Not applicable.
The present invention relates to an automated seat and/or lid assembly for a toilet. More particularly, it relates to the electronic control of seat and/or lid positioning relative to the bowl.
The typical toilet includes a pair of bowl attachments, namely a seat and a lid, which can be raised and lowered over the toilet bowl. Raising and lowering the seat and/or lid presents a challenge for many. Certain disabilities make the task of lifting the lid of a toilet difficult to accomplish. For example, where one is confined to a wheelchair raising and lowering the lid can be problematic when there is insufficient space around the toilet to allow easy wheelchair access. Many other circumstances and disabilities, such as having arthritis of the hands, arms, or back, impede a person's ability to easily and comfortably alter the position of the seat and lid of a typical toilet. For able-body persons, changing the position of the seat and lid is often perceived as an unsanitary inconvenience.
To address this, some devices incorporate a foot pedal to raise the lid of a toilet. While this may eliminate the need to use arms or hands, the technique requires that a person balance on one foot while applying a downward force with the other.
Other devices incorporate detectors to sense when a person is approaching or leaving the toilet. This approach may have difficulty accommodating persons in wheel chairs and children due to the placement and/or calibration of the detectors. Furthermore, the detectors are susceptible to erroneous signals as they may become obstructed by any one of the numerous items commonly found in a bathroom.
Still others have incorporated buttons that are linked to a means of automating the bowl attachment; however, the buttons are typically located on the periphery of the toilet bowl or rear deck. As a result, it can be difficult or inconvenient to reach the buttons.
Lastly, erroneous activation is a concern when the operation of the bowl attachment is automated. If the bowl attachment is activated while a person or object is on the seat and/or lid, the person may be startled, the object broken, or the automation hardware damaged. Many of the current detectors require line-of-sight to detect the presence of an object near the toilet. As a result, the detectors may become obstructed leading to erratic operation or an object may be out of the detectors line-of-sight yet still obstruct the bowl attachment.
A need thus exists for an automated attachment assembly for a toilet providing a sanitary, safe system for raising and lowering the seat and/or lid.
The present invention is an automated attachment assembly, such as a seat and/or lid, for a toilet. The invention includes switch automation (i.e., wherein movement of a bowl attachment is initiated via a switch) and manual-urging automation (i.e., wherein movement of a bowl attachment is initiated via manual urging by the user). An automated attachment assembly in accordance with the present invention may be configured to provide both switch and manual-urging automation concomitantly. Furthermore, the invention includes a method of identifying manual movement of a bowl attachment and of assisting the movement of the bowl attachment. Lastly, the invention includes an object sensor incorporated with a bowl attachment to detect the presence or absence of an object near the bowl attachment.
In one aspect, the invention provides an automated attachment assembly for a toilet, comprising a bowl attachment that is pivotable between a first position and a second position, a switch mounted to the bowl attachment, and an actuator that may be activated by the switch to pivot the bowl attachment between the first and second positions.
In another aspect the invention provides an automated cover assembly for a toilet, comprising a seat and lid assembly that is pivotally mounted with respect to one another to be moveable into three configurations; namely, a first configuration in which the seat and the lid are lowered, a second configuration in which the seat is lowered and the lid is raised, and a third configuration in which the seat and lid are raised. A switch is mounted to the seat, the lid, or both. Also, an actuator is activated by the switch and coupled to the seat and lid assembly for selectively moving the seat and lid assembly into the first, second, and third configurations.
In still another aspect the invention provides a power assisted attachment assembly for a toilet, comprising a bowl attachment being pivotable between a first position and a second position, and an actuator operationally coupled to the bowl attachment to pivot the bowl attachment between the first and second positions. The actuator pivots the bowl attachment toward the first position or second position in response to a manual urging by a user to the bowl attachment toward the first position or second position respectively.
In yet a further aspect, the invention provides an automated cover for a toilet, comprising a seat and lid assembly pivotally mounted with respect to one another to be moveable into three configurations, a first configuration in which the seat and the lid are lowered, a second configuration in which the seat is lowered and the lid is raised, and a third configuration in which the seat and lid are raised. An actuator is coupled to the seat and lid assembly for selectively moving the seat and lid assembly into the first, second, and third configurations in response to a manual urging by a user to the seat and/or the lid.
In another aspect, the invention provides a method of moving a bowl attachment from a first position to a second position, comprising the steps of identifying manual movement of the bowl attachment from the first to the second position and assisting movement of the bowl assembly from the first to the second position.
In yet a further aspect, the invention provides an object sensor for a toilet, comprising a bowl attachment that is pivotable between a first position and a second position, and a capacitive sensor coupled to the bowl attachment for sensing the presence of an object adjacent to the bowl attachment.
These and other advantages of the invention will be apparent from the detailed description and drawings. What follows are one or more example embodiments of the present invention. To assess the full scope of the invention the claims should be looked to, as the example embodiments are not intended as the only embodiments within the scope of the invention.
The present invention includes an automated attachment assembly for a toilet. While the example embodiment describes a toilet comprising multiple bowl attachments (e.g., a lid and a seat), other combinations are within the scope of the invention. For example, the “seat” may be integral with the bowl, the lid may be excluded, and the like. The invention is compatible with various shapes and sizes of toilet bowls and bowl attachments. Additionally, the toilet of the example embodiment is a tank-less, pump powered flush toilet, however, the invention is equally applicable to tank toilets, valve toilets, and the like.
Referring now to the drawings,
A pair of switch assemblies 28 provide an input for actuating the pivotal movement of the seat 14 and lid 16 when the attachment assembly 10 is configured for switch automation. A single switch assembly 28 may be used, however, a pair of switch assemblies 28 is preferable to provide additional control during switch automation as will be described in detail below. The switch assemblies 28 are preferably mounted to the lid 16 at a portion opposite the base assembly 12, however, one or more switch assemblies 28 may be mounted to the seat 14, or any portion of the bowl attachments. Mounting the switch assemblies 28 to the front of the lid 16, near the distal end of the bowl attachment, provides convenient, sanitary access to the switch assemblies 28. It is of note that switch assemblies 28 may not be present when the attachment assembly 10 is configured for manual-urging automation (i.e., to pivot the bowl attachments in response to a manual urging from a user); however, the switch automation and manual-urging automation are preferably configured to operate concomitantly.
A pair of option selection switch assemblies 30 are located along the hinge axis 22 at the ends of the base assembly 12. In the example embodiment, each option selection switch assembly 30 includes a pair of selection switches 32. The selection switches 32 may control such functions as activating and deactivating a bowl light, bowl attachment automation, bowl attachment heating, object sensing, and courtesy flushing. In the example embodiment, the selection switches 32 include an automatic flush switch 32A to toggle the automatic flushing feature that flushes the toilet 20 upon closing the seat 14 and the lid 16, a bowl light switch 32B to toggle on and off a bowl light (not shown), an automated attachment switch 32C to toggle on and off the bowl attachment opening and closing assistance/automation, and a bowl attachment heater switch 32D to cycle through the various levels of heating available.
The selection switches 32 may include illuminated feedback. For example, the selection switches 32 may be illumined green when active and red when inactive, or change from yellow to orange to red as the level of heating is increased. Lastly, the option selection switch assemblies 30 may be mounted directly to the bowl attachments, e.g., the seat 14 and the lid 16, but are preferably mounted to the base assembly 12 to prevent accidental switching.
An exploded view of the main components of the attachment assembly 10 is shown in
The lower housing 36 has three electrical conduits extending from its bottom surface, including a main power lead 38 for supplying power to the attachment assembly 10. The main power lead 38 is preferably in communication with a power source (not shown), such as a one hundred and ten volt, sixty Hertz line that is common in the United States. The two remaining conduits are a pump communication lead 40 and a courtesy flush lead 42. The pump communication lead 40 is operationally coupled to an electric pump (not shown) for expelling the contents of the toilet bowl 26. The courtesy flush lead 42 is coupled to a courtesy flush switch 43 allowing the user to flush the toilet 20 when desired and independent of any automated preferences. As noted above, the invention may be configured to operate with a pump-less, tank-type toilet; in that scenario, the communication lead 40 and courtesy flush lead 42 may be coupled to a valve actuator (not shown) for flushing the toilet 20.
A logic controller 44, shown simplified in
An upper housing 46 defines a cavity 49 and a pair of hinge mounts 50 aligned along the hinge axis 22. The cavity 49 houses a seat motor 47 and a lid motor 48 configured to pivotally drive the seat 14 and lid 16 respectively. The seat motor 47 is operationally coupled to the logic controller 44 by the seat motor connector 52 and the lid motor 48 is operationally coupled to the logic controller 44 by the lid motor connector 54. In the example embodiment, the seat motor 47 and lid motor 48 are axially aligned along a motor axis 56 that is offset parallel to the hinge axis 22.
The lower housing 36 and the upper housing 46 may be aligned with alignment pins 37 and secured by fasteners (not shown), such as screws. The lower housing 36 and the upper housing 46 of the base assembly 12 are made of molded plastic in the example embodiment, but may be constructed of metal, composites, and the like, and cast, machined, or produced from various manufacturing techniques.
The seat motor 47 and lid motor 48 are operationally coupled to pivot the seat 14 and lid 16 respectively. The seat motor 47 engages the input of seat gears 58. The seat gears 58 include a torsion spring (not shown) biasing the seat gears 58 to the open or raised seat 14 position. This reduces the torque required by the seat motor 47 while raising the seat 14. Similarly, the lid motor 48 engages the input of lid gears 60 and operates to open and close the lid 16. The seat gears 58 and lid gears 60 include planetary gears and are available from Johnson Electric North America, Inc., of Shelton, Conn.
With specific reference to
To pivot or move the bowl attachments, the example embodiment employs an actuator in the form of an electric motor and a gear train; however, various alterations are within the scope of the present invention. For example, a single actuator in conjunction with a clutch system could be used to pivot the seat 14 and the lid 16. Alternatively, a hydraulic actuator in combination with a power screw could be configured to raise and lower the seat 14 and lid 16. Where an electric actuator is used, such as an electric motor, the type (e.g., A.C. or D.C.), torque rating, maximum rotational velocity, and the like are application specific and may be tailored to the size, weight, and desired operating speed of the bowl attachments. Many other variations exist and are within the scope of the present invention.
Until the rotational extremes of the bowl attachments (e.g., fully opened and fully closed) are stored in the logic controller 44 as a result of the initiation sequence (described below), the combination of stops 72, grooves 74, and current monitoring of the motors 47, 48 limits the rotational extremes of the seat 14 and lid 16 about the hinge axis 22. Each hinge mount 50 includes a pair of rotational stops 72 extending inward from the hinge mount 50 and are preferably spaced one hundred and eighty degrees apart. Each pair of rotational stops 72 rides in mating, arcuate grooves 74 formed in the seat 14 and lid 16. When the bowl attachments reach a rotational extreme, the stops 72 bear against the extremes of the mating grooves 74 causing the motors 47, 48 to draw an excess amount of current. The logic controller 44 is programmed to monitor the current draw of the motors 47, 48 and de-energize the motors 47, 48 when the motors 47, 48 exceed a predetermined maximum current. Preferably, however, the logic controller 44 is programmed to determine the rotational extremes of the bowl attachments during the initiation sequence, thus minimizing the wear on the motors 47, 48 during the high current draws. The current monitoring capability of the logic controller 44 is also incorporated in the manual-urging automation and pinch protection scenarios described in detail below.
The pivotal movement of the seat 14 and lid 16, either raising or lowering, is monitored by seat movement sensors 51 and lid movement sensors 53, respectively. As shown most clearly in
While the example embodiment utilizes Hall Effect sensors to monitor the rotation or pivoting of the seat 14 and lid 16, many other monitoring techniques are available. For example, optical based sensors may easily be incorporated and configured to sense the rotational direction of the seat 14 and lid 16.
With general reference to
The stepped down portion 94 of the inner bearing 86 extends partially into an outer bearing 96 that is housed in a cavity 98 formed in a lid hinge 100 extending rearwardly from a lid mount 102. The cavity 98 includes a bearing portion 104 and a clearance portion 106. Lid heater leads 108, lid object sensor leads 110, switch leads 112, and lid thermistor lead 152 are routed from the logic controller 44, through the lid drive shaft 64, through the lead opening 114 formed in the clearance portion 106 of the cavity 98 between the mounting tabs 154, and into the lid 16. The configuration of the seat hinge 78, lid hinge 100, inner bearing 86, and outer bearing 96 allows the seat 14 and lid 16 to rotate relative to the other about the hinge axis 22 without binding on the seat heater leads 88, seat object sensor leads 90, seat thermistor lead 138, lid heater leads 108, lid object sensor leads 110, lid thermistor lead 152, or switch leads 112.
A partial cross-section of the bowl attachments is shown in
The elements and construction of the seat 14 are illustrated in
The seat heater 116 includes a thermal fuse 132 to prevent damage to the logic controller 44 should the seat heating elements 118 become damaged and the temperature of the seat 14 exceed approximately one hundred and sixty degrees Fahrenheit. Additionally, a thermistor 136 is housed within the seat 14 to monitor the temperature of the seat 14 and communicate the temperature to the logic controller 44 that in turn adjusts the power sent to the seat heating elements 118.
The seat object sensor 120 is capable of sensing the presence, or absence, of an object that is located adjacent or near the seat 14 and is preferably a tuned capacitive sensor circuit that is operationally coupled to the logic controller 44. As an object encounters the seat 14, for example, the hand of a user, the capacitance of the seat object sensor 120 is altered. This change in capacitance is monitored by the logic controller 44 and used as an input to the programmed logic of the logic controller 44. For example, assuming the seat 14 is in the lowered position and the lid 16 is in the raised position, if the seat object sensor 120 senses an object adjacent the seat 14, the logic controller 44 may disable the switch assemblies 28 to prevent the object from being pinched by the lid 16 or from the seat 14 attempting to pivot to the raised position with an object thereon and potentially damaging the seat motor 47. In the example embodiment, the seat object sensor 120 is operationally coupled with the seat heating elements 118, meaning that the logic controller 44 is programmed to monitor the capacitance of the heating elements 118 and alter the operational logic accordingly (e.g., prevent the seat 14 from attempting to raise when an object is sensed on the seat 14).
It is of note that the seat object sensor 120, while depicted in the example embodiment as a being integrated with the seat heater 116, may be configured to be a variety of conductive elements separate from the seat heater 116. For example, the seat object sensor (and object sensors of the present invention in general) may comprise a conductive element (e.g., a foil element) sandwiched between the lower seat portion 142 and upper seat portion 144, similar to the placement of the seat heater 116. Alternatively, the object sensor 120 could comprise a sprayed-on electrically conductive coating or paint that is coupled to the logic controller 44 where changes in capacitance are monitored. In yet another variation, the seat 14 itself could be made of an electrically conductive material, which is then coupled to the logic controller 44 and monitored for changes in capacitance. These non-exhaustive variations are within the scope of the present invention.
Additionally, in certain circumstances, the object sensor 120 need not be coupled to, or only to, the logic controller 44 of the attachment assembly 10, but may instead be used to provide a signal indicating when the toilet 20 is in use to a separate logic controller. For example, in an assisted care facility a signal may be sent from an object sensor to a logic controller that then displays the status of the monitored toilets 20 to facility staff.
The various seat 14 component leads, i.e., the seat heater leads 88, seat thermistor leads 138, and the seat object sensor leads 90, when present, are routed through the opening 92 in the seat hinge 78 between seat mounting tabs 140 and proceed to the logic controller 44 where they are coupled to the logic controller 44 in a manner known by those having ordinary skill in the art.
An exploded view of a seat 14 in accordance with the example embodiment is shown in
Turning now to the lid 16, the elements and construction of the lid 16 are illustrated in
The switch assemblies 28 are housed in the channel 130 that is preferably formed around the periphery of the lid 16. In the example embodiment, the switch leads 112 are routed through an extruded plastic bumper 131, which is then pressed into the channel 130. The bumper 131 also acts as a cushion or annular standoff between the seat 14 and the lid 16. The lid heater leads 108, lid thermistor lead 152, lid object sensor leads 110, and switch leads 112 are routed through the opening 114 in the lid hinge 100 between lid mounting tabs 154, and proceed to the logic controller 44.
In contrast to the seat object sensor 120 that is integrated with the seat heater 116, the lid object sensor 128 comprises a conductive foil element that is integrally molded within the lid 16 and operationally coupled to the logic controller 44. The expansive conductive foil element allows the logic controller 44 to monitor the majority, if not all, of the lid 16 for nearby objects. Again, the lid object sensor 128 need not be integrally molded within the lid 16, but instead may be any of the variations discussed in reference to the seat object sensor (i.e., sandwiched between two portions of the lid 16, the lid 16 itself made of a conductive material, a conductive coating applied to the lid 16 and coupled to the logic controller 44, and the like).
Generally, the seat object sensor 120 and lid object sensor 128 are configured to prevent rotation of the bowl attachments, via either switch automation or manual-urging automation, when an object is adjacent the bowl attachments. This includes the scenario wherein a user is sitting atop the lid 16 when the seat 14 and lid 16 are in the closed positions. The lid object sensor 128 would sense the presence of a person sitting atop the lid 16 and disable the switches 158, 162 and thus motors 47, 48. As a second example, if a person is seated on the seat 14, accidental actuation of a switch 158, 162 will not cause the seat 14 to raise or cause the lid 16 to lower, because the object sensors 120, 128 would sense the user and prevent the inadvertent actuation of the motors 47, 48.
An exploded view of the lid 16, as seen from the bottom, is shown in
All of the seat 14 variations discussed above, including those corresponding to the lid heater 122 and lid object sensor 128, are equally applicable to the lid 16.
Turning to
With the structure and basic operation of the components described, we turn our attention to the operation of the attachment assembly 10, including manual-urging automation and switch automation.
Manual-urging automation, or power assist, occurs when a user manually urges the bowl attachment, e.g., the seat 14 or the lid 16, from a first position or configuration to a second position or configuration; the movement of the bowl attachment activates an actuator to assist the desired movement. Switch automation occurs when a user toggles or switches one or more of the switches 158, 162 that in turn activates an actuator or motor 47, 48 to pivot or rotate the bowl attachment, e.g., the seat 14 or the lid 16, from a closed or lowered position to a raised or upper position; the rotational extremes of the example embodiment are generally illustrated in
It is of note that neither manual-urging automation or switch automation requires that the bowl attachment be at a rotational extreme (shown in
In the example embodiment, the manual-urging automation is combined with the switch automation; however, either may be used alone depending upon the application requirements.
We turn our attention to switch automation of the bowl attachments. First, it is of note that the current monitoring features described above are equally applicable in the switch automation scenario. In either situation, when a bowl attachment encounters resistance causing an increase in the current draw of the motor(s) 47, 48, the logic controller 44 responds accordingly by de-energizing the motor(s) 47, 48 and perhaps reversing the pivotal rotation of the bowl attachment to pivot away from the apparent resistance.
In order for manual-urging automation or switch automation to operate properly, it is important that the logic controller 44 “knows” the position of the seat 14 and lid 16 at all times, and especially upon initialization. While it is possible to equip the seat 14 and lid 16 with absolute rotational positions sensors that in turn communicate positioning to the logic controller 44, a more economical approach uses an initial indexing sequence to define and set the rotational extremes of the bowl attachments. If the logic controller 44 has not stored the position (e.g., raised or lowered) and the rotation required to pivot a bowl attachment from closed to open, an indexing sequence is used to identify the position and range of movement of the bowl attachment. Alternatively, the logic controller 44 could be programmed for each particular bowl attachment scenario, however, the initial indexing sequence has the benefit of allowing a logic controller to control various bowl attachment configurations and account for changes over time.
In the example embodiment, a four-try indexing sequence is used during which the motors 47, 48 operate at half-speed. The logic controller 44 will attempt to first open the lid 16; if this is successful, meaning that the lid motor 48 was energized without drawing an excessive amount of current soon after being energized, the logic controller 44 may store the position of the lid 16 as open. Second, the logic controller 44 will attempt to close the seat 14; if this is successful the logic controller 44 may store the position of the seat 14 as closed. Third, the logic controller 44 will attempt to open the seat 14; if this is successful the logic controller 44 may store the position of the seat 14 as open as well as the position of the lid 16 as open, because the seat 14 cannot be open unless the lid 16 is open. Finally, the logic controller 44 will attempt to close the lid 16; if this is successful the logic controller 44 may store the position of the lid 16 as closed and the position of the seat 14 as closed, given the seat 14 cannot be open when the lid 16 is closed. As previously discussed, the stops 72 and grooves 74 define the rotational extremes and result in the current monitoring feature of the logic controller 44 de-energizing the motors 47, 48 shortly after the grooves 74 contact the stops 72.
Throughout these operations, the logic controller 44 is monitoring and counting the pulses from the movement sensors 51, 57. The number of pulses received determines the range of bowl attachment rotation and thus defines the rotational extremes. This information is stored and allows the logic controller 44 to stop the motors 47, 48 prior to the current exceeding an appreciable level, thus minimizing the wear on the motors 47, 48 and associated components. With the position of the seat 14 and lid 16 stored, the logic controller 44 may proceed to more aptly manipulate the bowl attachments in response to manual urging, current monitoring, and switch actuation.
In general, the manual-urging automation, or power assist, operates by identifying manual movement of a bowl attachment, here the seat 14 and/or the lid 16, from a first position to a second position. When manual movement is identified, the movement of the bowl attachment is then assisted by, for example, energizing the appropriate actuator, here motors 47, 48, in the identified rotational direction. Again, the first and second positions need not be the rotational extremes of the bowl attachments, but may instead be any intermediate position.
In the example embodiment, the seat movement sensors 51 and the lid movement sensors 57 monitor the rotation of the seat motor 47 and lid motor 48, respectively, via seat movement magnet 55 and lid movement magnet 59. As the seat 14 and/or lid 16 are rotated, the movement sensors 51, 57 monitor and identify the movement and indicate to the logic controller 44 the bowl attachment motion and the direction of travel. The logic controller 44 then energizes the bowl attachment in accordance with the direction of manual-urging so that the user no longer must urge the bowl attachment.
For example, assuming the seat 14 and lid 16 begin in the closed or lower positions, as a user begins to lift the lid 16, the lid hinge 100 begins to rotate. The lid hinge 100 in turn causes the mating lid drive shaft 64 to rotate accordingly. The lid drive shaft 64 is coupled to the lid gears 60 that in turn cause the lid motor 48 to rotate. Next, the lid movement sensors 57 monitoring the lid movement magnet 59 identify the rotation of the lid movement magnet 59 indicating that the user is manually urging the lid 16 open. This is communicated to the logic controller 44 that energizes the lid motor 48 to begin raising the lid 16 as desired by the user. The lid motor 48 remains energized until the logic controller 44 de-energizes the lid motor 48 either due to reaching the rotational extreme identified during the initial indexing sequence or due to current monitoring/pinch protection.
The logic controller 44 continues to monitor the bowl attachments, even during movement. If a user urges the bowl attachment in the opposite direction of rotation or attempts to stop the rotation, the current monitor and logic controller 44 adjust the movement by de-energizing the energized motor(s) 47, 48. Furthermore, if switches 158, 162 are present, the switch(s) 158, 162 are monitored for actuation. If the switches 158, 162 are switched, the movement of the bowl attachments is adjusted accordingly. The logic controller 44 preferably prevents the user from causing the bowl attachments to collide by, for example, urging the seat 14 opened and urging the lid 16 closed.
At least two scenarios may cause the current sensor to exceed the programmed threshold level. Namely, a bowl attachment reaching a rotational extreme or a bowl attachment encountering an impediment during rotation. First, for example, when the lid 16 reaches the raised rotational extreme, the grooves 74 in the lid hinge 100 bear against stops 72, causing the lid motor 48 to draw excess current. This is what occurs during the initial indexing sequence. Second, if while the lid 16 is rotating towards the open rotational extreme, the user applies a manual urging against the present rotation of the lid 16, the current drawn by the lid motor 48 will increase and the logic controller 44 will de-energize the lid motor 48. Continued manual urging by the user to rotate the lid 16 in the lowered or closed direction will cause the lid movement sensors 57 to signal to the logic controller 44 the desired rotational travel of the lid 16. The logic controller 44 will again energize the lid motor 48, however, the lid motor 48 will be energized in the reverse rotational direction as before to effectuate closing of the lid 16. If, during closing of the lid 16, the current of the lid motor 48 exceeds the predetermined threshold, the logic controller 44 will again de-energize the lid motor 48 to prevent damage to the lid motor 48 and provide pinch protection should a user accidentally be in the rotational path of the closing lid 16. The seat 14 responds similarly during manual-urging automation. The logic controller 44 may be programmed to reverse direction of the bowl attachments in some circumstances; for example, when the lid 16 encounters an obstruction during closing, the rotation of the lid motor 48 may be reversed to pivot the lid 16 open and away from the perceived object.
Manual-urging automation of the seat 14 operates in substantially the same manner as that described in relation to the lid 16. Two additional items are of note. First, when multiple bowl attachments, e.g., the seat 14 and the lid 16, are present and automated, the logic controller 44 is preferably configured to prevent illogical movement of the bowl attachments. For example, the logic controller 44 may be programmed to prevent a user from raising the seat 14 and at the same time lowering the lid 16. Obviously this scenario would cause the seat 14 and lid 16 to interfere with one another. Second, where a switch, here first switch 158 and second switch 162, is incorporated into the bowl attachment control, switching or toggling of the switch may supersede the previous manual urging of the user, causing the bowl attachment to respond according to the preprogrammed bowl attachment logic of the logic controller 44.
The switch automation logic programmed into the logic controller 44 is best understood with reference to Tables A and B below. Each table indicates the output of the logic controller 44, that is the energize, de-energize signals sent to the actuators (here the seat motor 47 and the lid motor 48) depending upon the rotational status of the bowl attachments to open or close the bowl attachments. Four operating states of the seat 14 are listed across the first row of the table, namely, seat 14 opened, seat 14 closed, seat 14 opening, and seat 14 closing. Similarly, four operating states of the lid 16 are listed along the first column, namely, lid 16 opened, lid 16 closed, lid 16 opening, and lid 16 closing. Each time the logic controller 44 receives an input from a switch 158, 162 that it has been toggled, the logic controller 44 identifies the operating state of the bowl attachments and obtains the new operating parameters from the programmed logic as depicted in Table A (for the first switch 158) and in Table B (for the second switch 162).
In the example embodiment, the seat 14 may not be opened without the lid 16 being in the opened state, or being opened simultaneously with the seat 14. Thus, seat 14 and lid 16 combinations physically unavailable are labeled as “Not Available” in Table A and Table B. Furthermore, the following undesirable scenarios are labeled as “Prevented” in Table A and Table B. When the seat 14 is opening and the lid 16 is in the opened state, the logic controller 44 prevents the lid 16 from closing to ensure that the seat 14 does not pivot open as the lid 16 pivots closed causing the seat 14 and the lid 16 to collide. Alternatively, when the lid 16 is closing and the seat 14 is in the closed state, the logic controller 44 prevents the seat 14 from opening to ensure that the lid 16 does not pivot closed as the seat 14 pivots open. Lastly, it is of note that switching both switches 158, 162 of the example embodiment simultaneously will cause no change in the state of the bowl attachments. The logic controller 44 may be configured to de-energize both motors 47, 48 in response to both switches 158, 162 being actuated simultaneously.
Turning first to Table A, the logic of the first switch 158 is depicted:
With reference to Table A, the operation of the logic controller 44 upon toggling the first switch 158 is straightforwardly described. Looking specifically at the first column labeled “Seat Opened,” when the seat 14 is opened, switching the first switch 158 when the lid 16 is opened will result in the logic controller 44 energizing the seat motor 47 and lid motor 48 to close both the seat 14 and the lid 16 simultaneously. Thus, the bowl attachments will be pivoted into the closed position.
Moving to the second column labeled “Seat Closed,” when the seat 14 is closed and the lid 16 is opened, switching the first switch 158 results in the seat 14 being opened. When the seat 14 is closed and the lid 16 is either closed, opening, or closing, actuating the first switch 158 results in both the seat 14 and the lid 16 opening simultaneously, thus allowing access to the toilet bowl 26.
Referencing the third column labeled “Seat Opening,” when the seat 14 is in the process of opening and the lid 16 is opened, toggling the first switch 158 results in the seat 14 closing. When the seat 14 is opening and the lid 16 is opening, switching the first switch 158 results in both the seat 14 and lid 16 being closed by the logic controller 44.
Finally, referring to the column labeled “Seat Closing,” when the seat 14 is closing and the lid 16 is opened, toggling the first switch 158 results in both the seat 14 and lid 16 closing. When the seat 14 is closing and the lid 16 is closing, actuating the first switch 158 results in both the seat 14 and lid opening.
Turning next to Table B, the logic of the second switch 162 is depicted:
With reference to Table B, the operation of the logic controller 44 upon toggling the second switch 162 is plainly described. Looking specifically at the first column labeled “Seat Opened,” when the seat 14 and the lid are in the opened state, switching the second switch 162 results in the seat 14 closing. The balance of the first column combinations is not physically available in the example embodiment.
Moving to the second column labeled “Seat Closed,” when the seat 14 is closed and the lid 16 is either opened or opening, actuating the second switch 162 results in the lid 16 being closed by the logic controller 44. When the seat 14 is closed and the lid 16 is closed or closing, toggling the second switch 162 results in the lid 16 opening.
With reference to the column labeled “Seat Opening,” when the seat 14 is opening and the lid 16 is opened, activating the second switch 162 results in both the seat 14 and lid 16 being closed. When the seat 14 and the lid 16 are opening, actuating the second switch 162 results in the lid 16 continuing to open, but the seat 14 reverses its pivot direction and closes. Again, the seat 14 and lid 16 are prevented from colliding with one another by the logic controller 44.
Finally, referring to the column labeled “Seat Closing,” when the seat 14 is closing and the lid 16 is opened, switching the second switch 162 results in the seat 14 opening. When the seat 14 and the lid 16 are in the process of closing, switching the second switch 162 results in the lid 16 reversing its pivotal direction so as to open and the seat 14 continuing to close.
The logic controller 44 is preferably configured to provide additional functions to the attachment assembly 10, including those previously discussed, i.e., the automatic flush switch 32A, a bowl light switch 32B, automated attachment switch 32C, and bowl attachment heater switch 32D. The automatic flush period of delay may be altered by the user and may be configured to flush the toilet 20 at various intervals. For example, the logic controller 44 may be configured to automatically flush the toilet 20 immediately upon closing the seat 14 and the lid 16, or the logic controller 44 may be programmed to vary the automatic flush delay depending upon the time of day or frequency of use. Additionally, the logic controller 44 may be configured to automatically switch on the bowl light depending upon the time or based upon feedback from a light sensor. Furthermore, the logic controller 44 may be programmed to automatically switch on the bowl attachment heaters 116, 122 if the temperature sensed by the thermistors 136, 148 falls below a minimum temperature. As a final non-exhaustive example, the logic controller 44 may be programmed to close either the seat 14 and/or lid 16 after a predetermined period, thus “resetting” the bowl attachments to a “preferred” orientation. Many other logic controller 44 functions are available and within the scope of the present invention.
It should be appreciated that merely example embodiments of the invention have been described above. However, many modifications and variations to the example embodiments will be apparent to those skilled in the art, which will be within the spirit and scope of the invention. Therefore, the invention should not be limited to the described embodiments. To ascertain the full scope of the invention, the following claims should be referenced.
This application claims priority from U.S. provisional application No. 60/915,021 filed Apr. 30, 2007, which is hereby incorporated by reference as if fully set forth herein.
Number | Date | Country | |
---|---|---|---|
60915021 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12099509 | Apr 2008 | US |
Child | 14053427 | US |