This invention relates to gasification reactors, and more particularly to tapping systems for such reactors.
In process vessels such as municipal solid waste (MSW) gasifiers and electric arc furnaces (EAFs), molten fluid (e.g. slag, metal) is removed through an opening in the vessel wall termed a “taphole”. Molten fluid exiting the taphole flows in a conduit (referred to as a “launder”) to a collection point for cooling, disposal, and/or further processing into a saleable product. This process is referred to as “tapping” and may be performed on a continuous or batch basis.
In some processes, molten fluid exits the launder into a granulation system. A common granulation technique involves rapidly quenching the molten fluid in a water bath. Some examples of MSW gasifiers employ water quench systems to granulate slag, which can form an aggregate product. For example, U.S. Pat. No. 5,550,312 describes a waste gasification method that includes a water quenching chamber to granulate molten slag. Other granulation processes are possible, including air-based systems. For example, U.S. Pat. No. 4,147,332 describes a method for granulating molten slag for a metallurgical furnace using an air jet.
Depending on the process design, internal pressure within the process vessel may be below atmospheric pressure (negative gauge pressure), above atmospheric pressure (positive gauge pressure), or approximately equal to atmospheric pressure (neutral pressure). Additionally, process vessels that normally operate at negative or neutral pressures may be designed to handle positive pressure excursions resulting from anomalous operating conditions (e.g. introduction of water in the feed of a MSW gasifier). Given the pressure differential between the internal process vessel environment and the external plant environment, there may be a need to achieve a pressure seal across the taphole. In the case of MSW gasifiers (which generate a gas mixture termed “syngas”, comprising primarily H2 and CO gas), a pressure seal is essential for several reasons, including: prevention of air infiltration into the gasifier vessel, which could result in unwanted conversion of carbon or CO gas into CO2 (by the introduction of oxygen from the ambient air), as well as dilution of the syngas product (by the introduction of nitrogen from the ambient air); and prevention of syngas egress into the external plant environment, which could pose a safety hazard to plant personnel. Numerous other processes generate similar gas mixtures as MSW gasifiers, and taphole pressure seals are equally crucial in these applications.
A common approach to establishing a pressure seal across a taphole involves immersing the outlet of a gas-tight launder in a water bath. The outlet of the launder is positioned at a certain depth below the water surface, such that the hydrostatic pressure at the launder outlet is higher (with a suitable factor of safety) than the maximum positive design pressure within the vessel. This ensures that no process gas can escape through the launder outlet. This mechanism can also be employed to ensure that no outside air infiltrates the process vessel, in cases where the internal vessel pressure is below atmospheric pressure. Alternatively, similar arrangements may be employed in the stacks connected to process vessels. In either case, a water seal may be employed to prevent unwanted gas flow in the event of positive or negative pressure excursions within the process vessel. Water seals are described extensively in the art; for example, U.S. Pat. No. 4,425,254 describes a slag removal method for a coal gasification process, in which a water bath is employed to maintain the internal pressure of the gasification reactor during slag removal.
In tapping processes, the taphole may be plugged, thereby preventing outflow of molten fluid from the vessel. Taphole plugging may be intentional (e.g. injecting a clay into the taphole for batch tapping operations) or may be unintentional (e.g. molten fluid from the vessel gradually solidifies within the taphole, causing a blockage). In either case, the taphole must eventually be unplugged to allow for further tapping. Unplugging can be achieved by various means. One approach utilizes a plasma torch to melt through the plugged taphole from the exterior of the vessel. Generally, this approach to unplugging is known as “lancing”, and it is widely described in existing art. For example, U.S. Pat. No. 5,254,829 discloses a method to open a furnace taphole from the exterior of the vessel using a plasma torch.
In some cases, external access to the taphole for the purposes of plugging/unplugging may be considerably restricted by obstacles such as launders and slag granulation equipment. Additionally, some tapping operations may require manual operators in close proximity to the molten fluid, which presents a potential safety hazard. Finally, an automated tapping system, which could enable plugging and unplugging of a taphole without external access to the taphole and without requiring manual operation in the vicinity of the taphole, could be beneficial in these situations. A common approach to enable such operation involves an inductive taphole heating apparatus, which consists of annular coils embedded within the taphole wall. An electrical current is passed through the coils and melts the plug of solid material within the taphole channel by electromagnetic induction. By varying the current flow, the taphole may be plugged and unplugged in a controlled manner. Examples of such systems include U.S. Pat. No. 1,227,069, U.S. Pat. No. 3,014,255, and U.S. Pat. No. 5,968,447. In certain cases, however, material may solidify within the vessel and block the flow into the taphole channel. Inductive taphole heating may not be suitable in these cases, as the heating effect of the coils is limited to the taphole channel and may not melt the solid blockage upstream of the channel.
It would be desirable to have a system for tapping a gasifier vessel without requiring external access to the taphole, which is generally required for conventional lancing techniques but may be limited by equipment (e.g. launders, pressure seals, and slag granulation systems) or by non-straight taphole geometries. It would also be desirable to have a system for removing solid build-up within a gasifier vessel, which may impede tapping by blocking the taphole channel, but cannot be melted by existing inductive heating equipment. It would also be desirable to have a system for tapping a gasifier vessel that maintains a pressure seal between the internal gasifier environment and the external environment, and provides the option of granulating the tapped material (e.g. to generate a saleable product).
In one aspect, a tapping system for removing molten fluid from a vessel, the tapping system includes: a taphole assembly configured to receive molten fluid from a vessel; an induction coil encircling at least a portion of a taphole channel in the taphole assembly; a launder assembly configured to receive fluid exiting the taphole channel and to form a pressure seal; and a plasma torch extending into the vessel and configured to direct a plasma plume toward an inlet of the taphole channel.
In one aspect, the present invention relates to an automated tapping system for removing molten slag from gasification reactors or other furnaces. In one embodiment, the tapping system includes: an inductive taphole heating system; a slag granulation system; a launder system with a fluid seal; and plasma torch tuyeres that extend into a reactor vessel (with an optional retraction/extension mechanism).
Plasma gasification reactors (sometimes referred to as PGRs) are a type of pyrolytic reactor known and used for treatment of any of a wide range of materials including, for example, scrap metal, hazardous waste, other municipal or industrial waste and landfill material, and vegetative waste or biomass to derive useful material, e.g., metals, or a synthesis gas (syngas), or to vitrify undesirable waste for easier disposition.
Various gasification reactor designs are known in the art. One example of a plasma gasification reactor is described in US Patent Application Publication US2012/0199795, which is incorporated by reference herein. An example plasma gasification reactor includes a refractory-lined reactor vessel, one or more feed ports for inserting feed material into the vessel, one or more plasma torches configured to heat material in the reactor vessel, one or more slag and molten metal tap holes, and one or more tuyeres for inserting additional process material into the vessel.
The taphole assembly 30 is connected to a gas-tight launder assembly 40, which comprises a launder shell 42 and a launder refractory lining 44. The launder discharges into a slag granulation chamber 46, which includes a shell 48, a water reservoir 50, and a drag chain conveyor 52. The outlet 54 of a portion 56 of the launder 40 is immersed in the water reservoir 50 to a certain depth 58. A first surface 60 of the water reservoir 50 is exposed to the external environment 24 and is therefore at atmospheric pressure. A second surface 62 of the water reservoir 50 is located within the launder 40 and is therefore at the pressure of the internal environment 22. In this example, the pressure of the internal environment 22 is greater than atmospheric pressure; this results in a height differential 64 where the second surface 62 is lower than the first surface 60. The second surface 62 is effectively “pushed” down by the gas pressure within the internal environment 22 until the internal gas pressure is equalized by the hydrostatic pressure caused by the weight of the water between the first surface 60 and the second surface 62. The launder assembly of
Also shown in
With continued reference to
The molten slag 28 is rapidly cooled in the water reservoir 50 and solidifies as granulated slag 82, which is collected from the base of the slag granulation chamber 48 by the drag chain conveyor 52. The drag chain conveyor 52 discharges the granulated slag 82 from the slag granulation chamber 48 for collection (collection equipment not shown). In some cases (e.g. with certain MSW gasifiers), the above-described process operates continuously (i.e. there is a constant outflow of molten slag 28 from the taphole channel 32), although the described equipment could also be employed with processes involving intermittent tapping.
During tapping operations, cooling and solidification of molten slag 28 within the taphole channel 32 is undesirable as it can eventually lead to blockage of the molten slag 28 flow. To prevent this, an electrical current is passed through the induction heating coils 38 surrounding the taphole channel 32. This inductively heats the molten slag 28 within the taphole channel 32 such that it remains in a liquid state.
In some instances, such as planned maintenance periods, it may be desired to plug the taphole channel 32 to prevent further outflow of molten slag 28. This may be accomplished by stopping the flow of current through the induction heating coils 38 such that the molten slag 28 gradually solidifies into a solid plug within the taphole channel 32. The induction coils can receive current from an external power supply and/or control system, not shown.
In the automated slag tapping system of
It can be appreciated that a retractable plasma torch 70 may offer performance benefits over a fixed torch in certain applications. First, it allows the plasma jet 76 to be positioned at various points within the gasifier vessel 10. This enables melting of solid build-up not only in the vicinity of the inlet 78 of the taphole channel 32, but also in other areas of the gasifier vessel 10. For example, in some processes a large solid mass may develop near the center of the gasifier vessel 10, which restricts upflow of syngas generated by the gasification reaction to a thin annulus near the periphery of the internal environment 22. Such a restriction increases the velocity of the syngas at the refractory 18 wall, thereby accelerating refractory wear. The retractable plasma torch 70 could be re-positioned to melt such solid masses and thus improve refractory life. Additionally, retraction may enable easier online maintenance/inspection of the plasma torch 70.
In the example of
Referring to
Again referring to
With continued reference to
Referring to
Finally, while not shown in
It should be recognized that many variations of the embodiments described herein are also encompassed by the invention. Such variations include: multiple tapholes/launders/slag granulation chambers; multiple retractable plasma torches; fixed (i.e. non-retractable) plasma torches; different taphole/launder orientations (e.g. centrally positioned at the base of the gasifier vessel); alternative granulated slag discharge mechanisms; and/or various means for dislodging frozen slag from the surface of the plasma torch.
The automated tapping system embodiments described herein are designed to enable tapping operations (i.e. plugging and unplugging) without human intervention or external access to the taphole, for example where access to the taphole is limited external by equipment (e.g. launders, pressure seals, slag granulation systems, etc.), and/or a non-straight taphole geometry (which would preclude use of conventional taphole lancing techniques).
The described embodiments maintain a pressure seal (using either molten slag or water as the sealing fluid) to enable operation at either positive or negative internal gasifier pressures. Molten slag can be conveyed in a launder from the taphole channel to a downstream receptacle or process (e.g. a slag granulation system). The molten slag can be granulated using either water or air to generate a saleable product.
While particular aspects of the invention have been described above for purposes of illustration, it will be evident to those skilled in the art that numerous variations of the details of the present invention may be made without departing from the invention as defined in the appended claims.