1. Field of the Invention
The application is in the field of pulsed laser systems, and more specifically in the field of chirped pulse amplification systems.
2. Related Art
Chirped pulse amplification (CPA) is very useful for producing ultrashort-duration high-intensity pulses for use in high peak power ultrashort pulse laser systems. CPA increases the energy of an ultrashort laser pulse while avoiding optical amplifier damage. In this technique, the duration of the pulse is increased by first dispersing the ultrashort laser pulse temporally as a function of wavelength (a process called “chirping”) to produce a chirped pulse, amplifying the chirped pulse, and then recompressing the chirped pulse to significantly shorten its duration. Lengthening the pulse in time reduces the peak power of the pulse and, thus, allows energy to be added to the pulse without reaching a damage threshold of the pulse amplifier and other optical components.
Some elements in a CPA system are polarization sensitive. For example, the performance of a pulse compressor that uses gratings to compress a laser pulse is highly polarization sensitive. Some elements in a CPA system alter polarizing in ways that are not precisely predictable. For example, passage of a pulse through a non polarization-maintaining (PM) fiber optic may alter the polarization of the pulse somewhat. This alteration can include a transformation of the polarization state into linear, circular or elliptical polarization.
The degree to which polarization is altered may be temperature or pulse power dependent, and may, therefore, be time dependent. This is a problem when subsequent elements within the CPA system are polarization sensitive, because their performance may be dependent on, for example, the temperature of polarization altering elements.
There is, therefore, a need for improved methods of managing polarization in CPA systems.
The invention includes systems and methods of managing polarization in CPA systems. In some embodiments, these systems and methods include automatic polarization compensation after a pulse has passed through a polarization altering optic, and in some embodiments, they include automatic polarization compensation prior to a polarization altering optic. These two approaches are referred to herein as post-compensation and pre-compensation, respectively.
Both approaches to polarization compensation optionally include a method of automatically adjusting a polarization compensation element in response to a signal from a sensor. This adjustment may continue while the CPA system is operated and, thus, be responsive to changes in polarization resulting from time dependent characteristics, such as temperature or pulse power.
Various embodiments of the invention include a system comprising a source of chirped laser pulses, a pulse amplifier configured to amplify the chirped laser pulses to produce amplified laser pulses, a sensor configured to measure a characteristic of the amplified laser pulses, a variable polarization compensator configured to modify a polarization of the chirped laser pulses, a controller configured to receive an output of the sensor responsive to the characteristic and to control the polarization compensator responsive to the output, and a pulse compressor configured to temporally compress the amplified laser pulses.
Various embodiments of the invention include a method of adjusting a polarization of a laser pulse, the method comprising a) performing a first broad scan using a first birefringent optic to determine a first preferred position, b) selecting a second birefringent optic, c) performing a second broad scan using the second birefringent optic to determine a second preferred position, d) selecting the first birefringent optic, e) performing a narrow scan using the first birefringent optic to determine a third preferred position, f) selecting the second birefringent optic, g) performing a narrow scan using the second birefringent optic to determine a fourth preferred position, and h) directing the laser pulse though the first birefringent optic and the second birefringent optic to adjust the polarization of the laser pulse.
Various embodiments of the invention include a method comprising generating a chirped laser pulse, amplifying the chirped laser pulse, measuring a characteristic of the chirped laser pulse, compressing the chirped laser pulse, and adjusting a polarization of the chirped laser pulse prior to compressing the chirped laser pulse, responsive to the characteristic of the chirped laser pulse.
In various embodiments of the invention, a polarization compensator is included in a CPA laser system. The polarization compensator is typically disposed relative to one or more polarization altering elements and a polarization sensitive element of the CPA system. The polarization altering element may be any element, such as an amplifier, that causes an undesirable change in polarization of a light pulse. This change of polarization state may be dependent on factors such as temperature or pulse power. Therefore, the extent of undesirable change in polarization may change over time. The polarization sensitive element is an element whose efficiency is dependent on a proper polarization of input light pulses. For example, the performance of a grating based compressor or isolator is dependent on the polarization of input light. If the input light does not properly match the polarization requirements of a grating compressor, light energy is lost and/or the compression is not as efficient as it could be. This will result in a degradation of the power and quality of output pulses.
In some embodiments, the polarization compensator is disposed between the polarization altering element and the polarization sensitive element. In these embodiments, the polarization compensator is configured to modify polarization so as to compensate for the effects of the polarization altering element after a laser pulse has passed through the polarization altering element. In some embodiments, the polarization compensator is disposed before both the polarization altering element and the polarization sensitive element. In these embodiments, the polarization compensator is configured to pre-compensate the polarization of a laser pulse such that after the laser pulse passes through the polarization altering element the laser pulse has a polarization appropriate for the polarization sensitive element.
The polarization compensator is configured to modify polarization responsive to a controller, which in turn is responsive to a sensor configured to measure one or more characteristics of a laser pulse. The sensor and controller provide a feedback mechanism configured to optimize operation of the polarization compensator and the output of the CPA laser system.
Chirped Pulse Amplification System 100 further includes an Amplifier 130 configured to amplify the chirped laser pulse. In various embodiments, Amplifier 130 includes a fiber-amplifier pumped by pump diodes, a semiconductor optical amplifier, a rod-type fiber, bulk solid state amplifier, or the like. For example, in some embodiments, Amplifier 130 includes a solid state optical amplifier, such as Nd:YAG or Yb:YAG. In some embodiments, Chirped Pulse Amplification System 100 comprises more than one amplifier. Amplifier 130 can be a polarization changing element in that it may alter the polarization state of a laser pulse during amplification. This change in polarization state may be dependent on power of the laser pulse, temperature of Amplifier 130, stress-induced or vibration-induced birefringence. For example, a change in polarization state may increase over time as the amplification process changes the temperature of Amplifier 130.
Chirped Pulse Amplification System 100 further includes a variable Polarization Compensator 140. Polarization compensator is configured to modify a laser pulse polarization. This modification is typically configured to compensate for any change in polarization state caused by Amplifier 130 and/or other elements within Chirped Pulse Amplification System 100. Polarization Compensator 140 can include, for example, a pair of birefringent wave plates, an electro-optic, a liquid crystal, a fiber-based polarization controller, or the like. Polarization Compensator 140 can be either active or passive, and is optionally configured to modify polarization to more than compensate for polarization changes caused by other elements. For example, Polarization Compensator 140 can be configured to compensate for a polarization change caused by another element and also rotate polarization by 90 degrees.
The polarization modification performed by Polarization Compensator 140 is variable. In some embodiments, the modification is varied by changing a position of part of Polarization Compensator 140. For example, a birefringent wave plate may be rotated in order to vary polarization. This rotation may be accomplished using a stepper motor. In some embodiments, the modification is varied by applying an electric or magnetic field to part of Polarization Compensator 140. For example, an electric field may be applied to an electro-optic to vary polarization.
The polarization modification performed by Polarization Compensator 140 is responsive to a Controller 160. Controller 160 is a logic device configured to receive a signal from a Sensor 150, to process the signal from Sensor 150, and to send control signals to Polarization Compensator 140 in response to the processed signal. In some embodiments, Controller 160 is further configured to scan Polarization Compensator 140 so as to identify a preferred state of Polarization Compensator 140. This preferred state may include a preferred position, a preferred electric field, and/or a preferred magnetic field. The preferred state is typically a state that results in a desired characteristic of the output of Chirped Pulse Amplification System 100. Controller 160 includes a microprocessor, electronic circuit, software, firmware, hardware, or the like.
Sensor 150 is configured to determine one or more characteristics of a laser pulse. These characteristics can include, for example, polarization, power, pulse width, beam width, dispersion, mode, or the like. For example, in one embodiment, Sensor 150 includes a power sensor configured to measure a power of a laser pulse and to provide a signal to Controller 160 representative of the measured power.
Typically, Sensor 150 and Polarization Compensator 140 are separated by one, two or more polarization sensitive elements of Chirped Pulse Amplification System 100. For example, in the embodiments illustrated by
Wave Plates 310A and 310B are typically rotated using a stepper motor, a piezoelectric, an electric, magnetic or pneumatic actuator, or the like. For example, in some embodiments each of Wave Plates 310A and 310B are rotated using a stepper motor (not shown). Because each of Wave Plates 310A and 310B are optionally configured to be rotated a full 360 degrees, the stepper motor does not necessarily need a positioning encoder.
Wave Plates 310A and 310B are optionally disposed such that Path 320 strikes each at an angle slightly off normal to a Front Surface 340.
In a Switch Plate Step 420, the Wave Plate 310B is selected for movement. Because, only one of Wave Plate 310A and 310B are typically moved at the same time, Switch Plate Step 420 optionally includes switching a single stepper motor driver from a stepper motor associated with Wave Plate 310A to a stepper motor associated with Wave Plate 310B.
In a Full Scan Step 430, Wave Plate 310B is rotated to identify a preferred position of Wave Plate 310B. This rotation may be as much as 180 or 360 degrees, and in some embodiments, at least 45 degrees. As in Full Scan Step 410, the output signal of Sensor 150 is monitored and a maximum (or minimum) in a pulse characteristic is identified. This maximum (or minimum) is considered a preferred position for Wave Plate 310B.
In a Switch Plate Step 440, Wave Plate 310A is selected for movement.
In a Reduced Scan Step 450, Wave Plate 310A is again rotated in order to find a new preferred position. Reduced Scan Step 450 typically includes less rotation of Wave Plate 310A than Full Scan Step 410. For example, in various embodiments, Reduced Scan Step 450 includes rotations of less than 45, 30, 20 10 and 5 degrees. Because of the movement of Wave Plate 310B that took place in Full Scan Step 430, the preferred position of Wave Plate 310A that was found in Full Scan Step 410 is normally different from the new preferred position of Wave Plate 310A that is found in Reduced Scan Step 450.
In a Switch Plate Step 460, Wave Plate 310B is selected for movement.
In a Reduced Scan 470, Wave Plate 310B is again rotated in order to find a new preferred position. Reduced Scan Step 470 typically includes less rotation of Wave Plate 310B than Full Scan Step 430. For example, in various embodiments, Reduced Scan Step 450 includes rotations of less than 45, 30, 20 10 and 5 degrees.
In a Switch Plate Step 480, Wave Plate 310A is selected for movement. Steps 450-480 are then optionally repeated. In various embodiments, Steps 450-480 are repeated on a periodic basis, e.g., at least every 5 seconds, 15 seconds, 30 seconds, 60 seconds, 2 minutes, 5 minutes or 10 minutes. In some embodiments, steps 450-480 are repeated until a desired pulse power is achieved. The rotation in Reduced Scan Steps 450 and 470 typically result in less of an impact in the output of Chirped Pulse Amplification System 100 than the rotation in Full Scan Steps 410 and 430. As such, Steps 450-480 are optionally performed while the output of Chirped Pulse Amplification System 100 is being applied to an end use.
In a Generate Chirped Pulse Step 510, at least one chirped laser pulse is generated. This pulse may be generated using Seed Source 110 and Stretcher 120, or using an alternative source of chirped laser pulses.
In an Amplify Pulse Step 520, the chirped pulse generated in Generate Chirped Pulse Step 510 is amplified using Amplifier 130. This amplification process may result in a change in the state of polarization of the laser pulse.
In a Measure Pulse Step 530, the amplified pulse is measured using Sensor 150. This measurement may include a power measurement, a polarization measurement, a pulse width measurement, a mode measurement, and/or the like.
In an Adjust Polarization Step 540, Polarization Compensator 140 is adjusted, for example using Steps 450-480 of
In a Compress Step 550, the chirped pulse is compressed using Pulse Compressor 170.
The order of the steps illustrated in
Several embodiments are specifically illustrated and/or described herein. However, it will be appreciated that modifications and variations are covered by the above teachings and within the scope of the appended claims without departing from the spirit and intended scope thereof. For example, Chirped Pulse Amplification System 100 may include a plurality of Polarization Compensator 140 and/or a plurality of Sensor 150. Chirped Pulse Amplification System 100 may include a delivery fiber and Sensor 150 may be configured to measure a characteristic of a pulse after the pulse passes through the delivery or compressor fiber.
The embodiments discussed herein are illustrative of the present invention. As these embodiments of the present invention are described with reference to illustrations, various modifications or adaptations of the methods and or specific structures described may become apparent to those skilled in the art. All such modifications, adaptations, or variations that rely upon the teachings of the present invention, and through which these teachings have advanced the art, are considered to be within the spirit and scope of the present invention. Hence, these descriptions and drawings should not be considered in a limiting sense, as it is understood that the present invention is in no way limited to only the embodiments illustrated.
This application claims benefit and priority from U.S. provisional patent application No. 60/700,429, filed Jul. 19, 2005 and entitled “Controlling Output Polarization of a High Power Amplifier.” The disclosure of the above provisional patent application is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2436662 | Norgaard | Feb 1948 | A |
3459960 | Aaland et al. | Aug 1969 | A |
3549256 | Brienza et al. | Dec 1970 | A |
3599019 | Nannichi et al. | Aug 1971 | A |
3602836 | Young | Aug 1971 | A |
3622907 | Tomlinson et al. | Nov 1971 | A |
3626318 | Young | Dec 1971 | A |
3628179 | Cuff | Dec 1971 | A |
3631362 | Almasi et al. | Dec 1971 | A |
3646469 | Buczek et al. | Feb 1972 | A |
3654624 | Becker et al. | Apr 1972 | A |
3696308 | Duffy et al. | Oct 1972 | A |
3735282 | Gans | May 1973 | A |
3806829 | Duston et al. | Apr 1974 | A |
3808549 | Maurer | Apr 1974 | A |
3851267 | Tanner | Nov 1974 | A |
3942127 | Fluhr et al. | Mar 1976 | A |
3963953 | Thornton, Jr. | Jun 1976 | A |
4061427 | Fletcher et al. | Dec 1977 | A |
4194813 | Benjamin et al. | Mar 1980 | A |
4289378 | Remy et al. | Sep 1981 | A |
4389617 | Kurnit | Jun 1983 | A |
4394623 | Kurnit | Jul 1983 | A |
4590598 | O'Harra, II | May 1986 | A |
4622095 | Grobman et al. | Nov 1986 | A |
4655547 | Heritage et al. | Apr 1987 | A |
4673795 | Ortiz, Jr. | Jun 1987 | A |
4718418 | L 'Esperance, Jr. | Jan 1988 | A |
4722591 | Haffner | Feb 1988 | A |
4730113 | Edwards et al. | Mar 1988 | A |
4750809 | Kafka et al. | Jun 1988 | A |
4808000 | Pasciak | Feb 1989 | A |
4815079 | Snitzer et al. | Mar 1989 | A |
4824598 | Stokowski | Apr 1989 | A |
4827125 | Goldstein | May 1989 | A |
4829529 | Kafka | May 1989 | A |
4835670 | Adams et al. | May 1989 | A |
4847846 | Sone et al. | Jul 1989 | A |
4848340 | Bille et al. | Jul 1989 | A |
4849036 | Powell et al. | Jul 1989 | A |
4856011 | Shimada et al. | Aug 1989 | A |
4902127 | Byer et al. | Feb 1990 | A |
4907586 | Bille et al. | Mar 1990 | A |
4913520 | Kafka | Apr 1990 | A |
4915757 | Rando | Apr 1990 | A |
4928316 | Heritage et al. | May 1990 | A |
4947398 | Yasuda et al. | Aug 1990 | A |
4950268 | Rink | Aug 1990 | A |
4972423 | Alfano et al. | Nov 1990 | A |
4983034 | Spillman, Jr. | Jan 1991 | A |
4988348 | Bille | Jan 1991 | A |
4994059 | Kosa et al. | Feb 1991 | A |
5010555 | Madey et al. | Apr 1991 | A |
5014290 | Moore et al. | May 1991 | A |
5022042 | Bradley | Jun 1991 | A |
5031236 | Hodgkinson et al. | Jul 1991 | A |
5043991 | Bradley | Aug 1991 | A |
5053171 | Portney et al. | Oct 1991 | A |
5095487 | Meyerhofer et al. | Mar 1992 | A |
5098426 | Sklar et al. | Mar 1992 | A |
5122439 | Miersch et al. | Jun 1992 | A |
5132996 | Moore et al. | Jul 1992 | A |
5146088 | Kingham et al. | Sep 1992 | A |
5154707 | Rink et al. | Oct 1992 | A |
5159402 | Ortiz, Jr. | Oct 1992 | A |
5162643 | Currie | Nov 1992 | A |
5166818 | Chase et al. | Nov 1992 | A |
5187759 | DiGiovanni et al. | Feb 1993 | A |
5204867 | Koschmann | Apr 1993 | A |
5206455 | Williams et al. | Apr 1993 | A |
5217003 | Wilk | Jun 1993 | A |
5233182 | Szabo et al. | Aug 1993 | A |
5237576 | DiGiovanni et al. | Aug 1993 | A |
5255117 | Cushman | Oct 1993 | A |
5257273 | Farries et al. | Oct 1993 | A |
5265107 | Delfyett, Jr. | Nov 1993 | A |
5267077 | Blonder | Nov 1993 | A |
5278853 | Shirai et al. | Jan 1994 | A |
5291501 | Hanna | Mar 1994 | A |
5293186 | Seden et al. | Mar 1994 | A |
5301347 | Kensky | Apr 1994 | A |
5302835 | Bendett et al. | Apr 1994 | A |
5309453 | Treacy | May 1994 | A |
5313262 | Leonard | May 1994 | A |
5315431 | Masuda et al. | May 1994 | A |
5315436 | Lowenhar et al. | May 1994 | A |
5329398 | Lai et al. | Jul 1994 | A |
5331131 | Opdyke | Jul 1994 | A |
5355383 | Lockard | Oct 1994 | A |
5367143 | White, Jr. | Nov 1994 | A |
5400350 | Galvanauskas | Mar 1995 | A |
5409376 | Murphy | Apr 1995 | A |
5411918 | Keible et al. | May 1995 | A |
5414725 | Fermann et al. | May 1995 | A |
5418809 | August, Jr. et al. | May 1995 | A |
5428471 | McDermott | Jun 1995 | A |
5430572 | DiGiovanni et al. | Jul 1995 | A |
5440573 | Fermann | Aug 1995 | A |
5446813 | Lee et al. | Aug 1995 | A |
5450427 | Fermann et al. | Sep 1995 | A |
5479422 | Fermann et al. | Dec 1995 | A |
5489984 | Hariharan et al. | Feb 1996 | A |
5493579 | Ressl et al. | Feb 1996 | A |
5499134 | Galvanauskas et al. | Mar 1996 | A |
5517043 | Ma et al. | May 1996 | A |
5520679 | Lin | May 1996 | A |
5548098 | Sugawara et al. | Aug 1996 | A |
5572335 | Stevens | Nov 1996 | A |
5572358 | Gabl et al. | Nov 1996 | A |
5585642 | Britton et al. | Dec 1996 | A |
5585652 | Kamasz et al. | Dec 1996 | A |
5585913 | Hariharan et al. | Dec 1996 | A |
5590142 | Shan | Dec 1996 | A |
5592327 | Gabl et al. | Jan 1997 | A |
5596668 | DiGiovanni et al. | Jan 1997 | A |
5602673 | Swan | Feb 1997 | A |
5602677 | Tournois | Feb 1997 | A |
5615043 | Plaessmann et al. | Mar 1997 | A |
5617434 | Tamura et al. | Apr 1997 | A |
5624587 | Otsuki et al. | Apr 1997 | A |
5625544 | Kowshik et al. | Apr 1997 | A |
5627848 | Fermann et al. | May 1997 | A |
5631771 | Swan | May 1997 | A |
5633750 | Nogiwa et al. | May 1997 | A |
5633885 | Galvanauskas et al. | May 1997 | A |
5642447 | Pan et al. | Jun 1997 | A |
5644424 | Backus et al. | Jul 1997 | A |
5651018 | Mehuys et al. | Jul 1997 | A |
5656186 | Mourou et al. | Aug 1997 | A |
5657153 | Endriz et al. | Aug 1997 | A |
5661829 | Zheng | Aug 1997 | A |
5663731 | Theodoras, II et al. | Sep 1997 | A |
5665942 | Williams et al. | Sep 1997 | A |
5666722 | Tamm et al. | Sep 1997 | A |
5670067 | Koide et al. | Sep 1997 | A |
5677769 | Bendett | Oct 1997 | A |
5689361 | Damen et al. | Nov 1997 | A |
5689519 | Fermann et al. | Nov 1997 | A |
5694501 | Alavie et al. | Dec 1997 | A |
5696782 | Harter et al. | Dec 1997 | A |
5701319 | Fermann | Dec 1997 | A |
5703639 | Farrier et al. | Dec 1997 | A |
5708669 | DiGiovanni et al. | Jan 1998 | A |
5710424 | Theodoras, II et al. | Jan 1998 | A |
5720894 | Neev et al. | Feb 1998 | A |
5726855 | Mourou et al. | Mar 1998 | A |
5734762 | Ho et al. | Mar 1998 | A |
5736709 | Neiheisel | Apr 1998 | A |
5739933 | Dembeck et al. | Apr 1998 | A |
5770864 | Dlugos | Jun 1998 | A |
5771253 | Chang-Hasnain et al. | Jun 1998 | A |
5778016 | Sucha et al. | Jul 1998 | A |
5781289 | Sabsabi et al. | Jul 1998 | A |
5788688 | Bauer et al. | Aug 1998 | A |
5790574 | Rieger et al. | Aug 1998 | A |
5815519 | Aoshima et al. | Sep 1998 | A |
5818630 | Fermann et al. | Oct 1998 | A |
5822097 | Tournois | Oct 1998 | A |
5844149 | Akiyoshi et al. | Dec 1998 | A |
5847825 | Alexander | Dec 1998 | A |
5847863 | Galvanauskas et al. | Dec 1998 | A |
5862287 | Stock et al. | Jan 1999 | A |
5862845 | Chin et al. | Jan 1999 | A |
5867304 | Galvanauskas et al. | Feb 1999 | A |
5875408 | Bendett et al. | Feb 1999 | A |
5880823 | Lu | Mar 1999 | A |
5880877 | Fermann et al. | Mar 1999 | A |
5898485 | Nati, Jr. | Apr 1999 | A |
5907157 | Yoshioka et al. | May 1999 | A |
5920668 | Uehara et al. | Jul 1999 | A |
5923686 | Fermann et al. | Jul 1999 | A |
5929430 | Yao et al. | Jul 1999 | A |
5936716 | Pinsukanjana et al. | Aug 1999 | A |
5999847 | Elstrom | Dec 1999 | A |
6014249 | Fermann et al. | Jan 2000 | A |
6016452 | Kasevich | Jan 2000 | A |
6020591 | Harter et al. | Feb 2000 | A |
6034975 | Harter et al. | Mar 2000 | A |
6041020 | Caron et al. | Mar 2000 | A |
6061373 | Brockman et al. | May 2000 | A |
6071276 | Abela | Jun 2000 | A |
6072811 | Fermann et al. | Jun 2000 | A |
6075588 | Pinsukanjana et al. | Jun 2000 | A |
6081369 | Waarts et al. | Jun 2000 | A |
6088153 | Anthon et al. | Jul 2000 | A |
6099522 | Knopp et al. | Aug 2000 | A |
6120857 | Balooch et al. | Sep 2000 | A |
6122097 | Weston et al. | Sep 2000 | A |
6130780 | Joannopoulos et al. | Oct 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6141140 | Kim | Oct 2000 | A |
6151338 | Grubb et al. | Nov 2000 | A |
6154310 | Galvanauskas et al. | Nov 2000 | A |
6156030 | Neev | Dec 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6168590 | Neev | Jan 2001 | B1 |
6172611 | Hussain et al. | Jan 2001 | B1 |
6175437 | Diels et al. | Jan 2001 | B1 |
6179421 | Pang | Jan 2001 | B1 |
6181463 | Galvanauskas et al. | Jan 2001 | B1 |
6190380 | Abela | Feb 2001 | B1 |
6198568 | Galvanauskas et al. | Mar 2001 | B1 |
6198766 | Schuppe et al. | Mar 2001 | B1 |
6201914 | Duguay et al. | Mar 2001 | B1 |
6208458 | Galvanauskas et al. | Mar 2001 | B1 |
6246816 | Moore et al. | Jun 2001 | B1 |
6249630 | Stock et al. | Jun 2001 | B1 |
6252892 | Jiang et al. | Jun 2001 | B1 |
6256328 | Delfyett et al. | Jul 2001 | B1 |
6269108 | Tabirian et al. | Jul 2001 | B1 |
6271650 | Massie et al. | Aug 2001 | B1 |
6275250 | Sanders et al. | Aug 2001 | B1 |
6275512 | Fermann | Aug 2001 | B1 |
6281471 | Smart | Aug 2001 | B1 |
6290910 | Chalk | Sep 2001 | B1 |
6303903 | Liu | Oct 2001 | B1 |
6314115 | Delfyett et al. | Nov 2001 | B1 |
6325792 | Swinger et al. | Dec 2001 | B1 |
6327074 | Bass et al. | Dec 2001 | B1 |
6327282 | Hammons et al. | Dec 2001 | B2 |
6330383 | Cai et al. | Dec 2001 | B1 |
6334011 | Galvanauskas et al. | Dec 2001 | B1 |
6335821 | Suzuki et al. | Jan 2002 | B1 |
6340806 | Smart et al. | Jan 2002 | B1 |
RE037585 | Mourou et al. | Mar 2002 | E |
6355908 | Tatah et al. | Mar 2002 | B1 |
6359681 | Housand et al. | Mar 2002 | B1 |
6362454 | Liu | Mar 2002 | B1 |
6365869 | Swain et al. | Apr 2002 | B1 |
6366395 | Drake et al. | Apr 2002 | B1 |
6370171 | Horn et al. | Apr 2002 | B1 |
6370422 | Richards-Kortum et al. | Apr 2002 | B1 |
6396317 | Roller et al. | May 2002 | B1 |
6400871 | Minden | Jun 2002 | B1 |
6404944 | Wa et al. | Jun 2002 | B1 |
6407363 | Dunsky et al. | Jun 2002 | B2 |
6418154 | Kneip et al. | Jul 2002 | B1 |
6418256 | Danziger et al. | Jul 2002 | B1 |
6421169 | Bonnedal et al. | Jul 2002 | B1 |
6433303 | Liu et al. | Aug 2002 | B1 |
6433305 | Liu et al. | Aug 2002 | B1 |
6433760 | Vaissie et al. | Aug 2002 | B1 |
6463314 | Haruna | Oct 2002 | B1 |
6482199 | Neev | Nov 2002 | B1 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6486435 | Beyer et al. | Nov 2002 | B1 |
6496099 | Wang et al. | Dec 2002 | B2 |
6501590 | Bass et al. | Dec 2002 | B2 |
6522460 | Bonnedal et al. | Feb 2003 | B2 |
6522674 | Niwano et al. | Feb 2003 | B1 |
6525873 | Gerrish et al. | Feb 2003 | B2 |
6526085 | Vogler et al. | Feb 2003 | B2 |
6526327 | Kar et al. | Feb 2003 | B2 |
6529319 | Youn et al. | Mar 2003 | B2 |
6541731 | Mead et al. | Apr 2003 | B2 |
6547453 | Stummer et al. | Apr 2003 | B1 |
6549547 | Galvanauskas et al. | Apr 2003 | B2 |
6552301 | Herman et al. | Apr 2003 | B2 |
6555781 | Ngoi et al. | Apr 2003 | B2 |
6556733 | Dy et al. | Apr 2003 | B2 |
6567431 | Tabirian et al. | May 2003 | B2 |
6570704 | Palese | May 2003 | B2 |
6573813 | Joannopoulos et al. | Jun 2003 | B1 |
6574024 | Liu | Jun 2003 | B1 |
6574250 | Sun et al. | Jun 2003 | B2 |
6576917 | Silfvast | Jun 2003 | B1 |
6580553 | Kim et al. | Jun 2003 | B2 |
6587488 | Meissner et al. | Jul 2003 | B1 |
6597497 | Wang et al. | Jul 2003 | B2 |
6603903 | Tong et al. | Aug 2003 | B1 |
6603911 | Fink et al. | Aug 2003 | B2 |
6621040 | Perry et al. | Sep 2003 | B1 |
6621045 | Liu et al. | Sep 2003 | B1 |
6627421 | Unger et al. | Sep 2003 | B1 |
6627844 | Liu et al. | Sep 2003 | B2 |
6642477 | Patel et al. | Nov 2003 | B1 |
6647031 | Delfyett et al. | Nov 2003 | B2 |
6654161 | Bass et al. | Nov 2003 | B2 |
6661816 | Delfyett et al. | Dec 2003 | B2 |
6661820 | Camilleri et al. | Dec 2003 | B1 |
6671298 | Delfyett et al. | Dec 2003 | B1 |
6677552 | Tulloch et al. | Jan 2004 | B1 |
6681079 | Maroney | Jan 2004 | B1 |
6690686 | Delfyett et al. | Feb 2004 | B2 |
6695835 | Furuno et al. | Feb 2004 | B2 |
6696008 | Brandinger | Feb 2004 | B2 |
6697402 | Crawford | Feb 2004 | B2 |
6697408 | Kennedy et al. | Feb 2004 | B2 |
6700094 | Kuntze | Mar 2004 | B1 |
6700698 | Scott | Mar 2004 | B1 |
6706036 | Lai | Mar 2004 | B2 |
6706998 | Cutler | Mar 2004 | B2 |
6710288 | Liu et al. | Mar 2004 | B2 |
6710293 | Liu et al. | Mar 2004 | B2 |
6711334 | Szkopek et al. | Mar 2004 | B2 |
6716475 | Fink et al. | Apr 2004 | B1 |
6720519 | Liu et al. | Apr 2004 | B2 |
6723991 | Sucha et al. | Apr 2004 | B1 |
6727458 | Smart | Apr 2004 | B2 |
6728273 | Perry | Apr 2004 | B2 |
6728439 | Weisberg et al. | Apr 2004 | B2 |
6735229 | Delfyett et al. | May 2004 | B1 |
6735368 | Parker et al. | May 2004 | B2 |
6738144 | Dogariu | May 2004 | B1 |
6738408 | Abedin | May 2004 | B2 |
6744555 | Galvanauskas et al. | Jun 2004 | B2 |
6747795 | Lin et al. | Jun 2004 | B2 |
6749285 | Liu et al. | Jun 2004 | B2 |
6760356 | Erbert et al. | Jul 2004 | B2 |
6774869 | Biocca et al. | Aug 2004 | B2 |
6782207 | Efimov | Aug 2004 | B1 |
6785303 | Holzwarth et al. | Aug 2004 | B1 |
6785445 | Kuroda et al. | Aug 2004 | B2 |
6787733 | Lubatschowski et al. | Sep 2004 | B2 |
6787734 | Liu | Sep 2004 | B2 |
6788864 | Ahmad et al. | Sep 2004 | B2 |
6791060 | Dunsky et al. | Sep 2004 | B2 |
6791071 | Woo et al. | Sep 2004 | B2 |
6795461 | Blair et al. | Sep 2004 | B1 |
6801550 | Snell et al. | Oct 2004 | B1 |
6801551 | Delfyett et al. | Oct 2004 | B1 |
6801557 | Liu | Oct 2004 | B2 |
6803539 | Liu et al. | Oct 2004 | B2 |
6804574 | Cheng et al. | Oct 2004 | B2 |
6807353 | Fleming et al. | Oct 2004 | B1 |
6807375 | Dogariu | Oct 2004 | B2 |
6815638 | Liu | Nov 2004 | B2 |
6819694 | Jiang et al. | Nov 2004 | B2 |
6819702 | Sverdlov et al. | Nov 2004 | B2 |
6819837 | Li et al. | Nov 2004 | B2 |
6822251 | Arenberg et al. | Nov 2004 | B1 |
6824540 | Lin | Nov 2004 | B1 |
6829517 | Cheng et al. | Dec 2004 | B2 |
6834134 | Brennan, III et al. | Dec 2004 | B2 |
6836703 | Wang et al. | Dec 2004 | B2 |
6878900 | Corkum et al. | Apr 2005 | B2 |
6882772 | Lowery et al. | Apr 2005 | B1 |
6885683 | Fermann et al. | Apr 2005 | B1 |
6887804 | Sun et al. | May 2005 | B2 |
6897405 | Cheng et al. | May 2005 | B2 |
6902561 | Kurtz et al. | Jun 2005 | B2 |
6917631 | Richardson et al. | Jul 2005 | B2 |
6928490 | Bucholz et al. | Aug 2005 | B1 |
6937629 | Perry et al. | Aug 2005 | B2 |
6943359 | Vardeny et al. | Sep 2005 | B2 |
6956680 | Morbieu et al. | Oct 2005 | B2 |
6994703 | Wang et al. | Feb 2006 | B2 |
7002733 | Dagenais et al. | Feb 2006 | B2 |
7006730 | Doerr | Feb 2006 | B2 |
7022119 | Hohla | Apr 2006 | B2 |
7031571 | Mihailov et al. | Apr 2006 | B2 |
7068408 | Sakai | Jun 2006 | B2 |
7072101 | Kapteyn et al. | Jul 2006 | B2 |
7088756 | Fermann et al. | Aug 2006 | B2 |
7095772 | Delfyett et al. | Aug 2006 | B1 |
7097640 | Wang et al. | Aug 2006 | B2 |
7099549 | Scheuer et al. | Aug 2006 | B2 |
7116688 | Sauter et al. | Oct 2006 | B2 |
7132289 | Kobayashi et al. | Nov 2006 | B2 |
7143769 | Stoltz et al. | Dec 2006 | B2 |
7171074 | DiGiovanni et al. | Jan 2007 | B2 |
7217266 | Anderson et al. | May 2007 | B2 |
7220255 | Lai | May 2007 | B2 |
7233607 | Richardson et al. | Jun 2007 | B2 |
7257302 | Fermann et al. | Aug 2007 | B2 |
7289707 | Chavez-Pirson et al. | Oct 2007 | B1 |
7321605 | Albert | Jan 2008 | B2 |
7321713 | Akiyama et al. | Jan 2008 | B2 |
7332234 | Levinson et al. | Feb 2008 | B2 |
7349452 | Brennan, III et al. | Mar 2008 | B2 |
7361171 | Stoltz et al. | Apr 2008 | B2 |
7367969 | Stoltz et al. | May 2008 | B2 |
7413565 | Wang et al. | Aug 2008 | B2 |
7444049 | Kim et al. | Oct 2008 | B1 |
7505196 | Nati et al. | Mar 2009 | B2 |
7518788 | Fermann et al. | Apr 2009 | B2 |
7584756 | Zadoyan et al. | Sep 2009 | B2 |
7728967 | Ochiai et al. | Jun 2010 | B2 |
7773294 | Brunet et al. | Aug 2010 | B2 |
7787175 | Brennan, III et al. | Aug 2010 | B1 |
7822347 | Brennan, III et al. | Oct 2010 | B1 |
7963958 | Stoltz et al. | Jun 2011 | B2 |
20010009250 | Herman et al. | Jul 2001 | A1 |
20010021294 | Cai et al. | Sep 2001 | A1 |
20010046243 | Schie | Nov 2001 | A1 |
20020003130 | Sun et al. | Jan 2002 | A1 |
20020051606 | Takushima et al. | May 2002 | A1 |
20020071454 | Lin | Jun 2002 | A1 |
20020091325 | Ostrovsky | Jul 2002 | A1 |
20020095142 | Ming | Jul 2002 | A1 |
20020097468 | Mecherle et al. | Jul 2002 | A1 |
20020097761 | Sucha et al. | Jul 2002 | A1 |
20020118934 | Danziger et al. | Aug 2002 | A1 |
20020153500 | Fordahl et al. | Oct 2002 | A1 |
20020167581 | Cordingley et al. | Nov 2002 | A1 |
20020167974 | Kennedy et al. | Nov 2002 | A1 |
20020176676 | Johnson et al. | Nov 2002 | A1 |
20020186915 | Yu et al. | Dec 2002 | A1 |
20020191901 | Jensen | Dec 2002 | A1 |
20030011782 | Tanno | Jan 2003 | A1 |
20030031410 | Schnitzer | Feb 2003 | A1 |
20030039442 | Bond et al. | Feb 2003 | A1 |
20030053508 | Dane et al. | Mar 2003 | A1 |
20030055413 | Altshuler et al. | Mar 2003 | A1 |
20030060808 | Wilk | Mar 2003 | A1 |
20030086647 | Willner et al. | May 2003 | A1 |
20030095266 | Detalle et al. | May 2003 | A1 |
20030123496 | Broutin et al. | Jul 2003 | A1 |
20030142705 | Hackel et al. | Jul 2003 | A1 |
20030156605 | Richardson et al. | Aug 2003 | A1 |
20030161365 | Perry et al. | Aug 2003 | A1 |
20030161378 | Zhang et al. | Aug 2003 | A1 |
20030178396 | Naumov et al. | Sep 2003 | A1 |
20030202547 | Fermann et al. | Oct 2003 | A1 |
20030205561 | Iso | Nov 2003 | A1 |
20030214714 | Zheng | Nov 2003 | A1 |
20030223689 | Koch et al. | Dec 2003 | A1 |
20030235381 | Hunt | Dec 2003 | A1 |
20040000942 | Kapteyn et al. | Jan 2004 | A1 |
20040037505 | Morin | Feb 2004 | A1 |
20040042061 | Islam et al. | Mar 2004 | A1 |
20040049552 | Motoyama et al. | Mar 2004 | A1 |
20040101001 | Bergmann et al. | May 2004 | A1 |
20040128081 | Rabitz et al. | Jul 2004 | A1 |
20040134894 | Gu et al. | Jul 2004 | A1 |
20040134896 | Gu et al. | Jul 2004 | A1 |
20040160995 | Sauter et al. | Aug 2004 | A1 |
20040226925 | Gu et al. | Nov 2004 | A1 |
20040231682 | Stoltz et al. | Nov 2004 | A1 |
20040233944 | Dantus et al. | Nov 2004 | A1 |
20040263950 | Fermann et al. | Dec 2004 | A1 |
20050008044 | Fermann et al. | Jan 2005 | A1 |
20050018986 | Argyros et al. | Jan 2005 | A1 |
20050035097 | Stoltz | Feb 2005 | A1 |
20050036527 | Khazaei et al. | Feb 2005 | A1 |
20050038487 | Stoltz | Feb 2005 | A1 |
20050061779 | Blumenfeld et al. | Mar 2005 | A1 |
20050065502 | Stoltz | Mar 2005 | A1 |
20050067388 | Sun et al. | Mar 2005 | A1 |
20050074974 | Stoltz | Apr 2005 | A1 |
20050077275 | Stoltz | Apr 2005 | A1 |
20050105865 | Fermann et al. | May 2005 | A1 |
20050107773 | Bergt et al. | May 2005 | A1 |
20050111073 | Pan et al. | May 2005 | A1 |
20050111500 | Harter et al. | May 2005 | A1 |
20050127049 | Woeste et al. | Jun 2005 | A1 |
20050154380 | DeBenedictis et al. | Jul 2005 | A1 |
20050163426 | Fermann et al. | Jul 2005 | A1 |
20050167405 | Stoltz et al. | Aug 2005 | A1 |
20050171516 | Stoltz et al. | Aug 2005 | A1 |
20050171518 | Stoltz et al. | Aug 2005 | A1 |
20050175280 | Nicholson | Aug 2005 | A1 |
20050177143 | Bullington et al. | Aug 2005 | A1 |
20050195726 | Bullington et al. | Sep 2005 | A1 |
20050213630 | Mielke et al. | Sep 2005 | A1 |
20050215985 | Mielke et al. | Sep 2005 | A1 |
20050218122 | Yamamoto et al. | Oct 2005 | A1 |
20050225846 | Nati et al. | Oct 2005 | A1 |
20050226286 | Liu et al. | Oct 2005 | A1 |
20050226287 | Shah et al. | Oct 2005 | A1 |
20050232560 | Knight et al. | Oct 2005 | A1 |
20050238070 | Imeshev et al. | Oct 2005 | A1 |
20050253482 | Kapps et al. | Nov 2005 | A1 |
20050259944 | Anderson et al. | Nov 2005 | A1 |
20050265407 | Braun et al. | Dec 2005 | A1 |
20050271094 | Miller et al. | Dec 2005 | A1 |
20050271340 | Weisberg et al. | Dec 2005 | A1 |
20060016891 | Giebel et al. | Jan 2006 | A1 |
20060030951 | Davlin et al. | Feb 2006 | A1 |
20060050750 | Barty | Mar 2006 | A1 |
20060056480 | Mielke et al. | Mar 2006 | A1 |
20060064079 | Stoltz et al. | Mar 2006 | A1 |
20060067604 | Bull et al. | Mar 2006 | A1 |
20060084957 | Delfyett et al. | Apr 2006 | A1 |
20060093012 | Singh et al. | May 2006 | A1 |
20060093265 | Jia et al. | May 2006 | A1 |
20060120418 | Harter et al. | Jun 2006 | A1 |
20060126679 | Brennan et al. | Jun 2006 | A1 |
20060131288 | Sun et al. | Jun 2006 | A1 |
20060187974 | Dantus | Aug 2006 | A1 |
20060209908 | Pedersen et al. | Sep 2006 | A1 |
20060210275 | Vaissie et al. | Sep 2006 | A1 |
20060221449 | Glebov et al. | Oct 2006 | A1 |
20060250025 | Kitagawa et al. | Nov 2006 | A1 |
20060268949 | Gohle et al. | Nov 2006 | A1 |
20070025728 | Nakazawa et al. | Feb 2007 | A1 |
20070047965 | Liu et al. | Mar 2007 | A1 |
20070064304 | Brennan III | Mar 2007 | A1 |
20070098025 | Hong et al. | May 2007 | A1 |
20070106416 | Griffiths et al. | May 2007 | A1 |
20070121686 | Vaissie et al. | May 2007 | A1 |
20070196048 | Galvanauskas et al. | Aug 2007 | A1 |
20070229939 | Brown et al. | Oct 2007 | A1 |
20070253455 | Stadler et al. | Nov 2007 | A1 |
20070273960 | Fermann et al. | Nov 2007 | A1 |
20080232407 | Harter et al. | Sep 2008 | A1 |
20080240184 | Cho et al. | Oct 2008 | A1 |
20090219610 | Mourou et al. | Sep 2009 | A1 |
20090244695 | Marcinkevicius et al. | Oct 2009 | A1 |
20090245302 | Baird et al. | Oct 2009 | A1 |
20090257464 | Dantus et al. | Oct 2009 | A1 |
20090273828 | Waarts et al. | Nov 2009 | A1 |
20090297155 | Weiner et al. | Dec 2009 | A1 |
20100040095 | Mielke et al. | Feb 2010 | A1 |
20100118899 | Peng et al. | May 2010 | A1 |
20100142034 | Wise et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
214100 | Mar 1987 | EP |
691563 | Jan 1996 | EP |
1462831 | Sep 2004 | EP |
8171103 | Jul 1996 | JP |
11189472 | Jul 1999 | JP |
2003181661 | Jul 2003 | JP |
2003344883 | Dec 2003 | JP |
2005174993 | Jun 2005 | JP |
W09428972 | Dec 1994 | WO |
WO2004105100 | Dec 2004 | WO |
WO2004114473 | Dec 2004 | WO |
WO2005018060 | Feb 2005 | WO |
WO2005018061 | Feb 2005 | WO |
WO2005018062 | Feb 2005 | WO |
WO2005018063 | Feb 2005 | WO |
WO2007034317 | Mar 2007 | WO |
Number | Date | Country | |
---|---|---|---|
60700429 | Jul 2005 | US |