The described embodiments relate generally to magnet processing. More particularly, the described embodiments relate to measuring properties of multiple magnets efficiently.
Magnets are typically tested by measuring their produced magnetic flux. This is often done in a test box where numerous steps need to be performed. For example, a single magnet is placed on a set plate, a search coil matching the size of the magnet is lowered onto the magnet, a nearby circuit measures the electromotive force (“EMF”) of the magnet, its magnetic flux is calculated therefrom, the search coil is then raised up, the single magnet is removed, and another single magnet is set in its place for the process to repeat. This flux measuring process is fine, but it tends to be slow, often requires human interaction for various tasks, and can involve the use of multiple search coils to match magnets of varying sizes. These and other factors can result in flux measurement values that are not standardized or exact, which can lead to other problems in a scaled manufacturing environment. While magnetic flux measuring processes have thus worked well in the past, there can be room for improvement. Accordingly, there is a need for improved magnetic property or quality measuring systems and processes that are more efficient.
Representative embodiments set forth herein disclose various structures, methods, and features thereof for the disclosed automated magnet quality measurement systems. In particular, the disclosed embodiments set forth automated systems that measure magnetic flux of multiple potential magnetic parts and sort the measured parts as accepted or rejected accordingly.
According to various embodiments, automated magnet quality measurement systems are configured to measure magnet qualities and process magnets accordingly, such as in a manufacturing environment. An exemplary automated magnet quality measurement system can include at least: 1) a magnet measuring component, and 2) a magnet moving component. The magnet measuring component can be configured to measure EMF for a plurality of magnets. The magnet moving component can move automatically each of the plurality of magnets into and out of the magnet measuring component without requiring any manual intervention, with only one of the plurality of magnets being within the magnet measuring component at a given time. The magnet measuring component can be a Helmholtz coil and the automated magnet moving component can be a rotating disk. The overall system can also include a loading system configured to load each of the magnets onto the automated magnet moving component on an individual and sequential basis, and a sorting system configured to sort the magnets based upon their EMF measurements.
This Summary is provided merely for purposes of summarizing some example embodiments so as to provide a basic understanding of some aspects of the subject matter described herein. Accordingly, it will be appreciated that the above-described features are merely examples and should not be construed to narrow the scope or spirit of the subject matter described herein in any way. Other features, aspects, and advantages of the subject matter described will become apparent from the following Detailed Description, Figures, and Claims.
Other aspects and advantages of the embodiments described herein will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the described embodiments.
The included drawings are for illustrative purposes and serve only to provide examples of possible structures and methods for the disclosed automated magnet quality measurement systems. These drawings in no way limit any changes in form and detail that may be made to the embodiments by one skilled in the art without departing from the spirit and scope of the embodiments. The embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements.
Magnetic flux measuring systems are a common tool to analyze magnetic parts, such as to accept or reject parts for manufacturing uses. Many such magnetic flux measuring systems can be slow, cumbersome, and/or inaccurate, however, such that it can be desirable to provide improved magnetic flux measuring systems for large scale manufacturing environments.
The embodiments set forth herein thus provide various structures and methods for providing automated magnet quality measurement systems that measure the magnetic flux of multiple potential magnetic parts and sort the measured parts as accepted or rejected accordingly. An exemplary automated magnet quality measurement system can include at least a magnet measuring component and an automated magnet moving component. The magnet measuring component can be configured to measure EMF for a plurality of magnets. The automated magnet moving component can move each of the plurality of magnets into and out of the magnet measuring component without requiring any manual intervention, with only one of the plurality of magnets being within the magnet measuring component at a given time.
In various detailed embodiments, the magnet measuring component can be a Helmholtz coil and the automated magnet moving component can be a rotating disk. The overall system can also include a loading system configured to load each of the magnets onto the automated magnet moving component on an individual and sequential basis, and a sorting system configured to sort the magnets based upon their EMF measurements. A processor can facilitate the automated sorting of magnets in some embodiments.
The foregoing approaches provide various structures and methods for the disclosed automated magnet quality measurement systems. A more detailed discussion of these structures, methods, and features thereof is set forth below and described in conjunction with
Turning first to
Because the movement of the search coil 104 is perpendicular to the part flow and must be retracted, the cycle time for the measurement can be slow. The test box 100 also requires constant manual Intervention, such as a human operator feeding and retrieving parts. The test box 100 is also dependent on the human operator to read the display accurately and decide whether the magnet 10 is good or bad. Further, the size of search coil 104 must be matched to the size of the magnet 10 or at least be close to it, such that different sized magnets require different sized search coils 104. Where each new magnet 10 requires a different search coil 104 or even the development of a new search coil, this can take a long time. Because a given search coil 104 can be customized, the amount of EMF that it produces with a magnet 10 is unique to its design. Thus, it can be very difficult to standardize the measurement value and trace it back to basic physical laws and effects, and the results of each individual measurement can be difficult to check in an independent lab.
One or more sensors may also be used with automated magnet quality measurement system 200, such as a reading sensor 260 and a reset sensor 262. Reading sensor 260 can be, for example, a fluxmeter configured to read the EMF of a magnet passing through Helmholtz coil 150, while reset sensor 262 can be configured to reset the reading sensor 260 and/or one or more other system components when there is no magnet within the Helmholtz coil. Other conditions may be used to trigger reset sensor 262 as well, as will be readily appreciated. Additional system components can include circuitry adapted to send signal data to an associated processor, as well as the processor itself. Further system components can include automated release mechanisms at each of cavities or recesses 232, as well as one or more bins for accepting tested magnets. This can include, for example, an accepted magnet bin and a rejected magnet bin.
In various embodiments, automated magnet quality measurement system 200 can be configured to measure the magnetic moment of magnetized permanent magnets. The magnetic moment for a given magnet can be measured by Helmholtz coil 150, which can be accomplished by using the procedure described by International Standard IEC 60404-14, for example. Helmholtz coil 150 can be connected to a fluxmeter, and the magnet to be measured can be placed within a central volume of the Helmholtz coil 150, such as by moving the magnet through the Helmholtz coil 150 while the magnet is within a cavity 232 on rotating disk 230 as it passes therethrough. Moving the magnet far from this position, where its magnetic field has no more influence on the reading creates a flux variation ΔΦ. The magnetic moment M of the magnet is proportional to ΔΦ:
M=K
H·ΔΦ
In open circuit conditions, the magnetic moment of the magnet is the product of its volume V and the magnetic polarization Jd of the working point:
M=J
d
·V
For anisotropic magnets, Jd is very similar to the residual induction Br. The residual induction is a function of the demagnetization factor (loading line) and of the slope of the curve. The flux variation ΔΦ can be created in different ways, such as, for example, starting with the magnet in the coil and ending with the magnet far from the coil, or starting with the magnet far from the coil and ending with the magnet in the coil, or alternatively starting with the magnet far from the coil and making a path passing through the center and ending with the magnet far from the coil. In this case, the ΔΦ to be considered is the maximum value of flux registered across all movement of the given magnet.
A given magnet 10 stacked in the loading system 220 can fall into a recess 232 in the rotating disk 230, which can take place as the rotating disk 230 rotates beneath the loading system 220. In various embodiments, the lowest magnet 10 stacked within loading system 220 can fall to a position 11 at a given recess 232 when the recess is directly below the loading system 220. The rotating disk 230 can then transport the magnet away from the other magnets in the loading system 220 and toward the Helmholtz coil 150. As the magnet moves in this manner, such as toward a position 12, the reset sensor 262 in or at the rotating disk 230 can trigger the fluxmeter electronics to reset and get ready for a measurement of the magnet. At this point, the flux of the magnet is zero with respect to the Helmholtz coil 150. Next, the magnet continues to move with the rotation of rotating disk 230 until it enters the Helmholtz coil 150, such as at position 13, where the magnetic flux increases to a maximum and then decreases, all while the fluxmeter performs a reading on the magnet. The magnet is then rotated out of the Helmholtz coil 150 and continues to an unloading or sorting position 14.
As will be readily appreciated, there are numerous advantages of the disclosed automated magnet quality measurement system 200. The system does not require a human operator to load and unload each separate magnet, nor does the system require a human operator to change coils or read measurements to accept or reject magnets individually. Accordingly, cycle time can be decreased. Further, the coil does not need to be custom designed for each new magnet, such that the same Helmholtz coil arrangement can be used so long as each magnet fits within the uniform volume of the Helmholtz coil. Measurements made with the disclosed system can be checked in any well-equipped laboratory, and it can be relatively simple to model the physics using standard calculations for simple known geometries, such that a design engineer can predict what the device will read.
At process step 512, the magnetic flux of the new magnet can be measured, and at process step 514, this measured magnetic flux can be communicated to a processor. At a following process step 516, the rotating disk or other automated magnet moving component can be rotated or otherwise moved to advance the new magnet to an unload or sorting position, such as toward sorting bins. At a decision step 518, an inquiry can be made as to whether the measured magnetic flux of the new magnet is acceptable. If not, then the method can continue to process step 520, where the new magnet is sorted to a rejected magnet bin. If the measured magnetic flux is acceptable, however, then the method can continue to process step 522, where the new magnet is sorted to an accepted magnet bin. After either outcome, the method can continue to a decision step 524, where an inquiry can be made as to whether there are more magnets in the loading system. If so, then the method can revert to process step 504, where steps 504 through 524 can then be repeated. If there are no magnets left, however, then the method can then reach a stop step 526.
For the foregoing flowchart, it will be readily appreciated that not every step provided is always necessary, and that further steps not set forth herein may also be included. For example, added steps that involve calibrating the Helmholtz coil or other specific magnetic sensor(s) may be added. Also, steps that provide more detail with respect to accepting and sorting tested magnets may also be added. Furthermore, the exact order of steps may be altered as desired, and some steps may be performed simultaneously.
The computing device 600 can also include a storage device 640, which can comprise a single disk or a plurality of disks (e.g., hard drives), and includes a storage management module that manages one or more partitions within the storage device 640. In some embodiments, storage device 640 can include flash memory, semiconductor (solid state) memory or the like. The computing device 600 can also include a Random Access Memory (RAM) 620 and a Read-Only Memory (ROM) 622. The ROM 622 can store programs, utilities or processes to be executed in a non-volatile manner. The RAM 620 can provide volatile data storage, and stores instructions related to the operation of the computing device 600.
The various aspects, embodiments, implementations or features of the described embodiments can be used separately or in any combination. Various aspects of the described embodiments can be implemented by software, hardware or a combination of hardware and software. The described embodiments can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, DVDs, magnetic tape, hard disk drives, solid state drives, and optical data storage devices. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
The foregoing description, for purposes of explanation, uses specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of specific embodiments are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the described embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
This application claims the benefit of U.S. Provisional Patent Application No. 62/222,085, filed on Sep. 22, 2015, which is incorporated by reference herein in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62222085 | Sep 2015 | US |