This document relates generally to the motor vehicle field and, more particularly, to a system for detecting windshield wiper deterioration and related methods.
Windshield wiper blades age and wear over a lifetime that may vary according to wiper use, weather conditions, etc. Moreover, wiper blades may deteriorate or wear sufficiently to require replacement before it becomes obvious that replacement is needed. That is, a vehicle operator may not be aware that wiper blades have deteriorated sufficiently to require replacement until visible and/or audible evidence of such occurs, i.e. smearing, streaking or squeaking or “chatter” occur. At that point, the wiper blades have deteriorated sufficiently to be potentially dangerous, and the vehicle operator may not be able to immediately replace them, further exacerbating the dangerous condition.
Accordingly, a need is identified in the art for a way for a vehicle operator to ascertain that wiper blades require replacement before such advanced deterioration occurs.
In accordance with the purposes and benefits described herein, in one aspect a system for determining a need for a vehicle windshield wiper blade replacement is provided, comprising a detector for detecting a wiper blade operating noise, a processor configured to determine a wear condition requiring wiper blade replacement from the detected wiper blade operating noise, and a user interface wherein the processor provides a display comprising at least a windshield wiper blade wear condition warning and a listing of one or more suggested replacement wiper blades. In embodiments, the visible display may further include a listing of one or more suggestions of locations for acquiring the replacement wiper blades. The detector may be at least one microphone associated with a passenger cabin of the vehicle.
In embodiments, the processor processes the wiper blade operating noise signal taking into account a rotational speed of the windshield wiper. The processor may determine the wear condition requiring wiper blade replacement by filtering an audio signal received from the detector. The audio signal filtering may be adapted to distinguish an audio signal emitted by a worn wiper blade from an audio signal emitted by a new wiper blade and from a background audio signal.
In embodiments, the system further includes a memory for storing a record of the detected wiper blade operating noise indicative of the wear condition requiring wiper blade replacement. The processor may determine that the wiper blade requires replacement when a predetermined number of records are stored within a predetermined time period.
In accordance with a further aspect of the disclosure, there is provided a method for determining a need for a vehicle windshield wiper blade replacement, comprising, by a detector, detecting a wiper blade operating noise and emitting a signal to a processor. The detector may be a microphone associated with a passenger cabin of the vehicle. Next, the processor determines a wear condition requiring wiper blade replacement from the emitted signal. If such a wear condition is detected, the processor provides a display to a user interface.
In embodiments, the display comprises at least a windshield wiper blade wear condition warning and a listing of one or more suggested replacement wiper blades. The display may further comprise a listing of one or more suggestions of locations for acquiring the replacement wiper blades.
The method includes a step of, by the processor, determining the wear condition requiring wiper blade replacement by filtering an audio signal received from the detector. In embodiments, the filtering step includes filtering the audio signal to distinguish a worn wiper blade audio signal from a new wiper blade audio signal and from a vehicle background audio signal. The processor may process the wiper blade operating noise signal taking into account a rotational speed of the windshield wiper.
The method further includes storing in memory a record of the detected wiper blade operating noise indicative of the wear condition requiring wiper blade replacement. In embodiments, the method may include a step of, by the processor, determining that the wiper blade requires replacement when a predetermined number of records are stored in the memory within a predetermined time period.
In the following description, there are shown and described several preferred embodiments of a system for determining a need for windshield wiper blade replacement and related methods. As it should be realized, the arrangement is capable of other, different embodiments and its several details are capable of modification in various, obvious aspects all without departing from the system for determining a need for windshield wiper blade replacement and related methods, as set forth and described in the following claims. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not as restrictive.
The accompanying drawing figures incorporated herein and forming a part of the specification, illustrate several aspects of the system for determining a need for windshield wiper blade replacement and related methods and, together with the description, serve to explain certain principles thereof. In the drawing figures:
Reference will now be made in detail to the present preferred embodiments of a system for determining a need for windshield wiper blade replacement and related methods, examples of which are illustrated in the accompanying drawing figures.
Reference is now made to
To solve this and other problems, with reference to
Upon receiving the sound energy from the noise, the microphone 210 generates a signal 220 representative of the noise resulting from windshield wiper(s) 110 during operation. This signal 220 is received by a processor 230 and used to determine a wear condition requiring wiper blade replacement as will be described below. The processor 230 may be associated with a vehicle controller 240 which may be a computing device or controller associated with a vehicle to control various electrical systems and subsystems, for example as the Body Control Module (BCM). Alternatively, the controller 240 may be a separate computing device or controller dedicated only to monitoring/controlling the presently described system.
The nature and design of computing devices/controllers such as are used to control and monitor various vehicle 100 system functions are well-known in the art. At a high level, such controllers 240 comprise processors or microprocessors 230, storage 250, and memory 260. The controllers 240 may communicate with the systems they control or with other vehicle controllers via a serial bus (e.g., Controller Area Network (CAN)) or via dedicated electrical conduits. The controller 240 may generally include any number of processors/microprocessors 230, ASICs, ICs, memory 260 which may be, e.g., FLASH, ROM, RAM, EPROM and/or EEPROM, and software code comprising computer executable instructions to co-act with one another to perform a series of operations. The controller 240 may communicate with other vehicle systems and computing devices over one or more wired or wireless vehicle connections using common bus protocols (e.g., CAN and LIN). Used herein, a reference to “a controller” or “a computing device” refers to one or more controllers or computing devices.
The processor 230 further communicates by wired or wireless means with one or more local or remote user interfaces to provide a display which may include a windshield wiper blade wear condition warning, a listing of one or more suggested replacement wiper blades, and a listing of one or more suggestions of retail locations for acquiring the replacement wiper blades. The user interface will typically include a display screen for showing such information. In embodiments, the processor 230 may communicate with a dedicated on-board display such as a vehicle entertainment center 270 associated with the vehicle dash panel or a console, with a mobile device such as a user cell phone or smartphone 280, or with a mobile or desktop computing device 290 such as a user laptop computer. As will be appreciated, the processor 230 may communicate with any suitable device providing a user interface, for example a pager, an MP3 player, and others (not shown).
As will be appreciated, a vehicle 100 generates significant noise, i.e. audio signals in addition to those generated by the wipers 110 during operation. Accordingly, to provide an accurate estimate of wiper blade 130 wear, audio signals detected by the microphone 210 are processed and filtered.
In one embodiment, with reference to
To account for such extraneous noise, the processor 230 operates to filter the audio signal provided by the microphone 210. In other words, the sound waves generated by the wipers 110/wiper blades 130 and captured by the microphone 210 are discretely sampled and analyzed to capture both frequency and location in time information. At step 320, the audio signal is passed through a band pass filter to provide a first filtered audio signal. Next, at step 330 a decimation process is performed in order to reduce the sampling rate of the signal as the acquired noise falls below a specific threshold for each vehicle line. As will be appreciated, this threshold will vary for different vehicle sizes/models because the extraneous noise generated will vary. As one non-limiting example, the set threshold will be approximately 300 Hz for small B-segment vehicles. This decimation process must keep the signal bandwidth above 5 kHz for adequate noise detection. A time window is determined at step 340, being a time period that is less than or equal to ⅕ of a wiper cycle (i.e. the time required for a wiper 110 to make a full traversal through its full range of motion during a cleaning/wiping of a windshield 120). As will be appreciated, this time window is not a set variable, but instead varies according to whether the wipers 110 are being operated on a high setting, a low setting, or an intermittent setting.
This information is used by the processor 230 to calculate a root mean square (RMS) value (sometimes called a quadratic mean) at step 350. In an embodiment, the RMS value calculation is according to the formula Parms=√{square root over (
In more detail, the RMS values are computed over short time windows that are less than ⅕of the wiper 110 time period (for example, 0.1 second signal segments). This enhances wiper noises compared to normal wiper activation, and reduces the effect of extraneous noises that occur over a time period that is shorter than the wiper cycle (avoids false positive detections). On this step the last threshold refers to a known value N10 over which the particular combination of wiper blade 130 and windshield 120 will typically produce a squeak. This threshold is then compared to the audio signal broadcast from the microphone 210 to determine if the wipers are worn out.
In one embodiment, the referenced threshold (step 360) is defined as the N10 value of an audio signal that depends on the segment of the vehicle 100. The threshold 360 is extracted by a percentile RMS analysis of 14 wiper 110 cycles without noise and 1 wiper cycle with noise. Then, the threshold is defined as the RMS value above 90% of the analyzed condition described above. This can be expressed by the formula:
wherein x corresponds to a voltage V emitted from the microphone 210, which in turn represents acoustic pressure in Pascals (Pa).
At step 370, if the filtered signal provides a calculated RMS value which represents a noise which potentially indicates a wiper blade 130 wear condition sufficient to require wiper blade replacement, a record is stored in memory 260 as part of a detection history registry. If a number of such noises are stored within a predetermined time period, the processor 230 will generate a display as described above. Each sample noise record consists of M measured activations, discarding the first X cycles as dust, dirt or other elements might induce noises in new wipers.
As will be appreciated, the number of noises, predetermined time period, and discarded first cycles (variables M and X above) used in setting the noise record generation may vary according to vehicle line and/or according to particular configurations of wiper blade 130 and windshield 120. In one non-limiting example of a B-segment vehicle, three such noise records were found sufficient to indicate a worn wiper blade 130 condition, were stored in memory 260, and generated a display.
This is illustrated in
If the detection history 380 provided as summarized above is indicative of a wiper blade 130 wear condition requiring replacement, the processor 230 includes computer executable instructions for providing a display 400 (see
As noted above, this display 400 may be sent by wired or wireless (i.e., Bluetooth® or other suitable transmitting means) routes to a number of local or remote devices, for example to a dedicated dash panel display screen 440 such as is known for displaying information such as trip length, time, vehicle service requirements, etc. The display 400 could also be sent to a dash panel- or console-mounted vehicle entertainment center (not shown), or to a computing device carried by a user (not shown). By the described system, a timely warning of wiper blade 130 wear requiring replacement is provided to a vehicle user, along with a convenient listing of potential replacements and replacement sources.
The foregoing description has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the embodiments to the precise form disclosed. Obvious modifications and variations are possible in light of the above teachings. All such modifications and variations are within the scope of the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled.
Number | Name | Date | Kind |
---|---|---|---|
4620141 | McCumber | Oct 1986 | A |
5119002 | Kato | Jun 1992 | A |
5254916 | Hopkins | Oct 1993 | A |
5349718 | Gibbon | Sep 1994 | A |
5642026 | McCann et al. | Jun 1997 | A |
6057660 | Meier | May 2000 | A |
6775877 | Broszniowski | Aug 2004 | B1 |
7194781 | Orjela | Mar 2007 | B1 |
8285437 | Kubota et al. | Oct 2012 | B2 |
8598828 | Sabi | Dec 2013 | B2 |
8843270 | Kwon | Sep 2014 | B2 |
8890074 | Kim | Nov 2014 | B2 |
9365188 | Penilla et al. | Jun 2016 | B1 |
9539984 | Dias | Jan 2017 | B2 |
9827951 | Toda | Nov 2017 | B2 |
20100204987 | Miyauchi | Aug 2010 | A1 |
20130105694 | Kim | May 2013 | A1 |
20130145839 | Niemann | Jun 2013 | A1 |
20130185078 | Tzirkel-Hancock et al. | Jul 2013 | A1 |
20140088886 | Dias | Mar 2014 | A1 |
20150048771 | d'Essuyage | Feb 2015 | A1 |
20160207500 | Renke | Jul 2016 | A1 |
20160250997 | Toda | Sep 2016 | A1 |
20170139669 | Oh | May 2017 | A1 |
20170154481 | Chen | Jun 2017 | A1 |
20180126955 | Green | May 2018 | A1 |
Number | Date | Country |
---|---|---|
3935807 | May 1991 | DE |
19955874 | May 2001 | DE |
10254684 | Jun 2004 | DE |
102009048687 | Apr 2011 | DE |
2730470 | May 2014 | EP |
200507902 | Jun 2000 | JP |
2010052470 | Mar 2010 | JP |
19970040176 | Jul 1997 | KR |
9614225 | May 1996 | WO |
20010381474 | May 2001 | WO |
Entry |
---|
Non-Final Office Action dated Feb. 7, 2018 for Utility U.S. Appl. No. 15/348,235, filed Nov. 10, 2016. |
Number | Date | Country | |
---|---|---|---|
20180130266 A1 | May 2018 | US |