The invention relates to material handling systems for secure stowage of inventoried items where the systems may be located within structures subject to external forces and movement, and in particular to a material handling system capable of automated transporting and storing of inventoried items in a securely retained manner such that the items are not damaged and may be stored and retrieved despite the external forces.
Automated storage and retrieval systems are known material handling devices consisting of racks having multiple storage locations and an automated transfer machine capable of automatically storing and retrieving items from the storage locations. The transfer machine runs along an aisle in front of the storage locations and includes structure capable of inserting or extracting the items from the racks. The inventoried items, whether stacked on pallets or directly stored within the automated storage and retrieval system, are generally not securely held to the racks or transfer machine of the system. Therefore, the inventoried items are able to move or slide relative to the automated storage and retrieval system if the structure to which the system is mounted is subject to external forces or movement.
Environments and locations subject to external forces or movement exist in which it is desirable to utilize an automated material handling system due to the benefits of compact, accurate storing and reduced manpower. For example, such locations may include ships, aircraft, and buildings subject to seismic or wind activity, or the like. However, the use of typical automated material handling systems in such environments creates a risk of damage to the inventoried items and/or damage to the automated material handling system due to the lack of secured storage and movement of the inventoried items, as discussed above.
Therefore, what is needed is a secure automated material handling system that is able to operate in environments that are subject to motion or external forces such that the inventoried items being stored are securely held and may also be transported and retrieved even when the system is subject to such motion or external forces.
The present invention is embodied in an automated material handling system for selectively storing and retrieving inventoried items, where the system is capable of transporting and storing the inventoried items in a securely retained manner such that the items are not damaged and may be stored and retrieved even when the structure to which the system is mounted is subject to external forces or movement.
According to one aspect of the present invention, a material handling system installed within a transportation craft and method for selectively storing and retrieving inventoried loads includes providing a controller, a transportation craft, and an automated storage and retrieval system installed within the craft. The automated storage and retrieval system has at least one rack and a transfer machine, with the at least one rack defining a plurality of storage positions and the transfer machine being adapted to convey loads for insertion or extraction from the storage positions.
According to another aspect of the present invention, a material handling system installed within a transportation craft for selectively storing and retrieving loads includes a transportation craft and at least one rack installed within the transportation craft, a controller, and a transfer machine. The at least one rack defines a plurality of storage positions, each of which includes a storage conveyor. The transfer machine is operable in response to the controller to transport loads for storage at or retrieval from each of the storage positions and the storage conveyors and transfer machine are adapted to cooperatively convey loads for insertion or extraction between the transfer machine and the storage positions in response to the controller.
The material handling system may further include a load retention system on at least one chosen from the storage positions and the transfer machine, the load retention system being adapted to impede motion of the loads other than when the loads are conveyed for storage or retrieval. The storage conveyor may be adapted to simultaneously move all loads contained within a corresponding one of the storage positions in unison. In addition, the storage conveyor may include a storage shuttle with the transfer machine and the storage conveyor adapted to be selectively engaged to operate the storage shuttle to cooperatively insert or extract loads between the transfer machine and the storage conveyor corresponding to the engaged storage conveyor. The storage shuttle may include at least one chain for conveying loads along the storage position.
One of the transfer machine and the storage conveyor may also include a drive transport mechanism with the other of the transfer machine and the storage conveyor including a driven transport mechanism, and with the drive transport mechanism being adapted to selectively engage the driven transport mechanism to operate the storage shuttle. The drive and driven transport mechanisms may each include a friction wheel and the drive transport mechanism may be mounted to an extension device, the extension device being operable in response to the controller to engage the drive transport mechanism with the driven transport mechanism. The transfer machine may also include a storage load sensor that is operable to detect the position of a load within the storage position, with the controller being operable in response to the storage load sensor to disengage the drive transport mechanism from the driven transport mechanism.
The transfer machine may also include a transfer machine load sensor operable to regulate spacing between loads stored within the storage positions. The transfer machine load sensor being adapted to detect the position of loads on the transfer machine and the controller being operable in response to the transfer machine load sensor to selectively control the cooperative conveying of loads between the storage conveyor and the transfer machine. The transfer machine is adapted to regulate spacing between loads by, prior to conveying a first load from the transfer machine to one of the storage positions, the transfer machine and storage conveyor cooperatively convey a second load from the corresponding storage position partially onto the transfer machine in response to the controller. In further response to the transfer machine load sensor, the transfer machine and storage conveyor are adapted to stop cooperatively conveying the second load onto the transfer machine when the first and second loads are spaced a predetermined distance. The transfer machine and storage conveyor are then adapted to simultaneously convey the first and second loads into the storage position in response to the controller to thereby control spacing between loads.
The material handling system may further include a load receiving assembly adapted to enable loads to be received and delivered for delivery to and removal from the transfer machine. The load receiving assembly may include a transfer conveyor having first and second transfer conveyor ends, with the first transfer conveyor end being adapted to enable loads to be placed on or removed from the transfer conveyor and the second transfer conveyor end being adapted to enable loads to be moved between the transfer machine and the transfer conveyor. The transfer conveyor may also include at least one load transfer retention system adapted to constrain movement of loads along the transfer conveyor whereby loads are impeded from moving other than when conveyed for storage or retrieval. The material handling system may also include load platforms adapted to hold inventoried items with the load receiving assembly further comprising a load platform holder adapted to dispense empty load platforms upon which inventoried items are to be stacked for storage and adapted to collect empty load platforms from which inventoried items are removed.
The material handling system may further include an aisle along which the transfer machine is adapted to travel and a transfer machine position sensor, with the controller being operable in response to the transfer machine position sensor to selectively align the transfer machine relative to the storage positions.
The storage positions of the material handling system may include passive storage positions with the transfer machine being operable in response to the controller to be selectively aligned with any one of the storage positions and being operable in further response to the controller to operate the storage conveyor corresponding to the storage position to cooperatively convey loads for insertion or extraction between the transfer machine and the storage position.
According to yet another aspect of the present invention, a material handling system installed within a transportation craft for selectively storing and retrieving loads includes a transportation craft, at least one rack installed within the transportation craft, a transfer machine, and at least one load retention system. The at least one rack defining a plurality of storage positions, each of which includes a storage conveyor and the transfer machine including a load handling conveyor operable to transport loads for storage at or retrieval from each of the storage positions. The storage conveyor and load handling conveyor being adapted to cooperatively insert or extract loads between the transfer machine and the storage position and the at least one load retention system being located on at least one of the transfer machine and storage position. The load retention system comprising at least one of the load handling conveyor and the storage conveyor and being adapted to impede movement of loads other than when the loads are conveyed for storage or retrieval.
Each of the at least one load retention systems may comprise at least one track, with the loads being adapted for constrained movement along the at least one track. The material handling system may also include load platforms adapted to hold inventoried items, with the load platforms being adapted for constrained movement along the at least one load retention system. When load platforms are included, each of the at least one load retention systems may include first and second tracks, with the load platforms being adapted for constrained sliding movement within the first and second tracks.
The at least one load retention system may further include a storage shuttle included at the storage conveyor, the storage shuttle being adapted to convey loads along the storage position and including grip members. The at least one load retention system may also or alternatively further include a load handling shuttle included on the transfer machine, the load handling shuttle being adapted to convey loads into and out of the transfer machine and including grip members. The grip members of the storage shuttle and/or the grip members of the load handling shuttle being adapted to engage loads such that independent movement of loads within the storage position and the transfer machine is impeded. The storage shuttle and/or the load handling shuttle may include at least one chain, with the grip members of the storage shuttle and/or the load handling shuttle comprising serrated chain links.
The storage conveyor of the material handling system may also include a storage shuttle, with the transfer machine and the storage conveyor being adapted to be selectively engaged to operate the storage shuttle and cooperatively insert or extract loads between the transfer machine and the storage conveyor corresponding to the engaged storage conveyor. One of the transfer machine and the storage conveyor may include a drive transport mechanism and the other of the transfer machine and the storage conveyor may include a driven transport mechanism, with the drive transport mechanism being adapted to selectively engage the driven transport mechanism to operate the storage shuttle.
The material handling system may further include a transfer conveyor adapted to enable loads to be received for storage into and delivered for removal from the transfer machine. The transfer conveyor having first and second transfer conveyor ends with the first transfer conveyor end being adapted to enable loads to be placed on or removed from the transfer conveyor and the second transfer conveyor end being adapted to enable loads to be moved between the transfer machine and the transfer conveyor.
The material handling system may also employ load containers adapted to hold inventoried items, with the at least one load retention system being adapted to constrain movement of the load containers whereby the load containers are impeded from moving other than when conveyed for storage or retrieval. When load containers are employed, the at least one load retention system may include at least one restraint member having a restraint surface adapted to constrain movement of the storage containers along at least one of the storage conveyor and the load handling conveyor.
According to still another aspect of the present invention, a material handling system installed within a transportation craft for selectively storing and retrieving inventoried loads includes a transportation craft having at least one aisle, at least one rack installed within the transportation craft and defining a plurality of storage positions, and a transfer machine operable to travel substantially horizontally along the at least one aisle to transport loads for storage at or retrieval from each of the storage positions, with the transfer machine being adapted to generally horizontally convey loads for insertion or extraction from the storage positions.
The material handling system may further include a load retention system on at least one of the storage positions and the transfer machine, the load retention system being adapted to impede motion of loads other than when being conveyed for storage or retrieval. The material handling system may include load platforms and/or load containers, with the load platforms and load containers being adapted to hold inventoried items and the load retention system being adapted to enable constrained movement of the load platforms and/or the load containers.
The storage positions of the material handling system may include a storage conveyor having a storage shuttle, with the transfer machine and storage conveyor adapted to being selectively engaged to operate the storage shuttle and cooperatively insert or extract loads between the transfer machine and the correspondingly engaged storage conveyor. One of the transfer machine and the storage conveyor may include a drive transport mechanism and the other of the transfer machine and the storage conveyor may include a driven transport mechanism, with the drive transport mechanism being adapted to selectively engage the driven transport mechanism to operate the storage shuttle. Each storage shuttle may include at least one chain adapted to move the loads within the storage position.
The automated material handling system of the present invention includes many advantages. By way of example, it enables loads to be efficiently and automatically stored while securely holding the items during transportation and storage, even when the structure to which the system is mounted is subject to external forces or movement. The transfer conveyor that may be used to convey inventoried items for storage into the racks or retrieval from the racks, the transfer machine that may be used to deliver the inventoried items between the transfer conveyor and storage positions of the racks, and the storage positions of the racks may all include load retention systems that allow loads to be transported within the material handling system in a constrained manner such that the loads are impeded from moving other than when being transported by the system. The load retention systems may include tracks within which pallets or load platforms may slide while remaining confined within the tracks. The load retention systems may also include shuttles having grip members that engage the loads to impede independent motion of the loads relative to the shuttle. In addition, the storage positions and transfer machine may be constructed to cooperatively exchange loads when the transfer machine engages and actuates the storage conveyor of a storage position, with the shuttles of the storage positions being constructed to resist motion when not engaged by the transfer machine.
These and other objects, advantages, and features of this invention will become apparent upon review of the following specification in conjunction with the drawings.
The present invention will now be described with reference to the accompanying figures, wherein the numbered elements in the following written description correspond to like-numbered elements in the figures.
A transportation craft having an automated material handling system 50 is illustrated in
In the illustrated embodiment, systems 50A and 50B are separated by aisle 58 (
As shown in
Referring now to
Transfer machine 64 is described in more detail below, but includes a load handling transport mechanism or drive mechanism 86 that is adapted to selectively engage a storage transport mechanism or driven mechanism 88 of a storage conveyor 90 located on each storage position 62. As described below, when the driven mechanism 88 of a given storage position 62 is engaged by a drive mechanism 86 of transfer machine 64, all loads 56 within the storage position 62 are caused to move in unison along the storage conveyor 90, either away from or towards transfer machine 64 depending upon the actuation direction of drive mechanism 86.
Referring now to
In the embodiment shown, driven mechanism 88 includes a friction driven wheel 100 that is functionally mounted to a cycloidal gearbox 102, which in turn is fixedly secured, such as to a post 104 by a bracket 106 or, as shown in
As shown in
As understood from
As noted above, gearbox 102 is generally non-back drivable and includes brake mechanism 108 such that first and second storage chains 116A, 116B are generally prohibited from moving unless friction driven wheel 100 is engaged by a drive mechanism 86 of the transfer machine 64. This feature, along with the load platforms 84 being both constrained by the first and second C-shaped channels 126A, 126B as well as engaged by the serrated links 132 of the first and second storage chains 116A, 116B, combine to contribute to the load storage retention system 91 that securely holds the loads 56 within a storage position 72 of racks 60A, 60B even if system 50A is subject to external forces.
As shown in
Transfer machine 64, as noted above, is adapted to cooperatively exchange loads 56 with and between the various given storage positions 62. As shown in
In similar manner to storage positions 62, transfer machine 64 may include a load handling retention system 153 adapted to impede motion of loads 56 within transfer machine 64 other than when transfer machine 64 is operated to transport or convey loads 56 from and to storage positions 62. As described in detail below, load handling retention system 153 may include a load handling conveyor 154 having a load handling shuttle 156 operable to travel within first and second load handling tracks 158A, 158B, with the load handling shuttle 156 including grip members 130.
Referring to
Carriage 152 also includes an electrical transfer control system 169 (
Load handing device 150, shown removed from transfer machine 64 in
As illustrated in
Friction drive wheel 182 is preferably constructed of hardened steel. The construction of friction drive and driven wheels 182, 100 provides sufficient frictional force between the two such that drive mechanism 86 is able to cause the storage conveyor 90 of a storage position 62 to simultaneously convey, in the manner described above, all loads 56 located within a storage position 62. Furthermore, drive mechanism 86, in cooperation with additional structure on load handling device 150 described below, is able to cause storage shuttle 92 to insert loads 56 into a storage position 62 from the load handling device 150 or extract loads 56 out of a storage position 62 onto a load handling device 150.
Although friction drive wheel 182 is disclosed as being constructed of hardened steel with friction driven wheel 100 being constructed to include a polymeric coating, it should be appreciated that alternative arrangements for friction drive and driven wheels 182, 100 may be employed within the scope of the present invention and still function as intended. For example, a friction drive wheel could be constructed to have a polymeric coating with the friction driven wheels constructed of hardened steel, or other alternatively constructed drive and driven wheels could be utilized that are able to transmit sufficient friction force to move storage shuttle 92 and the loads 56 located thereon. Furthermore, each of the storage positions 62 could alternatively be provided with drive mechanisms with driven mechanisms being located on the transfer machines 64.
The frictional drive arrangement of friction drive and driven wheels 182, 100 provide a reliable drive system that is able to convey loads 56 along storage position 62 despite potential alignment errors that may occur between the drive mechanism 86 and the driven mechanism 88. However, it should be understood that alternative load handling and storage transport mechanisms 86, 88 may be employed that would also function to convey loads 56 along a storage position 62. For example, each individual storage position 62 could include a motor adapted to cause storage shuttle 92 to convey loads 56 along the storage position 62. Alternatively, toothed gears could be located on both the transfer machine 64 and each storage position 62, or an extendable drive or driven worm gear could be utilized. As such, it should be readily understood that system 50A is not intended to be limited to the friction drive and driven wheels 182, 100 arrangement described above.
In addition to the friction drive wheel 182, load handling device 150 includes a load handling conveyor 154 that is adapted to convey loads 62 out of or onto the load handling device 150. Load handling conveyor 154 is drivable via load handling motor 184 and load handling gearbox 186 to move loads 56 out of or into load handling device 150 through either of first and second transfer sides 176A, 176B.
Load handling conveyor 154 includes a load handling shuttle 156, which in the illustrated embodiment is constructed as first and second load handling chains 187A, 187B that are simultaneously moved by load handling motor 184 and load handling gearbox 186 through connecting shafts 188. First and second load handling chains 187A, 187B are of generally similar construction to first and second storage chains 116A, 116B of storage shuttle 92, described above, and include grip members 130 that may be formed as the illustrated serrated chain links 132. In like manner to storage conveyor 90, load handling conveyor 154 includes first and second load handling tracks 158A, 158B that are formed as generally C-shaped first and second channels 190A, 190B, with first and second load handling chains 187A, 187B including first and second transport portions 192A, 192B that slidingly travel within the first and second C-shaped channels 190A, 190B on top of a chain glide 194 (
In like manner to storage conveyors 90, the first and second edges 134A, 134B and wear strips 136 of load platforms 84 are adapted to travel within first and second C-shaped channels 192A, 192B on top of the serrated links 132 of first and second transport portions 192A, 192B. Therefore, loads 56 positioned within transfer machine 64 are both constrained by the first and second C-shaped channels 190A, 190B as well as engaged by the serrated links 132 of the first and second load handling chains 187A, 187B such that the loads 56 are substantially held within the load handling device 150 of the transfer machine 64 even if system 50A is subject to external forces.
Transfer control system 169 also includes, as shown in
As shown in
Load handling stop devices 198 are constructed to align and interact with the storage stop devices 140B of a storage position 62 when transfer machine 64 aligns with the storage position 62 to exchange loads 56. In order to transfer a load 56 between load handling device 150 and a storage position 62, stop plate 200 is lowered by stop extension device 202 such that stop plate 200 contacts and lowers stop arm 142 of storage stop device 140B. When the load 56 is then conveyed past stop plate 200, stop extension device 202 causes stop plate 200 to raise such that stop arm 142 will automatically spring back into a retention position when the bottom surface 138 of the load platform 84 has cleared stop arm 142. Similarly, when a load 56 is conveyed from a storage position 62 into load handling device 150, stop plate 200 is initially caused to lower stop arm 142 such that the load 56 may be conveyed out of the storage position 62.
Load handling device 150, as shown in
The imparting of motion to load handling chains 187A, 187B of load handling device 150 by load handling motor 184 such that load platforms 84 may be slidingly moved within first and second C-shaped channels 190A, 190B of load handling device 150, along with simultaneous movement of storage shuttle 92 by drive and driven mechanisms 86, 88, enables loads 56 to be cooperatively exchanged for insertion or extraction between transfer machine 64 and a given storage position 62. Furthermore, motor 178 of drive mechanism 86 can be independently activated relative to load handling motor 184, thereby enabling independent movement of storage shuttle 92 and load handling shuttle 156 such that the spacing between loads 56 within a storage position 62 can be controlled in the manner described below.
For example, when inserting a load 56 into a storage position 62 that already contains one or more loads 56, stop plate 200 is used to initially lower the stop arm 142 of storage stop device 140B. Friction drive wheel 182 may then be caused to engage friction driven wheel 100 to initially withdraw the first load 56 of the storage position 62 partially onto the load handling device 150 of the transfer machine 64. When the transfer machine load sensor 196 detects the presence of the load 56 that has been partially withdrawn from the storage position 62, friction drive wheel 182 may then be caused to rotate in the opposite direction concurrently with the activation of load handling motor 184 to cause both the load handling shuttle 156 and storage load shuttle 92 to move in unison and direct the loads 56 into the storage position 62. When the transfer machine load sensor 196 then detects that the original load 56 to be stored in the storage position 62 is no longer on the load handling conveyor 154, the load handling motor 184 may stop motion of the load handling shuttle 156 while the drive wheel 182 continues to rotate the driven wheel 100 to operate storage shuttle 92. Then, when the storage load sensor 206 detects that the stop arm 142 of the storage stop device 140B has returned to the biased, upright position the rotation of motor 178 may be stopped and extension device 180 may retract drive mechanism 88 from driven mechanism 88 of the storage position 62. In this manner, gaps in the range of one inch between loads 56 stored within storage positions 62 may be obtained.
Similarly, when removing a load 56 from a storage position 62, stop plate 200 is used to initially lower the stop arm 142 of storage stop device 140B. Next, friction drive wheel 182 may be engaged with friction driven wheel 100 to cause storage shuttle 92 to simultaneously move all loads 56 within the storage position 62 toward the load handling device 150. When the first load 56 of the storage position 62 has been partially withdrawn, based on timing by the controller 174 or based on detection by transfer machine load sensor 196, load handling motor 184 may be activated to enable the load handling shuttle 156 to further assist in cooperatively conveying the first load 56 onto the transfer machine 64. Because loads 56 on the storage position move in unison, the load 56 following the first load 56 may also be partially withdrawn from the storage position 62 and toward the load handling device 150. Therefore, when the transfer machine load sensor 196 detects either that the first load 56 is fully on the load handling device 150 or detects the presence of the second load 56, movement of the load handling shuttle 156 may be discontinued concurrently with reverse actuation of drive mechanism 86 to re-insert the remaining loads 56 back into the storage position 62. When the storage load sensor 206 then detects that the stop arm 142 of the storage stop device 140B has returned to the biased, upright position the rotation of motor 178 may be stopped and extension device 180 may retract drive mechanism 86 from the driven mechanism 88 of the storage position 62.
Referring now to
Load platform holder 218 includes a load platform elevator 220 consisting of four cables or chains 222 having tabs 224 adapted to engage the comers of load platforms 84 contained within load platform holder 218. Chains 222 are indexed, such as by a stepper motor 226, up or down depending upon whether a load platform 84 is being received or dispensed. A shuttle 228 is located at the base of load platform holder 218 for transporting empty load platforms 84 between the load platform holder 218 and the first conveyor end 74 of transfer conveyor 76. Shuttle 228 includes two shuttle arms 230 for moving the load platforms 84, with the shuttle arms 230 being mounted to a lift system 232 for lifting empty load platforms 84 over or depositing empty load platforms 84 on the first transfer shuttle 234 of first conveyor end 74. When an empty load platform 84 located at first conveyor end 74 is to be inserted into load platform holder 218, shuttle arms 230 are initially caused to extend underneath the load platform 84, lift system 232 then raises the shuttle arms 230 into engagement with the load platform 84 such that the load platform 84 is lifted off of first transfer shuttle 234. The shuttle arms 230 are then drawn into load platform holder 218 with the load platform 84 passing beneath load guide 236 and above first transfer shuttle 234.
First conveyor end 74 of transfer conveyor 72, as shown in
Although not shown in
As shown in
Transfer conveyor 72 may further include a series of take away transfer conveyors 264, with first and second take away transfer conveyors 264A, 264B shown adjacent first conveyor end 74 in
A series of take away transfer conveyors 264 may be used to convey loads 56 between first and second conveyor ends 74, 76. Each of the take away transfer conveyors 264 may thus be equipped with one or more transfer conveyor load position sensors (not shown) for determining the presence and relative position of a load 56 on the take away transfer conveyor 264 such that the system controller 174 is able to selectively activate the various transfer conveyor shuttles 270 to transport the loads 56. Alternatively, however, a longer, single take away transfer conveyor may be employed to convey loads between first conveyor end 74 and aisle 66, or a take away transfer conveyor constructed to include a driven mechanism that may be engaged by drive mechanism 86 of transfer machine 64 similar to the driven mechanisms 88 of storage positions 62 may be employed.
In operation, transfer conveyor 72 is able to directly convey loads 56 along the length of transfer conveyor 72 directly between first and second conveyor ends 74, 76 when there are no additional loads 56 on the transfer conveyor 72. Alternatively, as understood form
As noted above, material handling control system 175 of system 50A may include a system controller 174 that is adapted to monitor and coordinate the proper storage into and extraction of loads 56 from system 50A.
Material handling control system 175 includes system input device 280 that is adapted to supply communication information to system controller 174 regarding loads 56 that are to be removed from or stored into system 50A. System input device 280, for example, may be constructed as a push button device, such as a keyboard, touch screen, or the like, and/or may enable information regarding the items 80 to be input via a bar code reader, a radio frequency identification (RFID) reader, or the like. System input device 174 may be in communication with a warehouse management system (not shown) that monitors and controls material flow on board ship 52
The following details the procedure by which items 80 are stored into system 50A: Initially, a load platform 84 is discharged from load platform holder 218 to first conveyor end 74 and items 80 located on a pallet 82 are then placed on the load platform 84. Prior to or after placing a pallet 82 containing inventoried items 80 onto a dispensed load platform 84, an operator will input information regarding the items 80 to be stored into the system controller 174 via the system input device 280. The items 80 may include a radio frequency identification (RFID) tag or bar code used to detail the type and quantity of the items 80. If not, the operator may manually entire the information into system input device 280, such as by a keyboard. The operator then inducts the load 56 into system 50A by sending a signal to the system controller 174, which signal may be supplied from the system input device 280, or may be supplied by a wireless activator, or other such activation method. Alternatively, this step may be performed automatically. Load platform driver 246 then engages the load platform 84 to securely affix the pallet 82 thereto. The load 56 may then be weighed by the weight sensors 262 and checked for acceptable size by dimensional sensor system 260. If within the predetermined acceptable size and weight limits, the load 56 will be advanced by first conveyor end 74 and the take away transfer conveyors 264 in the manner described above, if the load 56 is oversize or over weight or not properly identified, it will not be advanced along transfer conveyor 72.
If acceptable, the load 56 is conveyed to second conveyor end 76 adjacent aisle 66, whereupon the load 56 is scheduled to be retrieved and stored by transfer machine 64. Although not shown, optic sensors at second conveyor end 76 may be used to alert transfer machine 64 to the presence of loads 56 requiring storage. The system controller 174 schedules and sorts loads 56 to be retrieved and stored to specific storage positions 62 utilizing software algorithms to efficiently store and retrieve loads 56. The loads 56 may be sorted via the algorithms determining the storage location based on factors that include its weight, such that system 50A may be properly balanced within the structure to which it is mounted, and/or by the type of items 80 being stored. The transfer machine 64 then receives the load 56 from second conveyor end 76 and, using transfer machine position sensors 170, aligns the transfer machine 64 with the predetermined storage position 62. Transfer machine 64 and the storage conveyor 90 of the specified storage position 62 then function to cooperatively insert the load 56 into the storage position 62 in the manner described above.
Items 80 may be retrieved form system 50A in like manner as discussed above. However, if a load 56 is desired to be removed that is positioned on a storage position 62 behind other loads 56 relative to aisle 66, transfer machine 64 under control of system controller 174 must initially sort or reorganize loads 56 within system 50A. The loads 56 positioned in front of the desired load 56 will be withdrawn and transported to other storage positions 62 having room to receive additional loads 56 with material handling control systems 175 functioning to maintain or record the exact locations of all loads 56 at and within the various storage positions 62.
An alternative embodiment of an automated material handling system 350 is partially illustrated in
Still further, instead of utilizing load platforms 84 to brace pallets 82 containing items 80, system 50A may be alternatively constructed to directly receive pallets containing items secured to the pallets, with the pallets having alternative configurations to the load platforms 84 disclosed. For example, the pallets may be constructed as standard storage pallets, or as tubs, or generally flat pallets of approximately uniform thickness.
Further, although storage shuttle 92, load handling shuttle 156, and transfer shuttles 234, 270 discussed above are disclosed as employing chains 116, 187, 242, 272, respectively, with grip members 130 formed as serrated links 132, alternative shuttles and grip members may also be employed. For example, shuttles may be constructed as belts, rollers, slats, or the like, and grip members may be constructed as ribs or plates that are sized and spaced to be positioned in front and back of each load on a storage position. Still further, shuttles and/or grip members may be constructed as gears or teeth adapted to be received by receptacles located on the load platforms, or a single chain for each shuttle may be employed.
Alternative embodiments of the load storage retention systems 91, 391 load handling retention systems 153, 453, and load transfer retention system 217 discussed above may also be employed within the scope of the present invention. For example, although the storage conveyor 90, load handling conveyor 154, and transfer conveyors 264 are disclosed as including two storage tracks 96, two load handling tracks 158, and two transfer tracks 266 that are constructed as generally C-shaped members, alternatively formed and numbers of storage, load handling, and transfer tracks may be used in connection with the present invention and still function as intended. For example, a single storage, load handling, and transfer track may be used at the various storage positions, transfer machines, and transfer conveyors, respectively, with the single tracks being centrally located and adapted to receive a projecting member extending from the load platform in, for example, a T-slot type arrangement, or the like.
Still further, load handling transport mechanism 86 and storage transport mechanism 88 may be constructed to employ alternative drive and driven devices relative to the disclosed friction drive and driven wheels 182, 100 within the scope of the present invention and also still function as intended. For example, drive and driven gears may be employed, or a driver adapted to engage a socket to cause rotation of a longitudinally rotating screw member may be employed.
Although
The automated storage and retrieval systems 50A and 50B of the present invention enables accurate and convenient storage of loads within an environment subject to external forces. The loads are substantially impeded from unwanted movement that may be caused by the external forces due to various retention systems on the storage positions, transfer machine, and load handling conveyor. The retention systems include various storage, load handling, and transfer tracks and shuttles having grip members that enable the loads to move in a constrained manner through the ASRS 50A and 50B. In addition, the transfer machines and storage positions are constructed for cooperatively exchanging loads for storage into or extraction from the storage positions utilizing a drive transport mechanism on the transfer machine that is adapted to selectively engage a driven transport mechanism located on any one of the storage positions, thus reducing the complexity of the system 50A and 50B.
The above is a description of the preferred embodiments. One skilled in the art will recognize that changes and modifications may be made without departing from the spirit of the disclosed invention, the scope of which is to be determined by the claims which follow and the breadth of interpretation that the law allows.
The present application claims priority of U.S. Provisional Application Ser. No. 60/642,062, filed Jan. 7, 2005, by Gerald A. Brouwer, James A. Medley and Richard L. Evans for AUTOMATED STORAGE AND RETRIEVAL SYSTEM, which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60642062 | Jan 2005 | US |