This technology generally relates to network communication security, and more particularly, to an automated network security policy builder.
Building a web-application security policy is a complicated and tedious task. Often, WAF (web application firewall) operators do not know how to properly build the security policy. Building a security policy also requires very specific and in-depth application knowledge and policy building information must be manually entered by a network administrator on a continuing basis.
What is needed is a system and method which automatically builds policies based on user-specified threshold values.
While these examples are susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail preferred examples with the understanding that the present disclosure is to be considered as an exemplification and is not intended to limit the broad aspect to the embodiments illustrated.
In an aspect, a method of automated policy building in a policy module in a network traffic management device is disclosed. The method comprises receiving parsed the network traffic data at a policy builder of a network traffic management device. The method comprises analyzing the received network traffic data in accordance with one or more threshold conditions specified by a user, via a user interface, for an existing policy. The method comprises modifying the existing policy if the one or more threshold conditions for the network traffic have been met.
In an aspect, a non-transitory machine readable medium having stored thereon instructions for automated policy building is disclosed. The medium comprises machine executable code which, when executed by at least one machine, causes the machine to receive parsed the network traffic data at a policy builder. The code causes the machine to analyze the received network traffic data in accordance with one or more threshold conditions specified by a user, via a user interface, for an existing policy. The code causes the machine to modify the existing policy if the one or more threshold conditions for the network traffic have been met.
In an aspect a network traffic management device comprises a network interface that is configured to receive and transmit network traffic over one or more networks. The device comprises a memory configured to store instructions for automated policy building in processor executable code. The device comprises a processor configured to execute the stored executable code which causes the processor to receive parsed the network traffic data at a policy builder of the network traffic management device. The processor is further configured to analyze the received network traffic data in accordance with one or more threshold conditions specified by a user, via a user interface, for an existing policy. The processor is further configured to modify the existing policy if the one or more threshold conditions for the network traffic have been met.
In one or more of the above aspects, data relating to the modification of the policy is stored in a memory, wherein a policy enforcer of the policy module subsequently enforces the modified policy on the network traffic.
In one or more of the above aspects, a user interface is configured to be displayed, wherein the user interface is configured to receive user input values associated with the one or more threshold conditions.
In one or more of the above aspects, one or more of the input values associated with the one or more threshold conditions are associated with a sensitivity rule in accordance with the existing policy.
In one or more of the above aspects, an interactive slider is displayed in the user interface and is configured to be set by the user over a range of values of the existing policy.
In one or more of the above aspects, parsed network traffic is received at the policy builder, wherein the policy builder previously modified the existing policy. The received network traffic data is analyzed by the policy builder in accordance with one or more threshold conditions and the policy builder again modifies the already modified policy upon determining that the one or more threshold conditions for the network traffic have been met.
Client devices 106 comprise network computing devices capable of connecting to other network computing devices, such as network traffic management devices 110 and/or servers 102. Such connections are performed over wired and/or wireless networks, such as network 108, to send and receive data, such as for Web-based requests, receiving server responses to requests and/or performing other tasks. Non-limiting and non-exhausting examples of such client devices include personal computers (e.g., desktops, laptops), tablets, smart televisions, video game devices, mobile and/or smart phones and the like. In an example, client devices 106 can run one or more Web browsers that provide an interface for operators, such as human users, to interact with and for making requests for resources from different web and non-web servers. One or more Web-based applications may run on one or more of the servers 102 that provide the requested data back as one or more server responses to the one or more network devices.
The servers 102 comprises one or more server network devices or machines capable of operating one or more Web-based and/or non Web-based applications that may be accessed by other network devices (e.g. client devices, network traffic management devices) in the environment 100. The servers 102 can provide web objects and other data representing requested resources, such as particular Web page(s), image(s) of physical objects, JavaScript and any other objects, that are responsive to the client devices' requests. It should be noted that the servers 102 may perform other tasks and provide other types of resources. It should be noted that while only two servers 102 are shown in the environment 100 depicted in
It is also contemplated that one or more of the servers 102 may comprise a cluster of servers managed by one or more network traffic management devices 110. In one or more aspects, the servers 102 may be configured implement to execute any version of Microsoft® IIS server, RADIUS server, DIAMETER server and/or Apache® server, although other types of servers may be used. Further, additional servers may be coupled to the network 108 and many different types of applications may be available on servers coupled to the network 108.
Network 108 comprises a publicly accessible network, such as the Internet, which is connected to client devices 106. However, it is contemplated that the network 108 may comprise other types of private and public networks that include other devices. Communications, such as requests from clients 106 and responses from servers 102, take place over the network 108 according to standard network protocols, such as the HTTP, UDP and/or TCP/IP protocols in this example. However, the principles discussed herein are not limited to this example and can include other protocols. Further, it should be appreciated that network 108 may include local area networks (LANs), wide area networks (WANs), direct connections and any combination thereof, as well as other types and numbers of network types. On an interconnected set of LANs or other networks, including those based on differing architectures and protocols, routers, switches, hubs, gateways, bridges, cell towers and other intermediate network devices may act as links within and between LANs and other networks to enable messages and other data to be sent from and to network devices. Also, communication links within and between LANs and other networks typically include twisted wire pair (e.g., Ethernet), coaxial cable, analog telephone lines, full or fractional dedicated digital lines including T1, T2, T3, and T4, Integrated Services Digital Networks (ISDNs), Digital Subscriber Lines (DSLs), wireless links including satellite links and other communications links known to those skilled in the relevant arts. In essence, the network 108 includes any communication method by which data may travel between client devices 106, Web application servers 102 and network traffic management device 110, and the like.
LAN 104 comprises a private local area network that allows communications between the one or more network traffic management devices 110 and one or more servers 102 in the secured network. It is contemplated, however, that the LAN 104 may comprise other types of private and public networks with other devices. Networks, including local area networks, besides being understood by those skilled in the relevant arts, have already been generally described above in connection with network 108 and thus will not be described further.
As per the TCP/IP protocols, requests from the requesting client devices 106 may be sent as one or more streams of data packets over network 108 to the network traffic management device 110 and/or the servers 102. Such protocols can be utilized by the client devices 106, network traffic management device 110 and the servers 102 to establish connections, send and receive data for existing connections, and the like. It is to be understood that the one or more servers 102 may be hardware and/or software, and/or may represent a system with multiple servers that may include internal or external networks.
As shown in the example environment 100 depicted in
Generally, the network traffic management device 110 manages network communications, which may include one or more client requests and server responses, via the network 108 between the client devices 106 and one or more of the servers 102. Client requests may be destined for one or more servers 102 and may take the form of one or more data packets sent over the network 108. The client requests pass through one or more intermediate network devices and/or intermediate networks, until they ultimately reach the one or more network traffic management devices 110. In any case, the network traffic management device 110 may manage the network communications by performing several network traffic related functions involving the communications.
Device processor 200 of the network traffic management device 110 comprises one or more microprocessors configured to execute computer/machine readable and executable instructions stored in the device memory 218. Such instructions, when executed by one or more processors 200, implement general and specific functions of the network traffic management device 110. In addition, the instructions, when executed, implement the policy module 210 to perform one or more portions of the novel processes described in more detail below. It is understood that the processor 200 may comprise other types and/or combinations of processors, such as digital signal processors, micro-controllers, application specific integrated circuits (“ASICs”), programmable logic devices (“PLDs”), field programmable logic devices (“FPLDs”), field programmable gate arrays (“FPGAs”), and the like. The processor 200 is programmed or configured according to the teachings as described and illustrated herein.
Device I/O interfaces 202 comprise one or more user input and output device interface mechanisms. The interface may include a computer keyboard, mouse, display device, and the corresponding physical ports and underlying supporting hardware and software to enable the network traffic management device 110 to communicate with other network devices in the environment 100. Such communications may include accepting user data input and providing user output, although other types and numbers of user input and output devices may be used. Additionally or alternatively, as will be described in connection with network interface 204 below, the network traffic management device 110 may communicate with the outside environment for certain types of operations (e.g., configuration) via one or more network management ports.
Network interface 204 comprises one or more mechanisms that enable the network traffic management device 110 to engage in network communications over the LAN 104 and the network 108 using one or more of a number of protocols, such as TCP/IP, HTTP, UDP, RADIUS and DNS. However, it is contemplated that the network interface 204 may be constructed for use with other communication protocols and types of networks. Network interface 204 is sometimes referred to as a transceiver, transceiving device, or network interface card (NIC), which transmits and receives network data packets to one or more networks, such as the LAN 104 and the network 108. In an example, where the network traffic management device 110 includes more than one device processor 200 (or a processor 200 has more than one core), each processor 200 (and/or core) may use the same single network interface 204 or a plurality of network interfaces 204. Further, the network interface 204 may include one or more physical ports, such as Ethernet ports, to couple the network traffic management device 110 with other network devices, such as servers 102. Moreover, the interface 204 may include certain physical ports dedicated to receiving and/or transmitting certain types of network data, such as device management related data for configuring the network traffic management device 110 or client request/server response related data.
Bus 208 may comprise one or more internal device component communication buses, links, bridges and supporting components, such as bus controllers and/or arbiters. The bus 208 enables the various components of the network traffic management device 110, such as the processor 200, device I/O interfaces 202, network interface 204, and device memory 206 to communicate with one another. However, it is contemplated that the bus 208 may enable one or more components of the network traffic management device 110 to communicate with components in other devices as well. Example buses include HyperTransport, PCI, PCI Express, InfiniBand, USB, Firewire, Serial ATA (SATA), SCSI, IDE and AGP buses. However, it is contemplated that other types and numbers of buses may be used, whereby the particular types and arrangement of buses will depend on the particular configuration of the network traffic management device 110.
Device memory 206 comprises computer readable media, namely computer readable or processor readable storage media, which are examples of machine-readable storage media. Computer readable storage/machine-readable storage media may include volatile, nonvolatile, removable, and non-removable media implemented in any method or technology for storage of information. Such storage media includes computer readable/machine-executable instructions, data structures, program modules, or other data, which may be obtained and/or executed by one or more processors, such as device processor 200. Examples of computer readable storage media include RAM, BIOS, ROM, EEPROM, flash/firmware memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the information, which can be accessed by a computing or specially programmed device, such as the network traffic management device 110.
Policy module 210 is depicted in
As shown in
In an aspect, the user interface utilizes a Track Site Changes (TSC) mechanism which allows the user to manage policy changes in the web application with minimal effort. The TSC mechanism is configured to allow the user to enable an automatic TSC mode, but only from trusted IPs, because trusted traffic is less of a security concern than untrusted traffic. In particular, the user interface will provide two selectable flags for Track Site Changes, whereby one flag will turn on the TSC mechanism for trusted traffic (only traffic from trusted IPs will “loosen” the policy), whereas the other flag will turn on the TSC mechanism for untrusted traffic.
With regard to
The policy builder 216 is configured to receive traffic parsing information from the policy enforcer 214. This results in an optimized implementation of the policy builder that collects statistics and performs heuristics without performing redundant parsing, policy model analysis and/or updating. The policy builder 216 is an event-driven component which reacts to a number of different events which occur in the system. In an aspect, the policy builder 216 accounts for configuration update events such as policy changes or configuration changes in management processes which control the security policies in the application layer. As stated above, the policy builder 216 also accounts for traffic data information provided by the policy enforcer 214 such as parsed request and response data, statistics data and information regarding application elements that are known and/or unknown. Further, the policy builder 216 operates with the user interface module 212 to allow the network administrator to view status requests and updates in the user interface. The policy builder 216 also operates with the database access manager 218 to store changes in the security policies in an audit log in database(s) 220.
The policy builder 216 uses a set of rules provided by the network administrator, via the user interface, which governs when policy changes are to be made. As stated above, the policy builder 216 allows the user to set and control rules via the user interface in order to configure the sensitivity of the policy builder 216. The rules can be categorized based on whether the requests and responses are trusted or untrusted. In an aspect, the policy builder 216 may be programmed to react to learn and accept web application usage to be legitimate, based on the aforementioned rules, which can be configured separately for trusted and untrusted network traffic.
In an aspect, the policy module 210 allows the network administrator, via the user interface, to specify which security policy elements are to be considered. In an aspect, the policy module 210 allows the network administrator, via the user interface, to select one or more additional security options including, but not limited to, parameter levels, consideration of dynamic parameters, setting common specific settings to global settings, status code learning, maximum number of security policy elements, file types to be considered as wildcards and the like. In an aspect, the policy module 210 allows the network administrator, via the user interface, to define sensitivity rules for trusted and/or untrusted traffic as well as define which IP addresses are to be considered as trusted.
In an aspect, the policy builder 216 may be configured by the network administrator, via the user interface, to stabilize or tighten the security policy, irrespective if whether the entity had previously been accepted as legitimate. In an aspect, the policy builder 216 may be configured to one or more sensitivity rules to be more difficult to satisfy in order to ensure that the policy settings that were previously accepted as legitimate are given enough time to be validated. The above described inputs by the network administrator are utilized by the policy builder 216 as threshold conditions which the policy builder 216 uses when analyzing network traffic to determine whether the policy should be changed or modified.
As shown in
For example, for events occurring in the control plane, the policy builder 216 may update its internal configuration tables and/or policy statistics data based on its analysis. For traffic data events, the policy builder 216 may update its policy statistics data based on its analysis. For status view requests, the policy builder 216 may display the relevant policy statistics data in the user interface. This information is stored in the database(s) 220 and utilized by the policy enforcer 214 for enforcement on subsequent network traffic that is associated with the stored changed policy information.
Having thus described the basic concepts, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the examples. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes to any order except as may be specified in the claims. Accordingly, the invention is limited only by the following claims and equivalents thereto.
The present application claims the benefit of priority based on U.S. Provisional Patent Application Ser. No. 61/408,555, filed on Oct. 29, 2010, in the name of inventor Ephraim Dan, entitled “Automated Policy Builder”, all commonly owned herewith.
Number | Name | Date | Kind |
---|---|---|---|
3950735 | Patel | Apr 1976 | A |
4644532 | George et al. | Feb 1987 | A |
4897781 | Chang et al. | Jan 1990 | A |
4965772 | Daniel et al. | Oct 1990 | A |
5023826 | Patel | Jun 1991 | A |
5053953 | Patel | Oct 1991 | A |
5299312 | Rocco, Jr. | Mar 1994 | A |
5327529 | Fults et al. | Jul 1994 | A |
5367635 | Bauer et al. | Nov 1994 | A |
5371852 | Attanasio et al. | Dec 1994 | A |
5406502 | Haramaty et al. | Apr 1995 | A |
5475857 | Dally | Dec 1995 | A |
5517617 | Sathaye et al. | May 1996 | A |
5519694 | Brewer et al. | May 1996 | A |
5519778 | Leighton et al. | May 1996 | A |
5521591 | Arora et al. | May 1996 | A |
5528701 | Aref | Jun 1996 | A |
5581764 | Fitzgerald et al. | Dec 1996 | A |
5596742 | Agarwal et al. | Jan 1997 | A |
5606665 | Yang et al. | Feb 1997 | A |
5611049 | Pitts | Mar 1997 | A |
5663018 | Cummings et al. | Sep 1997 | A |
5752023 | Choucri et al. | May 1998 | A |
5761484 | Agarwal et al. | Jun 1998 | A |
5768423 | Aref et al. | Jun 1998 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5790554 | Pitcher et al. | Aug 1998 | A |
5802052 | Venkataraman | Sep 1998 | A |
5812550 | Sohn et al. | Sep 1998 | A |
5825772 | Dobbins et al. | Oct 1998 | A |
5875296 | Shi et al. | Feb 1999 | A |
5892914 | Pitts | Apr 1999 | A |
5892932 | Kim | Apr 1999 | A |
5919247 | Van Hoff et al. | Jul 1999 | A |
5936939 | Des Jardins et al. | Aug 1999 | A |
5941988 | Bhagwat et al. | Aug 1999 | A |
5946690 | Pitts | Aug 1999 | A |
5949885 | Leighton | Sep 1999 | A |
5951694 | Choquier et al. | Sep 1999 | A |
5959990 | Frantz et al. | Sep 1999 | A |
5974460 | Maddalozzo, Jr. et al. | Oct 1999 | A |
5983281 | Ogle et al. | Nov 1999 | A |
5988847 | McLaughlin et al. | Nov 1999 | A |
6006260 | Barrick, Jr. et al. | Dec 1999 | A |
6006264 | Colby et al. | Dec 1999 | A |
6026452 | Pitts | Feb 2000 | A |
6028857 | Poor | Feb 2000 | A |
6051169 | Brown et al. | Apr 2000 | A |
6078956 | Bryant et al. | Jun 2000 | A |
6085234 | Pitts et al. | Jul 2000 | A |
6092196 | Reiche | Jul 2000 | A |
6108703 | Leighton et al. | Aug 2000 | A |
6111876 | Frantz et al. | Aug 2000 | A |
6128279 | O'Neil et al. | Oct 2000 | A |
6128657 | Okanoya et al. | Oct 2000 | A |
6170022 | Linville et al. | Jan 2001 | B1 |
6178423 | Douceur et al. | Jan 2001 | B1 |
6182139 | Brendel | Jan 2001 | B1 |
6192051 | Lipman et al. | Feb 2001 | B1 |
6233612 | Fruchtman et al. | May 2001 | B1 |
6246684 | Chapman et al. | Jun 2001 | B1 |
6253226 | Chidambaran et al. | Jun 2001 | B1 |
6253230 | Couland et al. | Jun 2001 | B1 |
6263368 | Martin | Jul 2001 | B1 |
6289012 | Harrington et al. | Sep 2001 | B1 |
6298380 | Coile et al. | Oct 2001 | B1 |
6327622 | Jindal et al. | Dec 2001 | B1 |
6343324 | Hubis et al. | Jan 2002 | B1 |
6347339 | Morris et al. | Feb 2002 | B1 |
6360270 | Cherkasova et al. | Mar 2002 | B1 |
6374300 | Masters | Apr 2002 | B2 |
6396833 | Zhang et al. | May 2002 | B1 |
6430562 | Kardos et al. | Aug 2002 | B1 |
6434081 | Johnson et al. | Aug 2002 | B1 |
6484203 | Porras et al. | Nov 2002 | B1 |
6484261 | Wiegel | Nov 2002 | B1 |
6490624 | Sampson et al. | Dec 2002 | B1 |
6510135 | Almulhem et al. | Jan 2003 | B1 |
6510458 | Berstis et al. | Jan 2003 | B1 |
6519643 | Foulkes et al. | Feb 2003 | B1 |
6601084 | Bhaskaran et al. | Jul 2003 | B1 |
6636503 | Shiran et al. | Oct 2003 | B1 |
6636894 | Short et al. | Oct 2003 | B1 |
6650640 | Muller et al. | Nov 2003 | B1 |
6650641 | Albert et al. | Nov 2003 | B1 |
6654701 | Hatley | Nov 2003 | B2 |
6683873 | Kwok et al. | Jan 2004 | B1 |
6691165 | Bruck et al. | Feb 2004 | B1 |
6708187 | Shanumgam et al. | Mar 2004 | B1 |
6742045 | Albert et al. | May 2004 | B1 |
6751663 | Farrell et al. | Jun 2004 | B1 |
6754228 | Ludwig | Jun 2004 | B1 |
6760775 | Anerousis et al. | Jul 2004 | B1 |
6772219 | Shobatake | Aug 2004 | B1 |
6779039 | Bommareddy et al. | Aug 2004 | B1 |
6781986 | Sabaa et al. | Aug 2004 | B1 |
6798777 | Ferguson et al. | Sep 2004 | B1 |
6816901 | Sitaraman et al. | Nov 2004 | B1 |
6829238 | Tokuyo et al. | Dec 2004 | B2 |
6868082 | Allen, Jr. et al. | Mar 2005 | B1 |
6876629 | Beshai et al. | Apr 2005 | B2 |
6876654 | Hegde | Apr 2005 | B1 |
6888836 | Cherkasova | May 2005 | B1 |
6928082 | Liu et al. | Aug 2005 | B2 |
6947985 | Hegli et al. | Sep 2005 | B2 |
6950434 | Viswanath et al. | Sep 2005 | B1 |
6954780 | Susai et al. | Oct 2005 | B2 |
6957272 | Tallegas et al. | Oct 2005 | B2 |
6975592 | Seddigh et al. | Dec 2005 | B1 |
6987763 | Rochberger et al. | Jan 2006 | B2 |
7007092 | Peiffer | Feb 2006 | B2 |
7113993 | Cappiello et al. | Sep 2006 | B1 |
7139792 | Mishra et al. | Nov 2006 | B1 |
7228422 | Morioka et al. | Jun 2007 | B2 |
7287082 | O'Toole, Jr. | Oct 2007 | B1 |
7308703 | Wright et al. | Dec 2007 | B2 |
7321926 | Zhang et al. | Jan 2008 | B1 |
7333999 | Njemanze | Feb 2008 | B1 |
7343413 | Gilde et al. | Mar 2008 | B2 |
7349391 | Ben-Dor et al. | Mar 2008 | B2 |
7454480 | Labio et al. | Nov 2008 | B2 |
7490162 | Masters | Feb 2009 | B1 |
7500269 | Huotari et al. | Mar 2009 | B2 |
7526541 | Roese et al. | Apr 2009 | B2 |
7558197 | Sindhu et al. | Jul 2009 | B1 |
7580971 | Gollapudi et al. | Aug 2009 | B1 |
7624424 | Morita et al. | Nov 2009 | B2 |
7801978 | Susai et al. | Sep 2010 | B1 |
7908314 | Yamaguchi et al. | Mar 2011 | B2 |
8130650 | Allen, Jr. et al. | Mar 2012 | B2 |
8380854 | Szabo | Feb 2013 | B2 |
8447871 | Szabo | May 2013 | B1 |
20010023442 | Masters | Sep 2001 | A1 |
20020059428 | Susai et al. | May 2002 | A1 |
20020138615 | Schmeling | Sep 2002 | A1 |
20020161913 | Gonzalez et al. | Oct 2002 | A1 |
20020198993 | Cudd et al. | Dec 2002 | A1 |
20030046291 | Fascenda | Mar 2003 | A1 |
20030070069 | Belapurkar et al. | Apr 2003 | A1 |
20030086415 | Bernhard et al. | May 2003 | A1 |
20030108052 | Inoue et al. | Jun 2003 | A1 |
20030145062 | Sharma et al. | Jul 2003 | A1 |
20030145233 | Poletto et al. | Jul 2003 | A1 |
20030225485 | Fritz et al. | Dec 2003 | A1 |
20040117493 | Bazot et al. | Jun 2004 | A1 |
20040267920 | Hydrie et al. | Dec 2004 | A1 |
20040268358 | Darling et al. | Dec 2004 | A1 |
20050004887 | Igakura et al. | Jan 2005 | A1 |
20050021736 | Carusi et al. | Jan 2005 | A1 |
20050044213 | Kobayashi et al. | Feb 2005 | A1 |
20050052440 | Kim et al. | Mar 2005 | A1 |
20050055435 | Gbadegesin et al. | Mar 2005 | A1 |
20050122977 | Lieberman | Jun 2005 | A1 |
20050154837 | Keohane et al. | Jul 2005 | A1 |
20050187866 | Lee | Aug 2005 | A1 |
20050262238 | Reeves et al. | Nov 2005 | A1 |
20060031520 | Bedekar et al. | Feb 2006 | A1 |
20060059267 | Cugi et al. | Mar 2006 | A1 |
20060156416 | Huotari et al. | Jul 2006 | A1 |
20060161577 | Kulkarni et al. | Jul 2006 | A1 |
20060171365 | Borella | Aug 2006 | A1 |
20060233106 | Achlioptas et al. | Oct 2006 | A1 |
20060242300 | Yumoto et al. | Oct 2006 | A1 |
20070016662 | Desai et al. | Jan 2007 | A1 |
20070064661 | Sood et al. | Mar 2007 | A1 |
20070083646 | Miller et al. | Apr 2007 | A1 |
20070107048 | Halls et al. | May 2007 | A1 |
20070118879 | Yeun | May 2007 | A1 |
20070174491 | Still et al. | Jul 2007 | A1 |
20070297551 | Choi | Dec 2007 | A1 |
20080034136 | Ulenas | Feb 2008 | A1 |
20080133518 | Kapoor et al. | Jun 2008 | A1 |
20080134311 | Medvinsky et al. | Jun 2008 | A1 |
20080148340 | Powell et al. | Jun 2008 | A1 |
20080148381 | Aaron | Jun 2008 | A1 |
20080201599 | Ferraiolo et al. | Aug 2008 | A1 |
20080256224 | Kaji et al. | Oct 2008 | A1 |
20080301760 | Lim | Dec 2008 | A1 |
20090049230 | Pandya | Feb 2009 | A1 |
20090125625 | Shim et al. | May 2009 | A1 |
20090138749 | Moll et al. | May 2009 | A1 |
20090141891 | Boyen et al. | Jun 2009 | A1 |
20090228956 | He et al. | Sep 2009 | A1 |
20090287935 | Aull et al. | Nov 2009 | A1 |
20090328219 | Narayanaswamy | Dec 2009 | A1 |
20100023582 | Pedersen et al. | Jan 2010 | A1 |
20100122091 | Huang et al. | May 2010 | A1 |
20100150154 | Viger et al. | Jun 2010 | A1 |
20100192201 | Shimoni | Jul 2010 | A1 |
20100211658 | Hoogerwerf | Aug 2010 | A1 |
20100242092 | Harris et al. | Sep 2010 | A1 |
20100251330 | Kroeselberg et al. | Sep 2010 | A1 |
20100325277 | Muthiah et al. | Dec 2010 | A1 |
20110040889 | Garrett et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110066718 | Susai et al. | Mar 2011 | A1 |
20110173295 | Bakke et al. | Jul 2011 | A1 |
20110282997 | Prince et al. | Nov 2011 | A1 |
20110321122 | Mwangi et al. | Dec 2011 | A1 |
20120066489 | Ozaki et al. | Mar 2012 | A1 |
20120101952 | Raleigh et al. | Apr 2012 | A1 |
20120317266 | Abbott | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
0744850 | Nov 1996 | EP |
WO 9114326 | Sep 1991 | WO |
WO 9505712 | Feb 1995 | WO |
WO 9709805 | Mar 1997 | WO |
WO 9745800 | Dec 1997 | WO |
WO 9905829 | Feb 1999 | WO |
WO 9906913 | Feb 1999 | WO |
WO 9910858 | Mar 1999 | WO |
WO 9939373 | Aug 1999 | WO |
WO 9964967 | Dec 1999 | WO |
WO 0004422 | Jan 2000 | WO |
WO 0004458 | Jan 2000 | WO |
WO2008067758 | Dec 2008 | WO |
Entry |
---|
“A Process for Selective Routing of Servlet Content to Transcoding Modules,” Research Disclosure 422124, Jun. 1999, pp. 889-890, IBM Corporation. |
F5 Networks, Inc., “BIG-IP Controller with Exclusive OneConnect Content Switching Feature Provides a Breakthrough System for Maximizing Server and Network Performance,” Press Release, May 8, 2001, 2 pages, Las Vegas, Nevada. |
Crescendo Networks, “Application Layer Processing (ALP),” 2003-2009, pp. 168-186, Chapter 9, CN-5000E/5500E, Foxit Software Company. |
Fielding et al., “Hypertext Transfer Protocol—HTTP/1.1,” Network Working Group, RFC: 2068, Jan. 1997, pp. 1-162. |
Fielding et al., “Hypertext Transfer Protocol—HTTP/1.1,” Network Working Group, RFC: 2616, Jun. 1999, pp. 1-176, The Internet Society. |
Floyd et al., “Random Early Detection Gateways for Congestion Avoidance,” Aug. 1993, pp. 1-22, IEEE/ACM Transactions on Networking, California. |
Hochmuth, Phil, “F5, CacheFlow pump up content-delivery lines,” Network World Fusion, May 4, 2001, 1 page, Las Vegas, Nevada. |
Schaefer, Ken, “IIS and Kerberos Part 5—Protocol Transition, Constrained Delegation, S4U2S and S402P,” Jul. 18, 2007, 21 pages, http://www.adopenstatic.com/cs/blogs/ken/archive/2007/07/19/8460.aspx. |
“Servlet/Applet/HTML Authentication Process With Single Sign-On,” Research Disclosure 429128, Jan. 2000, pp. 163-164, IBM Corporation. |
“Traffic Surges; Surge Queue; Netscaler Defense,” 2005, PowerPoint Presentation, slides 1-12, Citrix Systems, Inc. |
Williams et al., “Forwarding Authentication,” The Ultimate Windows Server 2003 System Administrator's Guide, 2003, 2 pages, Figure 10.7, Addison-Wesley Professional, Boston, Massachusetts. |
“Windows Server 2003 Kerberos Extensions,” Microsoft TechNet, 2003 (Updated Jul. 31, 2004), http;//technet.microsoft.com/en-us/library/cc738207, Microsoft Corporation. |
International Search Report and Opinion dated May 4, 2012. |
Abad, C., et al., “An Analysis on the Schemes for Detecting and Preventing ARP Cache Poisoning Attacks”, IEEE, Computer Society, 27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07), 2007, pp. 1-8. |
OWASP, “Testing for Cross site scripting”, OWASP Testing Guide v2, Table of Contents, Feb. 24, 2011, pp. 1-5, (www.owasp.org/index.php/Testing—for—Cross—site—scripting). |
International Search Report and the Written Opinion, for International Patent Application No. PCT/US2013/026615, Date of Mailing: Jul. 4, 2013. |
F5 Networks Inc., “Configuration Guide for Local Traffic Management,” F5 Networks Inc., Jan. 2006, version 9.2.2, 406 pgs. |
MacVittie, Lori, “Message-Based Load Balancing,” Technical Brief, Jan. 2010, pp. 1-9, F5 Networks, Inc. |
Number | Date | Country | |
---|---|---|---|
20120278851 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61408555 | Oct 2010 | US |