be suspended from the traveling block for grasping a drill pipe or drill stand.




A racking assembly having a generally U-shaped frame is mounted on the mast. The racking assembly includes a first set of parallel racking fingers and a second set of parallel racking fingers with a space therebetween. The racking fingers are arranged to form a plurality of slots between adjacent fingers so that the pipe stands may be stored in the slots between the fingers.




In one preferred embodiment of the invention, an arm assembly is suspended from a carriage which is, in turn, mounted to move on the underside of a working board which is mounted and connected to the racking assembly and which extends between the first set of fingers and the second set of fingers. The carriage includes a set of wheels or rollers which travel on a track formed by the working board. The carriage is powered by an electric motor activated by a control.




The arm assembly rotates about an axis parallel to the well bore. The arm assembly includes an arm support member, a gripper arm, and a connecting arm. Rotation of the arm assembly permits movement between the well bore and the first set of fingers or the second set of fingers. Rotation of the arm assembly is accomplished by an electric motor activated by a control.




The gripper arm moves in relation to the arm support member. The arm support member includes a rack which engages a pinion mechanism driven by an electric motor activated by a control. Accordingly, the end of the gripper arm will be moved by movement of the motor. A gripper head assembly extends from the gripper arm. A pair of arcuate, rotating fingers extend from mounting bosses which extend from a base mount of the gripper head assembly.




Between the rotating fingers is located a lever. When a drill stand is between the fingers, the lever will be depressed which activates a pipe detection sensor. When in the storage position, each pipe stand will rest on one of two base grids. Each grid contains multiple rows with multiple cells in each grid. When the pipe stand is on a cell, it will act as a switch which will send a signal a control. Once the control signal is received, the control will activate action of the carriage, arm support member, gripper arm and gripper head assembly to engage the top of the drill pipe stand.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of an automated pipe racking apparatus constructed in accordance with the present invention apart from the drilling rig with which it would be utilized;





FIG. 2

shows an alternate perspective view of the automated pipe racking apparatus shown in

FIG. 1

;





FIG. 3

illustrates an enlarged partial view of the portion of the automated pipe racking apparatus shown in

FIG. 2

;





FIG. 4

illustrates a side view of the automated pipe racking apparatus shown in

FIGS. 1 through 3

;





FIG. 5

illustrates an arm assembly and carriage apart from the pipe racking apparatus;




FIG.


6


and

FIG. 7

show alternate positions of a gripper arm and gripper head assembly of the pipe racking apparatus;





FIGS. 8 through 16

show alternate positions of the gripper head assembly of the automated pipe racking apparatus; and





FIG. 17

illustrates an exploded view of a cell of a grid of the automated pipe racking apparatus shown in

FIGS. 1 and 2

.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The embodiments discussed herein are merely illustrative of specific manners in which to make and use the invention and are not to be interpreted as limiting the scope of the instant invention.




While the invention has been described with a certain degree of particularity, it is to be noted that many modifications may be made in the details of the invention's construction and the arrangement of its components without departing from the spirit and scope of this disclosure. It is understood that the invention is not limited to the embodiments set forth herein for purposes of exemplification.




Referring to the drawings in detail,

FIG. 1

illustrates a perspective view of an automated pipe racking apparatus


10


constructed in accordance with the present invention.




A drilling rig will often include a mast having a traveling block suspended over the centerline of a well bore


12


(seen in dashed lines).




An elevator or set of elevators may also be suspended from the traveling block for grasping a drill pipe or drill stand. A drill pipe stand


16


consists of at least one pipe section and is often composed of three substantially identical pipes joined end to end and threaded together at joints. Each of the pipes on the lower end, such as stand


16


, includes a male threaded coupling


18


that may be threadably engaged with a female-threaded coupling


20


, such as at the top of another stand.




Accordingly, a continuous string of drill pipes can be made up and then lowered into the well bore


12


. Two different operations are performed. As the pipe stands are successively lowered into the well, they are retrieved from a racking assembly, connected to the existing drill string, and then inserted into the well bore


12


. Conversely, when the drill pipe stands are removed from the well, they are lifted out of the well bore, disconnected from the drill string, and placed for storage in a racking assembly.




As seen in

FIG. 1

, a racking assembly


30


has a generally U-shaped frame which is mounted on the mast (not shown).




The racking assembly


30


includes a first set of parallel racking fingers


32


and a second set of parallel racking fingers


34


with a space therebetween. The racking fingers are arranged to form a plurality of slots between adjacent fingers. The slots are slightly wider than the diameter of the drill stand. The pipe stands


16


are stored in the slots between the racking fingers.





FIG. 2

shows an alternate perspective view of the automated pipe racking apparatus


10


of the present invention shown in

FIG. 1

, while

FIG. 3

illustrates an enlarged partial view (of the portion within the dashed-dotted lines) for ease of comprehension.




An arm assembly


40


(to be described in detail) is suspended from a carriage


42


. The carriage


42


is, in turn, rollingly mounted on the underside of a working board


44


which is connected to the racking assembly


30


and which extends in the space between the first set of fingers


32


and the second set of fingers


34


.





FIG. 4

illustrates a side view of the automated pipe racking apparatus


10


. The carriage


42


moves from a position shown in

FIGS. 1

,


2


and


3


and in the direction shown by arrow


46


.





FIG. 5

illustrates a perspective view of the arm assembly


40


and the carriage


42


apart from the apparatus


10


. The carriage


42


includes a set of wheels or rollers


48


,


50


,


52


and


54


which travel on a track formed by the working board


44


. The carriage is powered by an electric motor


56


activated by a control.




The arm assembly


40


includes an arm support member


62


, a gripper arm


64


and a connecting arm


66


. As seen in

FIG. 5

, the arm assembly


40


rotates about an axis


60


(shown by dashed lines) parallel to the well bore


12


. Rotation of the arm assembly


40


permits movement between the well bore and the first set of fingers or the second set of fingers. Rotation of the arm assembly


40


is accomplished by an electric motor


70


activated by a control.




One end of the gripper arm terminates in a bracket and is engaged with the arm support member


62


so that the gripper arm


64


moves in relation to the arm support member


62


. Arm support member


62


includes a rack


72


which engages with a pinion mechanism (not seen) driven by an electric motor


74


. The connecting arm


66


is pivotally connected to the arm support member


62


and the gripper arm


64


. Accordingly, the end of the gripper arm


64


moves in the direction illustrated by arrow


76


. This causes extension or retraction of the opposite end of the gripper arm.





FIGS. 6 and 7

illustrate alternate positions of the gripper arm


64


.

FIG. 6

shows the gripper arm fully extended.





FIGS. 8 through 16

illustrate a gripper head assembly


80


which extends from the gripper arm


64


. The gripper arm


64


in the present embodiment is comprised of a pair of parallel arms so that the gripper head assembly remains in a single plane.

FIG. 8

illustrates a top view and

FIG. 9

illustrates a side view of the gripper head assembly apart from gripper arm


64


. The gripper head assembly includes a servo motor


84


which operates in conjunction with a gear box


86


which, in turn, is activated by a control.




The gripper head assembly


80


includes a motor mount


88


which will connect with the gripper arm


64


(not seen in FIG.


8


). The motor mount


88


is also connected to a base mount


90


. A pair of arcuate, rotating fingers


92


and


94


extend from mounting bosses


96


and


98


, respectively, on the base mount


90


. Each of the fingers


92


and


94


is rotated by the servo motor


84


and gear box


86


.




Between the fingers


92


and


94


is located a lever


100


. When the gripper head assembly is moved and a drill stand is between the fingers, the lever


100


will be depressed which activates a pipe detection sensor


102


. A proximity sensor


104


verifies that a pipe is in the gripper assembly between the fingers.




The gripper head assembly


80


also includes a homing sensor


106


which, upon each use, will rotate each of the fingers to a 0° starting point and will also be a positive indicator to the control system.




As best seen in

FIG. 8

, each of the rotating fingers


92


and


94


is arranged at an angle between a first center line axis


110


(shown by dashed line) at approximately 15° as illustrated by arrow


112


. The rotating fingers may be arranged at an angle of between 10° to 20°.




As best seen in

FIG. 9

, the base mount


90


includes a base


116


which forms a base plane.




Each of the fingers


92


and


94


extends at an angle from the base plane of approximately 20° as shown by arrow


118


. The fingers may extend at an angle of between 15° to 25°.





FIG. 10

is a perspective view of the gripper head assembly. As best seen in

FIG. 10

, each of the rotating fingers


92


and


94


extends at an angle from the axis of its mounting boss


96


and


98


at an angle so that each finger is slightly pitched or skewed from its mounting axis at approximately 15° as illustrated by arrow


120


.




These angles, taken together, form a compound set of angles which are useful in performing various tasks and engaging different diameter pipes.





FIG. 11

illustrates a front view of the gripper head assembly


80


while

FIG. 12

illustrates the gripper head assembly


80


connected to the gripper arm.





FIGS. 13 through 16

show the rotating fingers in different positions for performing different tasks.

FIG. 13

illustrates the rotating fingers


92


and


94


in a closed gripper position for gripping the drill pipe stand


16


such as a 4″ diameter pipe.





FIG. 14

shows the fingers


92


and


94


in the wide open position such as when the gripper head approaches a pipe stand at the well bore or a drill collar


82


.

FIG. 15

shows the fingers


92


and


94


in closed position when surrounding a larger diameter drill collar


82


. Finally,

FIG. 16

illustrates an open position of the rotating fingers


92


and


94


so that the fingers are in the narrowest position in order to fit between and move within the slots of the rotating fingers


92


or


94


on the racking assembly.




Returning to a consideration of

FIGS. 1 and 2

and a consideration of the exploded view shown in

FIG. 17

, when in the storage position, each of the pipe stands


16


will rest on a base grid


122


or


124


. Each of the base grids contains multiple rows with multiple cells in each grid. By way of example, in the present embodiment, the base grids


122


and


124


in

FIGS. 1 and 2

each have eleven rows, each having eleven cells in each row plus optional drill collar cells to receive the larger diameter drill collars.

FIG. 17

shows an exploded view of one such cell


126


. A pipe stand


16


will rest on an individual cell


126


. Each cell


126


will act as a switch which will close a circuit and send a signal to a control.




Each pipe stand


16


typically weighs over a thousand pounds. The pipe stand will rest on a cell which will contain an upper contact plate


128


, a lower contact plate


130


, and a spacer gasket


132


. The plates and spacer gasket may be encased within a urethane or polymer block


134


. The weight of the pipe stand on the cell


126


will close a switch sending a signal to the control.




In the automated pipe racking process of the present invention, a pipe stand


16


having three pipe sections will be lifted from a well bore with an elevator extending from a traveling block on the mast. Once the elevator has lifted a stand from the well bore, the lower end of the pipe stand will be disconnected from the drill string. A lower end of the pipe stand will then be manually moved over one of the cells


126


as seen in FIG.


4


. The pipe stand will be lowered on to the cell


126


on the grid


120


. This will also signal the carriage and arm assembly to activate. The pipe stand


16


will then be captured with the gripper head assembly


80


as previously described. The elevator or elevators will then release the pipe stand


16


so that the gripper head assembly


80


secures the top end of the pipe stand


16


. The upper end of the pipe stand


16


will then be moved to a chosen location in the racking assembly


30


through the combination of the movements previously described. These include movement of the carriage


42


along the working board


44


, rotation of the arm support member


62


about an axis parallel to the well bore, and extending or retracting the gripper arm


64


of the arm assembly. The top of the pipe stand is moved in a slot between the fingers


32


of the racking assembly.




Each of the controls previously described may be wired to a control box


140


or


142


. A central processing unit (not shown) can monitor and direct each control function.




Whereas, the present invention has been described in relation to the drawings attached hereto, it should be understood that other and further modifications, apart from those shown or suggested herein, may be made within the spirit and scope of this invention.



Claims
  • 1. An automated pipe racking process for a drilling rig with an elevator suspended over a well bore, which process comprises:lifting a pipe stand having at least one pipe section with said elevator; moving a lower end of said pipe stand over a base pad; setting said lower end of said pipe stand down onto a base pad; capturing said pipe stand with a gripper head assembly having a pair of rotating arcuate fingers; releasing said pipe stand from said elevator; and moving an upper end of said pipe stand with said gripper head assembly to a chosen location.
  • 2. An automated pipe racking process as set forth in claim 1 wherein said steps of capturing said pipe stand and moving an upper end of said pipe stand includes rotating an arm support member about an axis parallel to said well bore.
  • 3. An automated pipe racking process as set forth in claim 1 wherein each said pipe stand includes three said pipe sections.
  • 4. An automated pipe racking process as set forth in claim 1 wherein said step of capturing said pipe stand is accomplished by rotating said fingers from an open to closed position.
  • 5. An automated pipe racking apparatus for a drilling rig having an elevator suspended over a well bore, which apparatus comprises:an arm assembly having an arm support member rotatable about an axis parallel to said well bore wherein said arm assembly is suspended from a carriage and said carriage moves along a working board mounted on and connected to a racking assembly; a gripper arm extending from said arm support member along an axis normal to the axis of rotation of the arm support member; and a gripper head assembly extending from said gripper arm, said assembly having a pair of opposed, arcuate gripper fingers, each said finger rotatable by a motor.
  • 6. An automated pipe racking apparatus as set forth in claim 5 including a set back grid having a plurality of pressure switches.
  • 7. An automated pipe racking apparatus as set forth in claim 5 wherein each finger extends at an angle between 10° to 20° from a normal centerline axis.
  • 8. An automated pipe racking apparatus as set forth in claim 7 wherein each said finger extends at an angle of approximately 15° from said centerline axis.
  • 9. An automated pipe racking apparatus as set forth in claim 5 wherein said gripper head assembly includes a mount having a base and wherein said fingers extend at an angle between 15° to 25° from said base.
  • 10. An automated pipe racking apparatus as set forth in claim 9 wherein said fingers extend at an angle approximately 20° from said base.
  • 11. An automated pipe racking apparatus as set forth in claim 5 wherein each said finger has a mounting axis and each said finger extends at an angle between 10° to 20° from its mounting axis.
US Referenced Citations (19)
Number Name Date Kind
1776605 Tibbetts Sep 1930 A
3987910 Brunato Oct 1976 A
4013178 Brown et al. Mar 1977 A
4042123 Sheldon et al. Aug 1977 A
4044895 Adair Aug 1977 A
4117941 McCleskey et al. Oct 1978 A
4269554 Jackson May 1981 A
4725179 Woolslayer et al. Feb 1988 A
4744710 Reed May 1988 A
4834604 Brittain et al. May 1989 A
4850439 Lund Jul 1989 A
5284375 Land, III Feb 1994 A
6089333 Rise Jul 2000 A
6113334 Riva Sep 2000 A
6361262 Roodenburg Mar 2002 B1
6513605 Lodden Feb 2003 B1
6550128 Lorenz Apr 2003 B1
6591471 Hollingsworth et al. Jul 2003 B1
6591904 Cicognani Jul 2003 B2