The exemplary embodiments generally relate to material handling systems and, more particularly, to the structure of a storage and retrieval system.
2. Brief Description of Related Developments
Material handling systems such as, for example, automated storage and retrieval systems, cycle storage items to storage locations (e.g. shelves of a storage rack) in a storage array of an automated warehouse or store. Storage racks with dynamically allocated storage locations may expect to be subject to a higher number of load cycles during a life span/term of the automated storage and retrieval system, because of the higher usage rate of each potential storage location, when compared to conventional storage racks (where storage locations are fixed at predetermined locations of the shelves). Conventional storage structures have generally neglected fatigue concerns, and to the limited extent fatigue loads have been incorporated into the design of the conventional storage structure, such loads appear to be related to gross storage loads on the structure, rather than loading from automation (e.g. loads from automated material handlers with various payloads traversing the storage structure or payload transfer actions).
Also, conventional automated storage and retrieval systems may provide for the scanning of items after a seismic or other event that may cause movement of the stored items. Automation may be used to determine the position of the affected storage items so that the items can be moved to their correct positions. Generally, this scanning is done to facilitate recovery of the automated storage and retrieval system once the automated storage and retrieval system is shut down as a result of the seismic or other event.
It would be advantageous to have a storage structure that incorporates fatigue considerations with respect to loading from automation of the automated storage and retrieval system. It would also be advantageous to have a storage structure that facilitates maintaining operation after a seismic or other event that may cause movement of the stored items.
The foregoing aspects and other features of the disclosed embodiment are explained in the following description, taken in connection with the accompanying drawings, wherein:
In accordance with aspects of the disclosed embodiment the automated storage and retrieval system 100 may operate in a retail distribution center or warehouse to, for example, fulfill orders received from retail stores for case units such as those described in U.S. patent application Ser. No. 13/326,674 filed on Dec. 15, 2011, the disclosure of which is incorporated by reference herein in its entirety.
The automated storage and retrieval system 100 may include in-feed and out-feed transfer stations 170, 160, input and output vertical lift modules 150A, 150B (generally referred to as lift modules 150), a storage structure 130, and a number of autonomous rovers 110. The storage structure 130 may include multiple levels of storage rack modules where each level includes respective storage or picking aisles 130A having rover travel surfaces (as will be described below), and transfer decks 130B for transferring case units between any of the storage areas (e.g. disposed on storage shelves 130S located on one or more sides of the picking aisles 130A) of the storage structure 130 and any shelf of the lift modules 150. The storage aisles 130A, and transfer decks 130B are also configured to allow the rovers 110 to traverse the storage aisles 130A and transfer decks 130B for placing case units into picking stock and to retrieve ordered case units.
The rovers 110 may be any suitable autonomous vehicles capable of carrying and transferring case units throughout the storage and retrieval system 100. In one aspect the rovers 110 may be automated, independent (e.g. free riding) rovers. Suitable examples of rovers can be found in, for exemplary purposes only, U.S. patent application Ser. No. 13/326,674 filed on Dec. 15, 2011; U.S. patent application Ser. No. 12/757,312 filed on Apr. 9, 2010 (U.S. Pat. No. 8,425,173); U.S. patent application Ser. No. 13/326,423 filed on Dec. 15, 2011; U.S. patent application Ser. No. 13/326,447 filed on Dec. 15, 2011 (now U.S. Pat. No. 8,965,619); U.S. patent application Ser. No. 13/326,505 Dec. 15, 2011 (now U.S. Pat. No. 8,696,010); U.S. patent application Ser. No. 13/327,040 filed on Dec. 15, 2011 (now U.S. Pat. No. 9,187,244); U.S. patent application Ser. No. 13/326,952 filed on Dec. 15, 2011; and U.S. patent application Ser. No. 13/326,993 filed on Dec. 15, 2011, the disclosures of which are incorporated by reference herein in their entireties. The rovers 110 may be configured to place case units, such as the above described retail merchandise, into picking stock in the one or more levels of the storage structure 130 and then selectively retrieve ordered case units for shipping the ordered case units to, for example, a store or other suitable location.
The rovers 110, lift modules 150 and other suitable features of the storage and retrieval system 100 may be controlled by, for example, one or more central system control computers (e.g. control server) 120 through, for example, any suitable network 180. The network 180 may be a wired network, a wireless network or a combination of a wireless and wired network using any suitable type and/or number of communication protocols. In one aspect, the control server 120 may include a collection of substantially concurrently running programs that are configured to manage the storage and retrieval system 100 including, for exemplary purposes only, controlling, scheduling, and monitoring the activities of all active system components, managing inventory and pickfaces, and interfacing with the warehouse management system 2500.
Referring now to
The rover travel rails 201 may be fixed to the vertical support members 200 in any suitable manner. In one aspect the rover rails 201 may be fixed to the vertical support members using any suitable upper mounting bracket 202U and any suitable lower mounting bracket 202L. In another aspect, the rover rails 201 may be fixed to the vertical support members 200 with an adjustable mounting bracket in a manner similar to that described below with respect to
Referring now to
The one piece rover rail 201 may also define a fatigue resistant flange 403 that extends from a face 404 of the vertical profile portion 400 and provides a travel/riding and support surface 403S for, e.g., wheels of the rover 110 during rover operation. The flange 403 may have any suitable width W for allowing, e.g., wheels of the rover to travel along the flange 403. The face 404 may also include integral rover position determination features 405. The integral rover position determination features 405 may have any suitable shape and size such that the rover position determination features 405 are fatigue resistant. In one aspect the integral rover position determination features 405 may be apertures or protrusions formed in the face 404 having a shape and size for minimizing stress concentrations in the face 404. The integral rover position determination features 405 are illustrated as having a general rectangular shape but in other aspects the integral rover position determination features 405 may have any suitable shape. In one aspect the rover 110 may include any suitable sensors for detecting the rover position determination features 405 and determine its position along the picking aisle 130A based on at least the rover position determination features 405. In other aspects the position of the rover 110 within the picking aisle may be determined in any suitable manner. One example of determining the position of the rover can be found in U.S. patent application Ser. No. 13/327,035, filed on Dec. 15, 2011 (now U.S. Pat. No. 9,008,884), the disclosure of which is incorporated herein by reference in its entirety.
Referring now to
In one aspect the lift modules 150 (a portion of which is shown in
Also referring to
In one aspect each mounting member 600 includes a first support plate 601 that interfaces with, for example, vertical support 510 in any suitable manner for securing the first support plate 601 to the vertical support member 510. The first support plate 601 may include elongate mounting apertures 620 through which fasteners may be inserted for securing the first support plate 601 to the vertical support 510. The first support plate 601 may be movable relative to, for example, the vertical support 510 or other suitable feature of the automated storage and retrieval system 100, in the X direction. Locking members 601A may releasably engage the vertical support 510 for substantially preventing movement of the first support plate 601 in the X direction. A second support plate 602 may also include elongate mounting apertures 621 and be movably mounted to the first support plate 601 in any suitable manner so that the second support plate 602 is movable relative to the first support plate 601 (or other suitable feature of the automated storage and retrieval system 100) in the Z direction. Locking members 602A may releasably engage the first support plate 601 for substantially preventing movement of the second support plate 601 in the Z direction. A third support plate 603 may also include elongate mounting apertures 622 and be movably mounted to the second support plate 602 in any suitable manner so that the third support plate 603 is movable relative to the second support plate 602 (or other suitable feature of the automated storage and retrieval system 100) in the Y direction. Locking members 603A may releasably engage the second support plate 602 for substantially preventing movement of the third support plate 603 in the Y direction. It is noted that the X, Y and Z axes are used for explanatory purposes only and that each of the first, second and third support plates 601, 602, 603 may be movable along any suitable respective axis in any suitable reference frame.
Referring now to
As can be seen in
Referring also to
The isolation plates 700 (isolation plate 800 may be mounted and function in a manner substantially similar to that described herein for isolation plates 700) may be mounted to, for example, any suitable portion of the transfer deck 130B such as support member 130M in any suitable manner. In one aspect the isolation plate 700 may be mounted to the support member 130M with a ball joint or otherwise articulated connection that allows pivotal movement of the isolation plate as will be described in greater detail below. Each isolation plate 700 may include apertures 11001 through which any suitable fasteners 11002 are inserted. The support member 130M may include elongated apertures 11000A, 11000B through which the fasteners 11002 pass such that the isolation plate is disposed on a first or upper side of the support member 130M. A ball member 11003 may be placed over the fastener from a second or bottom side of the support member 130M so that the ball member 11003 is located within a respective aperture 11000A, 11000B. The ball member 11003 may have any suitable diameter that allows pivoting movement within and linear movement of the ball member 11003 along a length of the aperture 11000A, 11000B. A bushing or spacer member 11004 may be inserted within the ball member 11003 to substantially prevent contact between the fastener 11002 and the ball member 11003 and to substantially prevent deformation of the ball when a retaining member 11006 is affixed to the fastener for retaining the ball member 11003 within the aperture 11000A, 11000B. In one aspect the fastener 11002 is a screw and the retaining member 11006 is a nut but in other aspects any suitable elongated member and retaining members may be used such as, for example rods and clips, snaps and/or pins. A washer or other substantially flat or obstructive member 11005 may be placed between the retaining member 11006 and the ball member 11003. The obstructive member 11005 may have a diameter or may otherwise be larger than a width of the aperture 11000A, 11000B so as to substantially prevent the ball member 11003 and retaining member 11006 from passing through the aperture 11000A, 11000B such that the isolation plate 700 is restrained from being lifted from the support member 130M. In other aspects the retaining member 11006 may be configured to both retain the ball member 11003 on the fastener 11002 and substantially prevent the lifting of the isolation plate 700 from the support member 130M. As can be seen in
Referring now to
Further degrees of freedom of movement are provided by the ball joint such that the isolation member 700 is allowed to pivot about the ball member 11003 within the elongated aperture 11000A, 11000B (generally referred to as elongated apertures 11000). Referring to
Referring to
Referring now to
In accordance with one or more aspects of the disclosed embodiment an automated storage and retrieval system is provided. The automated storage and retrieval system includes an autonomous rover; and a multilevel rack structure. The multilevel rack structure includes columns connected by rail beams transversely spanning between the columns. The rail beams define storage and transport levels and provide riding surfaces for the autonomous rover. The rail beams include integral fatigue resistant rover location apertures.
In accordance with one or more aspects of the disclosed embodiment, the autonomous rover includes sensors for detecting the rover location apertures.
In accordance with one or more aspects of the disclosed embodiment, the rail beam members include fatigue resistant connections for coupling the rail beam members to the columns.
In accordance with one or more aspects of the disclosed embodiment an automated storage and retrieval system having autonomous rovers is provided. The automated storage and retrieval system includes a first automated storage and retrieval section having respective structural dynamic properties and a first rover support surface upon which the autonomous rovers travel; a second automated storage and retrieval section having respective structural dynamic properties and a second rover support surface upon which the autonomous rovers travel; and a released interface disposed between the first and second rover support surfaces. The released interface being configured to allow relative movement between the first and second rover support surfaces, and provide an interface support surface upon which the autonomous rovers travel, the interface support surface extending between the first and second rover support surfaces.
In accordance with one or more aspects of the disclosed embodiment the released interface includes an interface portion connected to one of the first or second rover support surface; and at least one movable plate movably connected to another one of the first or second rover support surface, the at least one moveable plate and the interface portion being configured to releasably engage one another for providing the interface support surface. In other aspects the interface portion includes first fingers integrally formed with the one of the first or second rover support surface and the at least one movable plate includes second fingers that are interleaved with the first fingers. In still other aspects the first rover support surface comprises at least one rover guide rail of a vertical lift module and the second rover support surface comprises a transfer deck surface. In yet another aspect the interface portion comprises two interface portions and the at least one movable plate comprises a movable plate for releasably engaging a respective one of the two interface portions. In still another aspect the interface portion comprises two interface portions and the at least one movable plate comprises a single plate for releasably engaging the two interface portions. In another aspect the at least one movable plate is movably coupled to the another one of the first or second rover support surface with at least a two-degree of freedom coupling.
In accordance with one or more aspects of the disclosed embodiment the automated storage and retrieval system includes at least one vertical lift module; and a transfer deck in communication with the at least one vertical lift module; wherein the first automated storage and retrieval section comprises the at least one vertical lift module and the second automated storage and retrieval section comprises the transfer deck. In another aspect wherein the at least one vertical lift module includes a frame, rover guide rails, and an adjustable rail mounting bracket coupling the rover guide rails to the frame. In one aspect the adjustable rail mounting bracket is configured to provide adjustment in three degrees of freedom. In another aspect the at least one vertical lift module comprises a rover charging station including compliant contacts configured to engage the autonomous rovers.
In accordance with one or more aspects of the disclosed embodiment the respective structural dynamic properties of the first automated storage and retrieval section are different than the respective structural dynamic properties of the second automated storage and retrieval section.
In accordance with one or more aspects of the disclosed embodiment an automated storage and retrieval system having autonomous rovers is provided. The automated storage and retrieval system includes at least one vertical lift module having at least one travel surface upon which the autonomous rovers travel; a transfer deck in communication with the at least one vertical lift module, the transfer deck including a transfer deck surface upon which the autonomous rovers travel; and a released interface releasably connecting the at least one travel surface and the transfer deck surface, the released interface forming an autonomous rover riding surface extending between the at least one travel surface and the transfer deck surface.
In accordance with one or more aspects of the disclosed embodiment the at least one vertical lift module includes a frame, and a rail mounting bracket configured to adjustably couple the at least one travel surface to the frame.
In accordance with one or more aspects of the disclosed embodiment the at least one vertical lift module comprises a rover charging station including compliant contacts configured to engage the autonomous rovers.
In accordance with one or more aspects of the disclosed embodiment the released interface includes an interface portion connected to one of the at least one travel surface or the transfer deck surface; and at least one movable plate movably connected to another one of the at least one travel surface or the transfer deck surface, the at least one moveable plate and the interface portion being configured to releasably engage one another and provide the autonomous rover riding surface. In another aspect the interface portion includes first fingers integrally formed with the at least one travel surface or the transfer deck surface and the at least one movable plate includes second fingers that are interleaved with the first fingers. In yet another aspect the interface portion comprises two interface portions and the at least one movable plate comprises a movable plate for releasably engaging a respective one of the two interface portions. In still another aspect the interface portion comprises two interface portions and the at least one movable plate comprises a single plate for releasably engaging the two interface portions. In another aspect the at least one movable plate is movably coupled to the another one of the at least one travel surface or the transfer deck surface with at least a two-degree of freedom coupling.
It should be understood that the foregoing description is only illustrative of the aspects of the disclosed embodiment. Various alternatives and modifications can be devised by those skilled in the art without departing from the aspects of the disclosed embodiment. Accordingly, the aspects of the disclosed embodiment are intended to embrace all such alternatives, modifications and variances that fall within the scope of the appended claims. Further, the mere fact that different features are recited in mutually different dependent or independent claims does not indicate that a combination of these features cannot be advantageously used, such a combination remaining within the scope of the aspects of the invention.
What is claimed is:
This application is a continuation of U.S. application Ser. No. 14/209,209 filed Mar. 13, 2014 (now U.S. Pat. No. 9,409,709) which is a non-provisional of and claims the benefit of U.S. Provisional Patent Application No. 61/780,363 filed on Mar. 13, 2013, the disclosures of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
61780363 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14209209 | Mar 2014 | US |
Child | 15231340 | US |