1. Technical Field
The embodiments described herein relate to automated systems for designing and manufacturing patient-specific orthopedic devices, such as implants and instrumentation, based on data, such as imaging data, representing an existing joint.
2. Description of the Related Art
Personalized medicine is one of the fastest growing trends in the healthcare industry. While this trend has mainly been seen in the drug sector, medical device manufacturers have also recognized the benefits of individualizing their products to meet the needs of different patient groups. The orthopedic implant manufacturers have recently launched implants optimized for different genders or geographies, or combining patient-specific instruments with standardized implants. However, these are not truly personalized, patient-specific or patient-matched approaches. Technological advances now allow for the design and manufacture of implants and associated instrumentation optimized for a specific individual. Such implants fall on a spectrum from, e.g., implants that are based on one or two aspects or dimensions of a patient's anatomy (such as a width of a bone, a location of a defect, etc.) to implants that are designed to conform entirely to that patient's anatomy and/or to replicate the patient's kinematics.
One example of such patient-specific or patient-matched technology is the ConforMIS iFit® technology used in the iUni® (unicompartmental knee resurfacing implant) and iDuo® (dual compartmental knee resurfacing implant). This technology converts Computed Axial Tomography (“CT”) or Magnetic Resonance Imaging (“MRI”) scans into individualized, minimally invasive articular replacement systems capable of establishing normal articular shape and function in patients with osteoarthritis. By starting with imaging data, the approach results in implants that conform to bone or cartilage, and reduce the need for invasive tissue resection. The implant is made to fit the patient rather than the reverse. By designing devices that conform to portions of the patient's anatomy, the implants allow the surgeon to resurface rather than replace the joint, providing for far more tissue preservation, a reduction in surgical trauma, and a simplified technique.
The image-to-implant process begins with the patient having a medical image such as a CT or MRI scan, which can be done on commonly available machines, using a standardized protocol that ensures the data needed to design the implant is captured properly. The image data is then combined with computer-aided design (CAD) methods to generate a patient-specific model of the knee from which a patient-specific implant and/or patient-specific instrumentation can be designed and manufactured. The electronic design file created during this process is used to fabricate the patient-specific implant and custom instrumentation, which is a process that takes approximately four to six weeks.
The development and manufacture time associated with all types of patient specific devices could be significantly reduced if some or all aspects of the design and manufacture process were fully automated or more fully automated. Automation of some or all aspects of the process, including, without limitation, imaging, diagnosis, surgical planning, instrumentation design, implant design, manufacture, quality systems and distribution could result in, among other advantages, faster and less costly production, which could result in patient's being able to have surgery sooner and at a lower cost. Additionally, such systems could improve productivity of designers, which would have several advantages such as improving profitability of manufacturing such implants. Further, such systems would both directly and indirectly improve the quality of such implants by, example, providing defined rules to ensure patient-specific implant designs meet specification, and also indirectly by improving the cost effectiveness of skilled designers, which makes the technically skilled employees found in more developed countries such as the United States more economically competitive and thereby reducing the impetus to outsource such production to countries with less technically skilled but cheaper labor that may result in reduced quality in the design process.
Some embodiments described herein include new computer-based methods used to generate the designs for personalized joint implants that are custom-tailored to a patient's individual anatomy. The anatomic information is derived from medical images, such as CT or MRI scans. Other types of images also could be used, including, without limitation, x-ray images. A variety of segmentation methods can be applied to extract the relevant anatomic information.
In one embodiment, the anatomic information resulting from the segmentation can be composed of individual points, surface information, or solid bodies, preferably in 3 or more dimensions. In another embodiment, the anatomic information results in a virtual model of the patient's anatomy.
The processing of the anatomic information and the generation of the custom-fit implant design can have different degrees of automation. It can be fully automated, thus not requiring any user input. It can provide default settings that may be modified and fine-tuned by the operator. In any automated step performed by the system, constraints pertaining to a specific implant model, to a group of patients or to the individual patient may be taken into account. For example, the maximum implant thickness or allowable positions of implant anchors may depend on the type of implant. The minimum implant thickness can depend on the patient's bone quality.
In another embodiment, the system supports the operator by guiding him/her through the design workflow and prompting the user for required input. For example, the system follows a predefined step-by-step design protocol. It performs automated calculations whenever possible. For certain steps that require operator intervention, the system presents the operator with all information necessary to provide his input. This can include, without limitation, showing the design status from a specific viewpoint that allow the operator to best make the required decision on the particular design step. Once the information has been entered by the operator, the system can continue the automated design protocol until further operator interaction becomes necessary.
In another embodiment, the system uses anatomic landmarks to generate an implant design. The system can, for example, merge the patient's anatomic information with a generic atlas or model containing the landmark information. By merging the two pieces of information, the landmark information is transferred into the patient information, thus allowing the system to use the landmark information as reference in the implant design. Alternatively, the landmark information may be derived directly from the patient's anatomical data, for example and without limitation, by locating curvature maxima or minima or other extrema.
In another embodiment, the system automatically finds the best viewpoint to allow the user to perform a design step. This can be facilitated by using the landmark information derived from the patient's anatomical information. For example, the system can find the best view to allow the operator to define the implant's outer profile or contour.
In another embodiment, the implant profile is defined using a virtual template. The template may be fitted automatically to the patient's anatomical model, for example, by using the generic atlas, which may have the virtual template integrated into it. The anatomical model can be represented by a series of 2D images or a 3D representations. The model typically, but not always, will have at least one of bone or cartilage already segmented.
Alternatively, the virtual template can be user-adjustable. The system can provide an initial default fit of the template and then allow the user to make adjustments or fine-tune the shape or position. The system can update the implant as the operator makes adjustments to the template, thus providing real-time feedback about the status of the implant design. The adjustments can be made, for example, for irregularities of the articular surface including osteophytes or subchondral cysts, or flattening of an articular surface.
The virtual template can be a 3D template. In another embodiment, the virtual template is a 2D template that is projected onto a 2D or 3D anatomical model of the patient's anatomy. The template can be a composite of standard geometric shapes, such as straight lines, arcs or other curved elements in 2D and planes, spherical shapes or other curved elements in 3D. Alternatively, the template may have an irregular, free-form shape. To adjust the shape of the template, the system or the operator can move the standard shapes or adjust the radius of the curved elements. In another embodiment, the virtual template may have a number of control points that can be used to adjust its shape. In yet another embodiment, the center line of the profile can be used to adjust its shape.
In another embodiment, the final implant includes one or more bone cuts. The cut planes for these bone cuts can be automatically determined by the system, for example using anatomical landmarks. The cut planes can also be built into a generic virtual atlas that is merged with the patient's anatomical information. Optionally, the cut planes can be adjusted by the operator.
The system can also construct the implant surfaces. Surfaces may be composed of different elements. In one embodiment, elements of the surfaces will conform to the patient's anatomy. In these situations the system can build a surface using the patient's anatomical model, for example by constructing a surface that is identical with or mostly parallel to the patient's anatomical surface. In another embodiment, the system uses geometric elements such as arcs or planes to construct a surface. Transitions between surfaces can be smoothed using tapers or fillets. Additionally, the system may take into account constraints such as minimum or maximum thickness or length or curvature of parts or aspects of the implant when constructing the surfaces.
In another embodiment, the system can automatically or semi-automatically add other features to the implant design. For example, the system can add pegs or anchors or other attachment mechanisms. The system can place the features using anatomical landmarks. Constraints can be used to restrict the placement of the features. Examples of constraints for placement of pegs are the distance between pegs and from the pegs to the edge of the implant, the height of the pegs that results from their position on the implant, and forcing the pegs to be located on the center line.
Optionally, the system can allow the user to fine-tune the peg placement, with or without enforcing the constraints.
In another embodiment, the additional features are embedded with the generic virtual atlas and merged with the patient-specific anatomical information, thus overlaying the information about the position of the feature embedded in the atlas on top of the patient's anatomical model.
In other embodiments, devices that are tailored to only one or a few dimensions or aspects of a patient's anatomy are designed using automated processes.
The principals can also be applied to other devices, such as the design and manufacture of patient-specific instruments, such as jigs used in orthopedic surgeries or other instrumentation. Similarly, the concepts can be applied to portions of the design of an implant or instrument, such as the design of an articular surface of a patient-specific and/or patient-engineered articular implant.
Various embodiments of the invention can be adapted and applied to implants and other devices associated with any anatomical joint including, without limitation, a spine, spinal articulations, an intervertebral disk, a facet joint, a shoulder joint, an elbow, a wrist, a hand, a finger joint, a hip, a knee, an ankle, a foot and toes. Furthermore, various embodiments can be adapted and applied to implants, instrumentation used during surgical or other procedures, and methods of using various patient-specific implants, instrumentation and other devices.
One embodiment is a nearly-fully automated system to design a patient-specific implant that requires minimal input from a designer or other operator and that is capable of designing an implant in a small fraction of the time it takes for a designer to design such an implant using computer aided design (CAD) tools.
Automated Design of a Patient-Specific Unicompartmental Femoral Implant
Referring to
Such an implant can be designed and manufactured using traditional CAD-based design rules. However, in the present embodiment, it is designed using an automated system that, for example, partially automates the design process. The specifics attributes of such a system are more fully described below. Similarly, other devices, such as patient-specific instrumentation, other types of knee resurfacing devices, other types of knee joint replacement devices, and other orthopedic implants and instrumentation for other joints or other parts of the anatomy can be designed and manufactured using such partially or fully automated design and manufacturing processes.
Referring also to
Referring to
Referring to
As shown in
Referring to
Referring to
Automated Design of an Implant with a “Patient-Engineered” Articular Surface
Preferably, patient-specific implants include articular surface and other attributes that are engineered from the patient's own anatomy, but that provide an improved function. For example, an articular surface can create a healthy and variable “J” curve of the patient in the sagittal plane and a constant curvature in the coronal plane that is based on the patient's specific anatomy, but that does not seek to mimic or precisely recreate that anatomy, may be preferred. For example, referring to
The design of implant 10 has several advantages. First, the design of articular surface 50 allows the thickness of femoral component to be better controlled as desired. For example, referring to
Referring again to
For example, referring also to
The third advantage, which is also related to the loading and overall kinematics of the implant, is in the matching of the tibial articular surface 70 to the femoral articular surface 50 in the coronal plane. By providing a radius that is predetermined, e.g., five times the radius of the femoral articular surface 50 at its centerline in the present embodiment, the loading of the articular surfaces can be further distributed. Thus, the overall function and movement of the implant is improved, as is the wear on the tibial tray, which is polyethylene in this embodiment. While the present embodiment uses a ratio of five times the radius of the outer surface at its centerline (note that the radius of the outer surface may be slightly different at other locations of the outer surface 50 away from the centerline), other embodiments are possible, including an outer tibial surface that, in the coronal plane, is based on other ratios of curvature, other curvatures, other functions or combinations of curves and/or functions at various points. Additionally, while the embodiments shown in
An Exemplary Automated System for Designing Patient-Specific Implants
The implants described in both Examples 1 and 2 can be designed and manufactured using CAD-based design rules or other largely manual procedures, i.e., procedures that are either entirely manual, or that may contain certain automated components but that are still predominately manual in nature.
Alternatively, those implants, as well as essentially any type of patient-specific implant, can be designed and manufactured using an automated system that, for example, partially or fully automates the design process. Such an automated process is more fully described below. Similarly, other devices, such as patient-specific instrumentation, other types of knee resurfacing devices, other types of knee joint replacement devices, and other orthopedic implants and instrumentation for other joints or other parts of the anatomy can be designed and manufactured using such partially or fully automated design and manufacturing processes. In the following example, an embodiment of an automated process is described. This embodiment is one of many potential embodiments that may vary in many ways, each having its own specifications, design goals, advantages and tradeoffs.
Automated Design of a Femoral Component
Referring to
The automation system constructs the curve segment by segment, interpolating the sketch points by a local cubic spline. The spline does not lie on the surface, and typically will not be close to it. The curve will pass near the surface on the outside part of it to make it highly visible in any view. To do this, the spline segments are interpolated, and, for each intermediate point, a ray extending from an essentially infinitely distant point and perpendicular to the screen plane intersects with the surface. As the view can be different for each segment, the directions of projects may also be different for each segment.
When a new sketch point is added, the spline is changed only at its last created segment. But the sketch points and the directions of projection are kept until the curve construction is complete. This allows the system to reject as many segments as the system wants and redefine the spline until the system has developed a satisfactory shape using an iterative process.
The cubic spline is a local cubic spline with a special rule of defining tangent vectors of interpolating points. By way of example in this particular embodiment:
Suppose there are n+1 points p0, p1, . . . , pn.
For inner points (i=n1, . . . , n−1), the system defines tangent vector as a bisect of a triangle formed by two neighbor chord vectors starting from the point:
For the first and the last points the system define the tangent vector from the constraint of zero curvature at the end points:
The interpolation inside each segment is done according a classic cubic segment formula:
f0=1−3u2+2u3 (j)
f1=3u2−2u3 (k)
g0=u3−2u2+u (l)
g1=u3−u2 (m)
pt=f0*pt0+g0*tn0+ (n)
f1*pt1+g1*tn1 (o)
When the system has sketched the sulcus line 520, it then begins to develop the curve of the shape of the implant. This is performed by an object that interpolates points lying close to the surface. In the present embodiment, the spline or the projection directions array is not used for this purpose, but many other implementations are possible. This curve serves as an indicator of approximate position where the femoral implant should stop.
In the next phase of the design, a profile view is created. The system defines the profile view using the following steps:
In the present embodiment, all steps except the last one are done automatically. (But, this step could also be automated.) Here, the user interface for making additional rotations is done using a UI class derived from CManager. The view can be rotated around x-axis and around z-axis either by moving the sliders or by setting the rotation angles in the toolbar edit boxes. This allows the designer to better view and examine the implant surfaces during the automated design process. When a designer, customer or other user clicks “Accept” in the toolbar, the system stores the entity of the view information in the document. The entity contains the view parameters and two correction angles.
Referring to
The initial implant contour 500 is sketched in the profile plane of condyle 510 of the femur of the patient. The contour is projected onto the femur surface orthogonally to the screen plane (profile plane). To close the contour on the posterior side, there are two points on the vertical edges of the contour which are the closest to a so-called 93 degrees plane. The system computes the cutting plane as the plane passing through those two points and forming minimal angle with 93 degrees plane. Making a cross-section by the cutting plane allows us to close the implant contour.
The two dimension contour to be projected on the femur surface consists of lines and arcs. There are two vertical lines, two slopped parallel lines, one horizontal line, two fillet arcs and two 90 degrees arcs on the top, forming one 180 degrees arc. Each of these arcs and lines is called a contour element; the contour consists of nine elements. The system also considers center-line elements, including two center lines and two points (shown as bold markers on the screen).
The members of this data structure are called “defining elements.” The system can uniquely compute contour elements based on this information. When the software stores the profile contour in an external file, the software stores the defining elements. The defining elements can include those listed below in Table 1, but other embodiments are possible.
If the system wants to adjust fillets, the system sets a flag to true. The system then leaves the radii being to the original value and does not re-compute them automatically.
The initial sketching starts with indicating the upper point of the first vertical line. Then the system indicates the upper end of the first slopped line and makes the first fillet automatically. The last action in the initial sketching is indicating the upper point of the second slopped line—the rest of the contour can be uniquely defined automatically with the assumption that h1=h2. This condition can be changed during modification phase. After the initial sketch is complete, the contour is projected on the femur surface and is displayed.
In most cases the contour built after the initial sketch requires some modification, which can be automated using an iterative process that checks against a predefined set of rules and compares to a specification. Alternatively, a designer can intervene to check to progression of the automated design. To switch to modification phase, the user clicks a “Modify” button in the toolbar. When a user moves the mouse over some contour element, the element is highlighted by displaying in bold lines. The user can drag the element along the direction, associated with each element, by pressing left button, moving the mouse and releasing it in a new position. The whole contour will be rebuilt accordingly.
When the contour shape, which serves as the footprint and starting point of the implant, is satisfactory, the user clicks the button “Make” in the toolbar and the process of constructing the implant starts.
Constructing of the implant is done by the following main steps of the process:
In the present embodiment, the process starts with projecting the sketched contour on the femur surface. This function does two things. First, it traverses all contour elements, computes 30 points on each of them and projects them onto femur BREP. Second, it takes two center line elements, extends the top one up to the top arcs, makes a fillet between the two lines and projects the resulted center line onto femur BREP. This is a first step in constructing the femur center line.
When the system projects contour and center line points onto the femur BREP, some points may miss the surface. This happens on a portion of a region where the contour elements are vertical lines. As the system constructs the contour on the femur in this area, the system will make cross-sections of the femur by those vertical lines. The system also finds the “lowest” (the closest to the 93 degrees plane) points on the side sections.
When the system calculates the two “lowest” points on the side sections, the system computes the cutting plane. It computes a temporary plane passing through the two lowest points perpendicular to the 93 degrees plane and then makes a cutting plane as passing through two lowest points perpendicular to the temporary plane. As the result, the cutting “profile” plane forms a minimal angle of 93 degrees from all planes passing through the two lowest points.
The next step is cutting the femur with the profile plane. The function finds a cross-section as an array of curves, discards the ones belonging to the other condoyle, approximates the best curve with a single spline and re-orients it so that it has the same direction at the starting lowest point as the projected contour.
The final step in making the contour on the femur is assembling all aspects together. This is done by a function that forms the contour from the main portion of the projection, i.e., the two segments of the vertical sections which start where the projection portion finishes and end at the “lowest” points, and the portion of the cutting plane cross-section.
As shown in
The system then computes the side rails of the implant by extending the side lines of the contour behind the end points to provide good intersection of the inner and outer surfaces with the cutting surfaces.
Referring also to
Referring to
The outer surface 590 is constructed by sweeping an arc of the constant radius and angle along a center line trajectory. The trajectory is defined by the center line curve and an offset value. The ending portions of the trajectory are defined by the tapering arcs. The system function assumes that the arc radius and the offset value are given; for example, the system may use a radius=25.0 and offset=3.5.
The function then determines the angle of the sweeping arc. To find the angle, the system uses a heuristic approach. It computes several (e.g., 10) points on the center line in between tapering zones. For each of these points the system makes a plane perpendicular to the center line and find two points where the plane intersects with two side curves. Then the system computes the “center” by offsetting the point on the center line against the surface normal by a value equal the difference (radius−offset). The system then makes two lines from the center to the points on side curves and computes the angle between them. This angle approximates the possible sweeping arc angle at this cross-section. The system sets the angle of the sweeping arc to the maximum of those arcs angles.
Once the system determines the sweeping arc angle, it processes the anterior taper arc, the portion of the center line between taper zones, and the posterior taper arc. For taper arcs, the system computes an array of points on the curve and constructs an arc of the given radius and angle, lying in the plane perpendicular to the curve and having the calculated point as its middle point. The center line that the system processes is almost the same, except that the system offsets the point on the curve along the femur normal to the offset value. This results in a set of arcs as shown. Thus, the outer surface 590 is created as a loft surface using the set of created arcs as cross-sections.
Referring now to
Ideally, in this embodiment, the radius of the cylinder should be the half of the distance between the side lines, although other embodiments may employ different implementations. The implementation of this embodiment allows the cylinder to be tangential to the walls of the tabulated cylinder, and thus to create a smooth side surface.
The system then eliminates the angles of the side surfaces. The system can do this either by filleting the angles, or by using Boolean subtraction. Boolean operation will provide a more exact result, but risks instability in some cases. The system then flattens the posterior area 660 of the inner surface.
Referring to
In this embodiment, a functions to check the implant thickness is provided as a menu item that a user can select, but the feature could be automated to run automatically. As shown in
When the system begins to measure the implant thickness, it can display the implant in wireframe mode 680 and display the cross-section 670 in some initial position. The cross-section 670 is displayed, for example, in white, and the center-line 690 is displayed, for example, in red. The initial position of the cross-section is at the point on the center line 690 where anterior taper begins. The cross-line default position is in the middle of the cross-section 670.
Referring to
When started, the class displays the implant in the wireframe mode in the profile view and suggests default positions 720, 730 for the pegs, marked on the screen as circles:
The user can move the pegs by dragging them. The pegs are moved along the center lines keeping constant distance between them. The toolbar displays the distances between the cutting plane and the first peg (d1), between the two pegs (d2), and between the second peg and the apex point of the implant contour (d3). It also displays the pegs heights.
The pegs 700, 705 can be pre-viewed with dynamic view changing by clicking button Preview and made with filleting their intersection with the implant inner surface by clicking Accept.
The class automatically computes initial positions of the pegs, trying to make equal all three distances d1, d3, d3. The distance d2 should be integer number, so it is rounded to the nearest integer. The other two, d1, and d3, are updated accordingly. A user can set the distance d2 right in the toolbar; again, the other two distances will be updated.
The toolbar has a button “Constraints”. Clicking on this button invokes a modal dialog with a set of conditions. It sets the minimum value for d1 (11), the min/max values for d2 (11-18) and the min/max values for pegs heights (11-12). If one (or more) of conditions is violated, the corresponding value is displayed in red and moving the pegs produces an alarm.
The system requires that the distances from pegs apex points to the profile plane be equal. Although many other embodiments are possible. For every position of the pegs, the system extends them up to a plane, parallel to the profile plane and measure their heights, h1 and h2. Then the system adjusts them so that (h1+h2)/2 becomes 11.5. This allows the system to place both of pegs in the range 11-12 and their heights differ from 11.5 the same distance.
Referring to
The embodiments disclosed herein are exemplary only, and one skilled in the art will realize that many other embodiments are possible, including, without limitation, many variations on the embodiments described above as well as other entirely different applications of automated systems for designing patient specific implants of various types and for various joints and other parts of a patient's anatomy. The embodiments described herein are not intended to limit the scope of the claims.
This application claims priority to U.S. Provisional Application 61/208,440, filed Feb. 24, 2009, entitled “Automated Systems for Manufacturing Patient-Specific Orthopedic Implants and Instrumentation.” This application claims priority to U.S. Provisional Application 61/208,444, filed Feb. 24, 2009, entitled “Automated Systems for Manufacturing Patient-Specific Orthopedic Implants and Instrumentation.” This application is a continuation-in-part application of U.S. patent application No. U.S. Ser. No. 11/671,745, filed Feb. 6, 2007, entitled “Patient Selectable Joint Arthroplasty Devices and Surgical Tools”, which in turn claims the benefit of U.S. Ser. No. 60/765,592 entitled “Surgical Tools for Performing Joint Arthroplasty” filed Feb. 6, 2006; U.S. Ser. No. 60/785,168, entitled “Surgical Tools for Performing Joint Arthroplasty” filed Mar. 23, 2006; and U.S. Ser. No. 60/788,339, entitled “Surgical Tools for Performing Joint Arthroplasty” filed Mar. 31, 2006. U.S. Ser. No. 11/671,745 is also a continuation-in-part of U.S. Ser. No. 11/002,573 for “Surgical Tools Facilitating Increased Accuracy, Speed and Simplicity in Performing Joint Arthroplasty” filed Dec. 2, 2004 which is a continuation-in-part of U.S. Ser. No. 10/724,010 for “Patient Selectable Joint Arthroplasty Devices and Surgical Tools Facilitating Increased Accuracy, Speed and Simplicity in Performing Total and Partial Joint Arthroplasty” filed Nov. 25, 2003 which is a continuation-in-part of U.S. Ser. No. 10/305,652 entitled “Methods and Compositions for Articular Repair,” filed Nov. 27, 2002, which is a continuation-in-part of U.S. Ser. No. 10/160,667, filed May 28, 2002, which in turn claims the benefit of U.S. Ser. No. 60/293,488 entitled “Methods To Improve Cartilage Repair Systems”, filed May 25, 2001, U.S. Ser. No. 60/363,527, entitled “Novel Devices For Cartilage Repair, filed Mar. 12, 2002 and U.S. Ser. Nos. 60/380,695 and 60/380,692, entitled “Methods And Compositions for Cartilage Repair,”and “Methods for Joint Repair,” filed May 14, 2002. U.S. Ser. No. 11/671,745 is also a continuation-in-part of U.S. Ser. No. 10/728,731, entitled “Fusion of Multiple Imaging Planes for Isotropic Imaging in MRI and Quantitative Image Analysis using Isotropic or Near-Isotropic Imaging,” filed Dec. 4, 2003, which claims the benefit of U.S. Ser. No. 60/431,176, entitled “Fusion of Multiple Imaging Planes for Isotropic Imaging in MRI and Quantitative Image Analysis using Isotropic or Near Isotropic Imaging,” filed Dec. 4, 2002. U.S. Ser. No. 11/671,745 is also a continuation-in-part of U.S. Ser. No. 10/681,750, entitled “Minimally Invasive Joint Implant with 3-Dimensional Geometry Matching the Articular Surfaces,” filed Oct. 7, 2003, which claims the benefit of U.S. Ser. No. 60/467,686, entitled “Joint Implants,” filed May 2, 2003 and U.S. Ser. No. 60/416,601, entitled Minimally Invasive Joint Implant with 3-Dimensional Geometry Matching the Articular Surfaces,” filed Oct. 7, 2002. Each of the above-described applications is hereby incorporated by reference in their entireties. This application relates to U.S. patent application Ser. No. 12/398,753, filed Mar. 5, 2009, entitled “Patient Selectable Joint Arthroplasty Devices and Surgical Tools,” which in turn claims priority to U.S. Provisional Patent Application No. 61/034,048, filed Mar. 5, 2008, entitled “Patient Selectable Joint Arthroplasty Devices and Surgical Tools,” and U.S. Provisional Patent Application No. 61/034,048, filed Mar. 5, 2008, entitled “Patient Selectable Joint Arthroplasty Devices and Surgical Tools,” each of these above-described applications hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3314420 | Smith et al. | Apr 1967 | A |
3605123 | Hahn | Sep 1971 | A |
3694820 | Scales et al. | Oct 1972 | A |
3798679 | Ewald | Mar 1974 | A |
3808606 | Tronzo | May 1974 | A |
3816855 | Saleh | Jun 1974 | A |
3843975 | Tronzo | Oct 1974 | A |
3852830 | Marmor | Dec 1974 | A |
3855638 | Pilliar | Dec 1974 | A |
3938198 | Kahn et al. | Feb 1976 | A |
3987499 | Scharbach et al. | Oct 1976 | A |
3991425 | Martin et al. | Nov 1976 | A |
4052753 | Dedo | Oct 1977 | A |
4055862 | Farling | Nov 1977 | A |
4085466 | Goodfellow et al. | Apr 1978 | A |
4098626 | Graham et al. | Jul 1978 | A |
4164793 | Swanson | Aug 1979 | A |
4178641 | Grundei et al. | Dec 1979 | A |
4203444 | Bonnell et al. | May 1980 | A |
4207627 | Cloutier | Jun 1980 | A |
4213816 | Morris | Jul 1980 | A |
4219893 | Noiles | Sep 1980 | A |
4280231 | Swanson | Jul 1981 | A |
4309778 | Buechel et al. | Jan 1982 | A |
4340978 | Buechel et al. | Jul 1982 | A |
4344193 | Kenny | Aug 1982 | A |
4368040 | Weissman | Jan 1983 | A |
4436684 | White | Mar 1984 | A |
4459985 | McKay et al. | Jul 1984 | A |
4502161 | Wall | Mar 1985 | A |
4575805 | Moermann et al. | Mar 1986 | A |
4586496 | Keller | May 1986 | A |
4594380 | Chapin et al. | Jun 1986 | A |
4601290 | Effron et al. | Jul 1986 | A |
4609551 | Caplan et al. | Sep 1986 | A |
4627853 | Campbell et al. | Dec 1986 | A |
4655227 | Gracovetsky | Apr 1987 | A |
4699156 | Gracovetsky | Oct 1987 | A |
4714472 | Averill et al. | Dec 1987 | A |
4714474 | Brooks, Jr. et al. | Dec 1987 | A |
4769040 | Wevers | Sep 1988 | A |
4813436 | Au | Mar 1989 | A |
4822365 | Walker et al. | Apr 1989 | A |
4823807 | Russell et al. | Apr 1989 | A |
4846835 | Grande | Jul 1989 | A |
4865607 | Witzel et al. | Sep 1989 | A |
4872452 | Alexson | Oct 1989 | A |
4880429 | Stone | Nov 1989 | A |
4888021 | Forte et al. | Dec 1989 | A |
4936862 | Walker et al. | Jun 1990 | A |
4944757 | Martinez et al. | Jul 1990 | A |
5021061 | Wevers et al. | Jun 1991 | A |
5041138 | Vacanti et al. | Aug 1991 | A |
5059216 | Winters | Oct 1991 | A |
5067964 | Richmond et al. | Nov 1991 | A |
5099859 | Bell | Mar 1992 | A |
5108452 | Fallin | Apr 1992 | A |
5123927 | Duncan et al. | Jun 1992 | A |
5129908 | Petersen | Jul 1992 | A |
5133759 | Turner | Jul 1992 | A |
5150304 | Berchem et al. | Sep 1992 | A |
5154178 | Shah | Oct 1992 | A |
5162430 | Rhee et al. | Nov 1992 | A |
5171322 | Kenny | Dec 1992 | A |
5197985 | Caplan et al. | Mar 1993 | A |
5206023 | Hunziker | Apr 1993 | A |
5226914 | Caplan et al. | Jul 1993 | A |
5234433 | Bert et al. | Aug 1993 | A |
5245282 | Mugler, III et al. | Sep 1993 | A |
5246013 | Frank et al. | Sep 1993 | A |
5246530 | Bugle et al. | Sep 1993 | A |
5270300 | Hunziker | Dec 1993 | A |
5274565 | Reuben | Dec 1993 | A |
5282868 | Bahler | Feb 1994 | A |
5288797 | Khalil et al. | Feb 1994 | A |
5303148 | Mattson et al. | Apr 1994 | A |
5306307 | Senter et al. | Apr 1994 | A |
5306311 | Stone et al. | Apr 1994 | A |
5314478 | Oka et al. | May 1994 | A |
5314482 | Goodfellow et al. | May 1994 | A |
5320102 | Paul et al. | Jun 1994 | A |
5326365 | Alvine | Jul 1994 | A |
5344459 | Swartz | Sep 1994 | A |
5360446 | Kennedy | Nov 1994 | A |
5365996 | Crook | Nov 1994 | A |
5368858 | Hunziker | Nov 1994 | A |
5413116 | Radke et al. | May 1995 | A |
5423828 | Benson | Jun 1995 | A |
5433215 | Athanasiou et al. | Jul 1995 | A |
5445152 | Bell et al. | Aug 1995 | A |
5448489 | Reuben | Sep 1995 | A |
5468787 | Braden et al. | Nov 1995 | A |
5478739 | Slivka et al. | Dec 1995 | A |
5501687 | Willert et al. | Mar 1996 | A |
5503162 | Athanasiou et al. | Apr 1996 | A |
5507820 | Pappas | Apr 1996 | A |
5510121 | Rhee et al. | Apr 1996 | A |
5522900 | Hollister | Jun 1996 | A |
5523843 | Yamane et al. | Jun 1996 | A |
5541515 | Tsujita | Jul 1996 | A |
5549690 | Hollister et al. | Aug 1996 | A |
5554190 | Draenert | Sep 1996 | A |
5556432 | Kubein-Meesenburg et al. | Sep 1996 | A |
5560096 | Stephens | Oct 1996 | A |
5564437 | Bainville et al. | Oct 1996 | A |
5571191 | Fitz | Nov 1996 | A |
5571205 | James | Nov 1996 | A |
5609640 | Johnson | Mar 1997 | A |
5616146 | Murray | Apr 1997 | A |
5632745 | Schwartz | May 1997 | A |
5671741 | Lang et al. | Sep 1997 | A |
5681354 | Eckhoff | Oct 1997 | A |
5682886 | Delp et al. | Nov 1997 | A |
5683466 | Vitale | Nov 1997 | A |
5683468 | Pappas | Nov 1997 | A |
5684562 | Fujieda | Nov 1997 | A |
5687210 | Maitrejean et al. | Nov 1997 | A |
5690635 | Matsen, III et al. | Nov 1997 | A |
5702463 | Pothier et al. | Dec 1997 | A |
5723331 | Tubo et al. | Mar 1998 | A |
5728162 | Eckhoff | Mar 1998 | A |
5735277 | Schuster | Apr 1998 | A |
5749362 | Funda et al. | May 1998 | A |
5749874 | Schwartz | May 1998 | A |
5749876 | Duvillier et al. | May 1998 | A |
5759205 | Valentini | Jun 1998 | A |
5768134 | Swaelens et al. | Jun 1998 | A |
5769899 | Schwartz et al. | Jun 1998 | A |
5772595 | Votruba et al. | Jun 1998 | A |
5779651 | Buschmann et al. | Jul 1998 | A |
5786217 | Tubo et al. | Jul 1998 | A |
5810006 | Votruba et al. | Sep 1998 | A |
5824085 | Sahay et al. | Oct 1998 | A |
5824102 | Buscayret | Oct 1998 | A |
5827289 | Reiley et al. | Oct 1998 | A |
5832422 | Wiedenhoefer | Nov 1998 | A |
5835619 | Morimoto et al. | Nov 1998 | A |
5842477 | Naughton et al. | Dec 1998 | A |
5847804 | Sarver et al. | Dec 1998 | A |
5853746 | Hunziker | Dec 1998 | A |
5871018 | Delp et al. | Feb 1999 | A |
5871540 | Weissman et al. | Feb 1999 | A |
5871542 | Goodfellow et al. | Feb 1999 | A |
5871546 | Colleran et al. | Feb 1999 | A |
5879390 | Kubein-Meesenburg et al. | Mar 1999 | A |
5880976 | DiGioia, III et al. | Mar 1999 | A |
5885296 | Masini | Mar 1999 | A |
5885298 | Herrington et al. | Mar 1999 | A |
5897559 | Masini | Apr 1999 | A |
5899859 | Votruba et al. | May 1999 | A |
5900245 | Sawhney et al. | May 1999 | A |
5906934 | Grande et al. | May 1999 | A |
5913821 | Farese et al. | Jun 1999 | A |
5916220 | Masini | Jun 1999 | A |
5928945 | Seliktar et al. | Jul 1999 | A |
5939323 | Valentini et al. | Aug 1999 | A |
5961523 | Masini | Oct 1999 | A |
5968051 | Luckman et al. | Oct 1999 | A |
5972385 | Liu et al. | Oct 1999 | A |
5995738 | DiGioia, III et al. | Nov 1999 | A |
6002859 | DiGioia, III et al. | Dec 1999 | A |
6013103 | Kaufman et al. | Jan 2000 | A |
6046379 | Stone et al. | Apr 2000 | A |
6057927 | Lévesque et al. | May 2000 | A |
6078680 | Yoshida et al. | Jun 2000 | A |
6081577 | Webber | Jun 2000 | A |
6082364 | Balian et al. | Jul 2000 | A |
6090144 | Letot et al. | Jul 2000 | A |
6093204 | Stone | Jul 2000 | A |
6102916 | Masini | Aug 2000 | A |
6102955 | Mendes et al. | Aug 2000 | A |
6110209 | Stone | Aug 2000 | A |
6112109 | D'Urso | Aug 2000 | A |
6120541 | Johnson | Sep 2000 | A |
6126690 | Ateshian et al. | Oct 2000 | A |
6139578 | Lee et al. | Oct 2000 | A |
6146422 | Lawson | Nov 2000 | A |
6151521 | Guo et al. | Nov 2000 | A |
6156069 | Amstutz | Dec 2000 | A |
6161080 | Aouni-Ateshian et al. | Dec 2000 | A |
6165221 | Schmotzer | Dec 2000 | A |
6171340 | McDowell | Jan 2001 | B1 |
6175655 | George, III et al. | Jan 2001 | B1 |
6178225 | Zur et al. | Jan 2001 | B1 |
6187010 | Masini | Feb 2001 | B1 |
6197064 | Haines et al. | Mar 2001 | B1 |
6200606 | Peterson et al. | Mar 2001 | B1 |
6203576 | Afriat et al. | Mar 2001 | B1 |
6205411 | DiGioia, III et al. | Mar 2001 | B1 |
6206927 | Fell et al. | Mar 2001 | B1 |
6214369 | Grande et al. | Apr 2001 | B1 |
6217894 | Sawhney et al. | Apr 2001 | B1 |
6219571 | Hargreaves et al. | Apr 2001 | B1 |
6224632 | Pappas et al. | May 2001 | B1 |
6235060 | Kubein-Meesenburg et al. | May 2001 | B1 |
6249692 | Cowin | Jun 2001 | B1 |
6251143 | Schwartz et al. | Jun 2001 | B1 |
6261296 | Aebi et al. | Jul 2001 | B1 |
6277151 | Lee et al. | Aug 2001 | B1 |
6281195 | Rueger et al. | Aug 2001 | B1 |
6283980 | Vibe-Hansen et al. | Sep 2001 | B1 |
6289115 | Takeo | Sep 2001 | B1 |
6289753 | Basser et al. | Sep 2001 | B1 |
6299905 | Peterson et al. | Oct 2001 | B1 |
6302582 | Nord et al. | Oct 2001 | B1 |
6310477 | Schneider | Oct 2001 | B1 |
6310619 | Rice | Oct 2001 | B1 |
6316153 | Goodman et al. | Nov 2001 | B1 |
6319712 | Meenen et al. | Nov 2001 | B1 |
6322588 | Ogle et al. | Nov 2001 | B1 |
6328765 | Hardwick et al. | Dec 2001 | B1 |
6334006 | Tanabe | Dec 2001 | B1 |
6334066 | Rupprecht et al. | Dec 2001 | B1 |
6342075 | MacArthur | Jan 2002 | B1 |
6344059 | Krakovits et al. | Feb 2002 | B1 |
6352558 | Spector | Mar 2002 | B1 |
6358253 | Torrie et al. | Mar 2002 | B1 |
6365405 | Salzmann et al. | Apr 2002 | B1 |
6371958 | Overaker | Apr 2002 | B1 |
6373250 | Tsoref et al. | Apr 2002 | B1 |
6375658 | Hangody et al. | Apr 2002 | B1 |
6379367 | Vibe-Hansen et al. | Apr 2002 | B1 |
6379388 | Ensign et al. | Apr 2002 | B1 |
6382028 | Wooh et al. | May 2002 | B1 |
6383228 | Schmotzer | May 2002 | B1 |
6387131 | Miehlke et al. | May 2002 | B1 |
6429013 | Halvorsen et al. | Aug 2002 | B1 |
6443988 | Felt et al. | Sep 2002 | B2 |
6443991 | Running | Sep 2002 | B1 |
6444222 | Asculai et al. | Sep 2002 | B1 |
6450978 | Brosseau et al. | Sep 2002 | B1 |
6459948 | Ateshian et al. | Oct 2002 | B1 |
6468314 | Schwartz et al. | Oct 2002 | B2 |
6479996 | Hoogeveen et al. | Nov 2002 | B1 |
6482209 | Engh et al. | Nov 2002 | B1 |
6510334 | Schuster et al. | Jan 2003 | B1 |
6514514 | Atkinson et al. | Feb 2003 | B1 |
6520964 | Tallarida et al. | Feb 2003 | B2 |
6533737 | Brosseau et al. | Mar 2003 | B1 |
6556855 | Thesen | Apr 2003 | B2 |
6558421 | Fell et al. | May 2003 | B1 |
6560476 | Pelletier et al. | May 2003 | B1 |
6575980 | Robie et al. | Jun 2003 | B1 |
6592624 | Fraser et al. | Jul 2003 | B1 |
6623526 | Lloyd | Sep 2003 | B1 |
6626945 | Simon et al. | Sep 2003 | B2 |
6632235 | Weikel et al. | Oct 2003 | B2 |
6652587 | Felt et al. | Nov 2003 | B2 |
6679917 | Ek | Jan 2004 | B2 |
6690816 | Aylward et al. | Feb 2004 | B2 |
6702821 | Bonutti | Mar 2004 | B2 |
6712856 | Carignan et al. | Mar 2004 | B1 |
6719794 | Gerber et al. | Apr 2004 | B2 |
6772026 | Bradbury et al. | Aug 2004 | B2 |
6799066 | Steines et al. | Sep 2004 | B2 |
6816607 | O'Donnell et al. | Nov 2004 | B2 |
6835377 | Goldberg et al. | Dec 2004 | B2 |
6855165 | Fell et al. | Feb 2005 | B2 |
6873741 | Li | Mar 2005 | B2 |
6893463 | Fell et al. | May 2005 | B2 |
6905514 | Carignan et al. | Jun 2005 | B2 |
6911044 | Fell et al. | Jun 2005 | B2 |
6916341 | Rolston | Jul 2005 | B2 |
6923831 | Fell et al. | Aug 2005 | B2 |
6964687 | Bernard et al. | Nov 2005 | B1 |
6966928 | Fell et al. | Nov 2005 | B2 |
6984981 | Tamez-Peña et al. | Jan 2006 | B2 |
6998841 | Tamez-Peña et al. | Feb 2006 | B1 |
7013191 | Rubbert et al. | Mar 2006 | B2 |
7020314 | Suri et al. | Mar 2006 | B1 |
7050534 | Lang | May 2006 | B2 |
7058159 | Lang et al. | Jun 2006 | B2 |
7058209 | Chen et al. | Jun 2006 | B2 |
7105026 | Johnson et al. | Sep 2006 | B2 |
7115131 | Engh et al. | Oct 2006 | B2 |
7174282 | Hollister et al. | Feb 2007 | B2 |
7184814 | Lang et al. | Feb 2007 | B2 |
7238203 | Bagga et al. | Jul 2007 | B2 |
7239908 | Alexander et al. | Jul 2007 | B1 |
7244273 | Pedersen et al. | Jul 2007 | B2 |
7245697 | Lang | Jul 2007 | B2 |
7292674 | Lang | Nov 2007 | B2 |
7379529 | Lang | May 2008 | B2 |
7438685 | Burdette et al. | Oct 2008 | B2 |
7467892 | Lang et al. | Dec 2008 | B2 |
7468075 | Lang et al. | Dec 2008 | B2 |
7520901 | Engh et al. | Apr 2009 | B2 |
7534263 | Burdulis, Jr. et al. | May 2009 | B2 |
7634119 | Tsougarakis et al. | Dec 2009 | B2 |
7636459 | Dore et al. | Dec 2009 | B2 |
7796791 | Tsougarakis et al. | Sep 2010 | B2 |
7799077 | Lang et al. | Sep 2010 | B2 |
7881768 | Lang et al. | Feb 2011 | B2 |
7914582 | Felt et al. | Mar 2011 | B2 |
7983777 | Melton et al. | Jul 2011 | B2 |
8077950 | Tsougarakis et al. | Dec 2011 | B2 |
8094900 | Steines et al. | Jan 2012 | B2 |
20010001120 | Masini | May 2001 | A1 |
20010010023 | Schwartz et al. | Jul 2001 | A1 |
20010039455 | Simon et al. | Nov 2001 | A1 |
20020013626 | Geistlich et al. | Jan 2002 | A1 |
20020016543 | Tyler | Feb 2002 | A1 |
20020022884 | Mansmann | Feb 2002 | A1 |
20020045940 | Giannetti et al. | Apr 2002 | A1 |
20020059049 | Bradbury et al. | May 2002 | A1 |
20020067798 | Lang et al. | Jun 2002 | A1 |
20020068979 | Brown et al. | Jun 2002 | A1 |
20020082703 | Repicci | Jun 2002 | A1 |
20020087274 | Alexander et al. | Jul 2002 | A1 |
20020106625 | Hung et al. | Aug 2002 | A1 |
20020111694 | Ellingsen et al. | Aug 2002 | A1 |
20020115647 | Halvorsen et al. | Aug 2002 | A1 |
20020120274 | Overaker et al. | Aug 2002 | A1 |
20020120281 | Overaker | Aug 2002 | A1 |
20020127264 | Felt et al. | Sep 2002 | A1 |
20020133230 | Repicci | Sep 2002 | A1 |
20020147392 | Steines et al. | Oct 2002 | A1 |
20020151986 | Asculai et al. | Oct 2002 | A1 |
20020156150 | Williams et al. | Oct 2002 | A1 |
20020173852 | Felt et al. | Nov 2002 | A1 |
20020177770 | Lang et al. | Nov 2002 | A1 |
20020183850 | Felt et al. | Dec 2002 | A1 |
20030015208 | Lang et al. | Jan 2003 | A1 |
20030031292 | Lang | Feb 2003 | A1 |
20030045935 | Angelucci et al. | Mar 2003 | A1 |
20030055500 | Fell et al. | Mar 2003 | A1 |
20030055501 | Fell et al. | Mar 2003 | A1 |
20030055502 | Lang et al. | Mar 2003 | A1 |
20030060882 | Fell et al. | Mar 2003 | A1 |
20030060883 | Fell et al. | Mar 2003 | A1 |
20030060884 | Fell et al. | Mar 2003 | A1 |
20030060885 | Fell et al. | Mar 2003 | A1 |
20030063704 | Lang | Apr 2003 | A1 |
20030100953 | Rosa et al. | May 2003 | A1 |
20030158606 | Coon et al. | Aug 2003 | A1 |
20030216669 | Lang et al. | Nov 2003 | A1 |
20030225457 | Justin et al. | Dec 2003 | A1 |
20030236473 | Dore et al. | Dec 2003 | A1 |
20040006393 | Burkinshaw | Jan 2004 | A1 |
20040062358 | Lang et al. | Apr 2004 | A1 |
20040081287 | Lang et al. | Apr 2004 | A1 |
20040098132 | Andriacchi et al. | May 2004 | A1 |
20040102851 | Saladino | May 2004 | A1 |
20040102852 | Johnson et al. | May 2004 | A1 |
20040117015 | Biscup | Jun 2004 | A1 |
20040122521 | Lee et al. | Jun 2004 | A1 |
20040133276 | Lang et al. | Jul 2004 | A1 |
20040138754 | Lang et al. | Jul 2004 | A1 |
20040138755 | O'Connor et al. | Jul 2004 | A1 |
20040147927 | Tsougarakis et al. | Jul 2004 | A1 |
20040153079 | Tsougarakis et al. | Aug 2004 | A1 |
20040153162 | Sanford et al. | Aug 2004 | A1 |
20040153164 | Sanford et al. | Aug 2004 | A1 |
20040167390 | Alexander et al. | Aug 2004 | A1 |
20040167630 | Rolston | Aug 2004 | A1 |
20040193280 | Webster et al. | Sep 2004 | A1 |
20040204644 | Tsougarakis et al. | Oct 2004 | A1 |
20040204760 | Fitz et al. | Oct 2004 | A1 |
20040204766 | Siebel | Oct 2004 | A1 |
20040236424 | Berez et al. | Nov 2004 | A1 |
20050010106 | Lang et al. | Jan 2005 | A1 |
20050015153 | Goble et al. | Jan 2005 | A1 |
20050021042 | Marnay et al. | Jan 2005 | A1 |
20050043807 | Wood | Feb 2005 | A1 |
20050055028 | Haines | Mar 2005 | A1 |
20050078802 | Lang et al. | Apr 2005 | A1 |
20050107883 | Goodfried et al. | May 2005 | A1 |
20050107884 | Johnson et al. | May 2005 | A1 |
20050119664 | Carignan et al. | Jun 2005 | A1 |
20050125029 | Bernard et al. | Jun 2005 | A1 |
20050171612 | Rolston | Aug 2005 | A1 |
20050226374 | Lang et al. | Oct 2005 | A1 |
20050234461 | Burdulis, Jr. et al. | Oct 2005 | A1 |
20050267584 | Burdulis et al. | Dec 2005 | A1 |
20060069318 | Keaveny et al. | Mar 2006 | A1 |
20060111722 | Bouadi | May 2006 | A1 |
20060111726 | Felt et al. | May 2006 | A1 |
20060210017 | Lang | Sep 2006 | A1 |
20060210018 | Lang | Sep 2006 | A1 |
20070015995 | Lang | Jan 2007 | A1 |
20070047794 | Lang et al. | Mar 2007 | A1 |
20070067032 | Felt et al. | Mar 2007 | A1 |
20070083266 | Lang | Apr 2007 | A1 |
20070100462 | Lang et al. | May 2007 | A1 |
20070118055 | McCombs | May 2007 | A1 |
20070118222 | Lang | May 2007 | A1 |
20070118243 | Schroeder et al. | May 2007 | A1 |
20070156171 | Lang et al. | Jul 2007 | A1 |
20070198022 | Lang et al. | Aug 2007 | A1 |
20070203430 | Lang et al. | Aug 2007 | A1 |
20070233269 | Steines et al. | Oct 2007 | A1 |
20070250169 | Lang | Oct 2007 | A1 |
20070274444 | Lang | Nov 2007 | A1 |
20070276224 | Lang et al. | Nov 2007 | A1 |
20070276501 | Betz et al. | Nov 2007 | A1 |
20080009950 | Richardson | Jan 2008 | A1 |
20080015433 | Alexander et al. | Jan 2008 | A1 |
20080025463 | Lang | Jan 2008 | A1 |
20080031412 | Lang et al. | Feb 2008 | A1 |
20080058613 | Lang et al. | Mar 2008 | A1 |
20080058945 | Hajaj et al. | Mar 2008 | A1 |
20080119940 | Otto et al. | May 2008 | A1 |
20080170659 | Lang et al. | Jul 2008 | A1 |
20080172125 | Ek | Jul 2008 | A1 |
20080195108 | Bhatnagar et al. | Aug 2008 | A1 |
20080195216 | Philipp | Aug 2008 | A1 |
20080215059 | Carignan et al. | Sep 2008 | A1 |
20080219412 | Lang | Sep 2008 | A1 |
20080243127 | Lang et al. | Oct 2008 | A1 |
20080275452 | Lang et al. | Nov 2008 | A1 |
20080281328 | Lang et al. | Nov 2008 | A1 |
20080281329 | Fitz et al. | Nov 2008 | A1 |
20080281426 | Fitz et al. | Nov 2008 | A1 |
20090076371 | Lang et al. | Mar 2009 | A1 |
20090228111 | Otto | Sep 2009 | A1 |
20090276045 | Lang | Nov 2009 | A1 |
20090306676 | Lang et al. | Dec 2009 | A1 |
20090312805 | Lang et al. | Dec 2009 | A1 |
20100054572 | Tsougarakis et al. | Mar 2010 | A1 |
20100303313 | Lang et al. | Dec 2010 | A1 |
20100303317 | Tsougarakis et al. | Dec 2010 | A1 |
20100303324 | Lang et al. | Dec 2010 | A1 |
20100305708 | Lang et al. | Dec 2010 | A1 |
20100305907 | Fitz et al. | Dec 2010 | A1 |
20100329530 | Lang et al. | Dec 2010 | A1 |
20100331991 | Wilkinson et al. | Dec 2010 | A1 |
20110029093 | Bojarski et al. | Feb 2011 | A1 |
20110066245 | Lang et al. | Mar 2011 | A1 |
20110071645 | Bojarski et al. | Mar 2011 | A1 |
20110071802 | Bojarski et al. | Mar 2011 | A1 |
20110144760 | Wong et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
86209787 | Nov 1987 | CN |
2305966 | Feb 1999 | CN |
2306552 | Aug 1974 | DE |
3516743 | Nov 1986 | DE |
44 34 539 | Apr 1996 | DE |
19803673 | Aug 1999 | DE |
19926083 | Dec 2000 | DE |
10135771 | Feb 2003 | DE |
0528080 | Feb 1993 | EP |
0600806 | Jun 1994 | EP |
0 704 193 | Apr 1996 | EP |
0626156 | Jul 1997 | EP |
0613380 | Dec 1999 | EP |
1074229 | Feb 2001 | EP |
1077253 | Feb 2001 | EP |
1120087 | Aug 2001 | EP |
1129675 | Sep 2001 | EP |
0732091 | Dec 2001 | EP |
0896825 | Jul 2002 | EP |
0814731 | Aug 2002 | EP |
1234552 | Aug 2002 | EP |
1234555 | Aug 2002 | EP |
0809987 | Oct 2002 | EP |
0833620 | Oct 2002 | EP |
1327423 | Jul 2003 | EP |
0530804 | Jun 2004 | EP |
1437101 | Jul 2004 | EP |
1070487 | Sep 2005 | EP |
2589720 | Nov 1985 | FR |
2740326 | Apr 1997 | FR |
1451283 | Sep 1976 | GB |
2291355 | Jan 1996 | GB |
2304051 | Mar 1997 | GB |
2348373 | Oct 2000 | GB |
56-083343 | Jul 1981 | JP |
61-247448 | Nov 1986 | JP |
1-249049 | Oct 1989 | JP |
05-184612 | Jul 1993 | JP |
7-236648 | Sep 1995 | JP |
8-173465 | Jul 1996 | JP |
9-206322 | Aug 1997 | JP |
11-19104 | Jan 1999 | JP |
11-276510 | Oct 1999 | JP |
WO 8702882 | May 1987 | WO |
WO 9009769 | Sep 1990 | WO |
WO 9304710 | Mar 1993 | WO |
WO 9309819 | May 1993 | WO |
WO 9325157 | Dec 1993 | WO |
WO 9527450 | Oct 1995 | WO |
WO 9528688 | Oct 1995 | WO |
WO 9530390 | Nov 1995 | WO |
WO 9532623 | Dec 1995 | WO |
WO 9624302 | Aug 1996 | WO |
WO 9725942 | Jul 1997 | WO |
WO 9727885 | Aug 1997 | WO |
WO 9738676 | Oct 1997 | WO |
WO 9746665 | Dec 1997 | WO |
WO 9808469 | Mar 1998 | WO |
WO 9812994 | Apr 1998 | WO |
WO 9820816 | May 1998 | WO |
WO 9830617 | Jul 1998 | WO |
WO 9852498 | Nov 1998 | WO |
WO 9902654 | Jan 1999 | WO |
WO 9908598 | Feb 1999 | WO |
WO 9908728 | Feb 1999 | WO |
WO 9942061 | Aug 1999 | WO |
WO 9947186 | Sep 1999 | WO |
WO 9951719 | Oct 1999 | WO |
WO 0009179 | Feb 2000 | WO |
WO 0015153 | Mar 2000 | WO |
WO 0035346 | Jun 2000 | WO |
WO 0048550 | Aug 2000 | WO |
WO 0059411 | Oct 2000 | WO |
WO 0068749 | Nov 2000 | WO |
WO 0074554 | Dec 2000 | WO |
WO 0074741 | Dec 2000 | WO |
WO 0110356 | Feb 2001 | WO |
WO 0117463 | Mar 2001 | WO |
WO 0119254 | Mar 2001 | WO |
WO 0135968 | May 2001 | WO |
WO 0145764 | Jun 2001 | WO |
WO 0168800 | Sep 2001 | WO |
WO 0170142 | Sep 2001 | WO |
WO 0177988 | Oct 2001 | WO |
WO 0182677 | Nov 2001 | WO |
WO 0191672 | Dec 2001 | WO |
WO 0222013 | Mar 2002 | WO |
WO 0222014 | Mar 2002 | WO |
WO 0223483 | Mar 2002 | WO |
WO 0234310 | May 2002 | WO |
WO 0236147 | May 2002 | WO |
WO 02096268 | Dec 2002 | WO |
WO 03007788 | Jan 2003 | WO |
WO 03037192 | May 2003 | WO |
WO 03047470 | Jun 2003 | WO |
WO 03051210 | Jun 2003 | WO |
WO 03061522 | Jul 2003 | WO |
WO 03099106 | Dec 2003 | WO |
WO 2004006811 | Jan 2004 | WO |
WO 2004032806 | Apr 2004 | WO |
WO 2004043305 | May 2004 | WO |
WO 2004049981 | Jun 2004 | WO |
WO 2004051301 | Jun 2004 | WO |
WO 2004073550 | Sep 2004 | WO |
WO 2005016175 | Feb 2005 | WO |
WO 2005020850 | Mar 2005 | WO |
WO 2005051239 | Jun 2005 | WO |
WO 2005051240 | Jun 2005 | WO |
WO 2005067521 | Jul 2005 | WO |
WO 2006058057 | Jun 2006 | WO |
WO 2006060795 | Jun 2006 | WO |
WO 2006065774 | Jun 2006 | WO |
WO 2007041375 | Apr 2007 | WO |
WO 2007062079 | May 2007 | WO |
WO 2007092841 | Aug 2007 | WO |
WO 2007109641 | Sep 2007 | WO |
WO 08021494 | Feb 2008 | WO |
WO 2008157412 | Dec 2008 | WO |
WO 2009140294 | Nov 2009 | WO |
WO 2010099231 | Sep 2010 | WO |
WO 2010099353 | Sep 2010 | WO |
WO 2011028624 | Mar 2011 | WO |
WO 2011056995 | May 2011 | WO |
WO 2011072235 | Jun 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20100274534 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
61208440 | Feb 2009 | US | |
61208444 | Feb 2009 | US | |
60765592 | Feb 2006 | US | |
60785168 | Mar 2006 | US | |
60788339 | Mar 2006 | US | |
60293488 | May 2001 | US | |
60363527 | Mar 2002 | US | |
60380695 | May 2002 | US | |
60380692 | May 2002 | US | |
60431176 | Dec 2002 | US | |
60467686 | May 2003 | US | |
60416601 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10728731 | Dec 2003 | US |
Child | 11671745 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11671745 | Feb 2007 | US |
Child | 12712072 | US | |
Parent | 11002573 | Dec 2004 | US |
Child | 11671745 | US | |
Parent | 10724010 | Nov 2003 | US |
Child | 11002573 | US | |
Parent | 10305652 | Nov 2002 | US |
Child | 10724010 | US | |
Parent | 10160667 | May 2002 | US |
Child | 10305652 | US | |
Parent | 10681750 | Oct 2003 | US |
Child | 10728731 | US |