The invention relates generally to dairy animal teat dip applicators, and more particularly to teat dip fluid manifolds that receive teat dip fluids, such as teat dips, water and air, from main supply lines and direct the teat dip fluids to individual teat dip applicators while protecting milk lines.
Dairy milking systems as they relate to the present invention include a cluster of teat cups, each of which is matched with a flexible teat cup liner that is attached to a teat of a dairy animal with a vacuum. Vacuum is applied in pulses between the shell and liner to facilitate movement of the flexible liner to milk the dairy animals. Milk flows from the dairy animal through each flexible liner and then through a milk tube to a milker unit collecting assembly, which collects milk from all of the animal's teats. This combination of elements is known as a milker unit and can be used to milk cows, sheep, goats and other dairy animals. Each milker unit is used to milk multiple animals so it must be sanitized, at least periodically, to prevent transmission of dirt and germs into the milk, and to help prevent transmission of diseases from animal to animal.
Milk from individual animals flows from each milker unit collecting assembly through milk tubes and into a milk line that receives milk from all of the milker units in the dairy. The milk is then chilled and stored in a milk tank. The milk lines and storage systems must not be contaminated with dirt, debris, chemicals, pathogens, or contaminated milk. In the event that milk being collected is from a sick dairy animal, or a monitoring system determines the milk is unsellable, the milk would be diverted to a “bad milk” line or a “calf milk” line for feeding to calves.
Traditionally, dairy animal teats have been prepared for milking by cleaning the teats before milking using sanitizing teat dips, and protecting teats after milking by applying protective teat dips. These dips are broadly categorized as “pre-dips” and “post-dips.” Before automated systems were used, the pre-dips and post-dips were applied by dairy operators manually, with cloth wipes or specialized teat dip applicators. The teat dips were effective in cleaning and protecting teats from infection, but as automated milking systems came into commercial use, automated teat dip applicators were developed to realize the full benefit of automated milking.
Various types of automated (robotic) milking systems have been developed with automated systems for applying teat dip, air, and rinsing fluids (referred to herein as “teat dip fluids”) applied and rinsed from the system in a manner that protects milk lines, and the milk therein, from being contaminated. Protecting milk lines and milk is mandated in the United States Food and Drug Administration's Pasteurized Milk Ordinance (“PMO”), Item 14r., for example, as well as other regulatory agencies throughout the world.
To protect milk lines in the United States, they should be separated from potentially contaminating fluids using at least two automatically controlled valves or a double seat mixproof valve, with a drainable opening to the atmosphere between the valves or valve seats (PMO Item 14r). This arrangement is referred to as “block-bleed-block,” and protects milk lines from contamination even when the valves or valve seats fail by draining fluid through the opening (bleed) rather than allowing it to pass through both valves or valve seats. Various embodiments of block-bleed-block valves and valve arrangements are known and operate effectively. See for example: U.S. Pat. Nos. 8,342,125; 9,510,556; and 9,686,958.
Milk line protection systems can be complicated because pre-dipping and post-dipping require that teat dipping fluids be delivered in precise dosages and in a timely fashion to provide proper teat treatment, system cleaning, system timing, and milk line protection. Dosage valves for teat dips measure proper dosage quantities of teat dips and ensure that the doses are delivered under pressure and in proper sequence. Air can be used to “chase” the teat dip through the lines to overcome sluggishness due to friction in the lines and viscosity of the teat dip. Following teat dip application, the delivery system must be sufficiently cleaned and rinsed with water or other rinsing fluid, to sanitize equipment before subsequent milkings.
Further complicating teat dip delivery systems is the requirement that the teat dip, air, and rinsing fluids provided from main source lines must be accurately divided and delivered to each teat of the dairy animal. Typically, dividing dosages of teat dip fluids is performed through a teat dip fluid manifold that receives the fluids from one or more main supply lines and then divides the fluids into individual delivery lines. Given the short time durations in which teat dip must pass through the teat dip fluid manifold, providing adequate milk line protections can be challenging.
Further complicating teat dip fluid delivery systems is a desire to prevent cross-contamination of the various teat dip fluids. For example, water should not be allowed to contaminate teat dip before it is delivered to a teat because the dip can be diluted and possibly less effective. Conversely, teat dip should not be allowed to contaminate water and air lines, which could foul the system and require additional maintenance. Also, pre-dips should not be contaminated by post-dips, which could contain iodine or other antimicrobial composition that would then enter the milk lines during milking.
Thus, there is a need for a reliable teat dip fluid manifold that protects milk lines from contamination, and teat dip fluids from cross-contamination, while providing reliability and minimal maintenance.
An automated teat dip manifold in accordance with the present invention includes: an upstream fluid valve having a closed position and an open position; a galley in fluid communication with the upstream valve; a downstream valve in fluid communication with the galley, and the downstream valve has a closed position and an open position; and a pressure monitor in communication with the galley to sense galley pressure when the upstream valve is in the closed position and the downstream valve is in the closed position. The existence of galley pressure above a predetermined level is indicative of valve leakage and required maintenance. The galley may be formed in a housing, for example.
Further, the galley can be filled with air or rinsing fluids to test the pressure of these fluids by the pressure monitor. Failure to reach predetermined pressures could indicate that the source of these fluids is inadequate and in need of maintenance.
The upstream valve can be a two-position, three-way valve or a two-position, two-way valve. The upstream valve can define a vent when the upstream teat dip valve is in the closed position. This vent can be in fluid communication with other portions of the galley that can be monitored by the pressure monitor.
The upstream valve can define a vent when the upstream valve is in the closed position; and the automated teat dip fluid manifold further comprises: a check valve downstream from the vent to provide protection from cross contamination.
The automated teat dip fluid manifold can also include a pre-charge container disposed upstream from and in fluid communication with the upstream valve, and the pre-charge container defines a fluid compartment; and a pressure source to pressure feed fluid from the pre-charge container to the upstream valve and the downstream valve. The precharge vessel can be included in the galley to be monitored by the pressure monitor.
The automated teat dip fluid manifold can include a fluid drain to drain teat dip from a precharge vessel, for example.
The galley can also define an air vent to release pressure that would otherwise inhibit flow of teat dip fluids through the manifold.
The automated teat dip fluid manifold can be dedicated to either pre-dip teat dip fluids or post-dip teat dip fluids. Other embodiments of a teat dip fluid manifold in accordance with the present invention can dispense both pre-dip teat dip fluids and post-dip teat dip fluids. In these embodiments, valves can be added to protect from cross contamination of pre-dip fluids and post-dip fluids.
Illustrated generally in
The automated dairy animal milking stall unit 30 includes: a frame 32 for mounting in or adjacent to a milking stall; a milker unit 34 mounted in the frame 32; milk lines 36 as part of the milker unit 34; milker arm controls 35 used to control movement of the milker unit 34 between a parked position (shown) and a milking position (not shown); and a teat dip fluid supply system 38. Further, the frame 32 carries a milking module 42 for determining whether to direct milk to a “good milk” path, a “bad milk” path, or a “calf milk” path, for example. Also included, is a dipping module controller 43 that is programmed to monitor and control teat dipping, rinsing, and backflushing. The milking module 42 and the dipping module 43 are in communication with each other and coordinated by a programmable stall control 44, preferably concealed in an upper portion of the frame 32. It is preferred that all of the components described above be disposed in a single frame 32, but multiple frames or mounting systems can be used, so long as the teat dip fluid supply system 38 is in fluid communication with the milker unit 34 or at least a teat dip delivery unit for delivering pre-dip, post-dip, or both types of dip to a dairy animal's teats that will be milked using the milker unit 34.
The frame 32 can be open or enclosed or at least partially enclosed to protect the teat dip supply system 38, the milker unit control module 42, and the programmable stall control 44 from the harsh dairy environment and from being damaged by dairy animals.
The milker unit 34 can be of any suitable design and preferably includes teat cups and liner combinations 46, each of which receives an animal teat for milking. Generally, milk travels from the liner through the milk lines 36 and downstream to suitable chilling and storage systems.
Preferably, the milker unit 34 also carries one or more hoses and teat dip delivery nozzles or openings to direct teat dip toward each animal teat. Also, preferably, the teat dip delivery nozzles or openings are formed in a teat cup liner, examples of such liners are disclosed in Torgerson et al., U.S. Pat. No. 8,991,335, but other types of dispensers and/or liners can be used with the present invention.
To receive teat dip fluids such as teat dip, air, and rinsing fluids from appropriate sources and delivering them to individual dairy animal teats, the present invention includes at least one teat dip fluid manifold 50, and the embodiment depicted in
As used herein “teat dip fluids” can include teat dip for being applied before (“pre”) or after (“post”) milking, as well as, air to force teat dip through delivery lines, and rinsing fluids, such as water, for rinsing the teat dip fluid manifold, valves, delivery lines, and teat dip openings or nozzles. It is not necessary that all of these teat dip fluids be utilized in a single manifold 50, 52, but the present invention can be used to deliver one or more of these fluids effectively, efficiently, and reliably.
To simplify the following descriptions relating to
The teat dip fluids are then delivered to individual dairy animal teats through a number of delivery lines 68 (
The housing 54 preferably includes inlets 70 (
The housing 54 is formed of any suitable material that can withstand the dairy environment as well as teat dips and rinsing fluids that pass through the housing 54. The housing 54 can be singular for containing most of the valve and seal components for use in either pre-dipping or post-dipping operations as described below in relation to
An electrical power source 80 is also provided for powering valves and actuators within the teat dip fluid manifold 50, and computer controls may also be directly wired to the valves or power source for controlling valve operation. Wireless controls and interfaces can also be used.
Main supplies for teat dip, air, and water are preferably disposed at a central source location for convenience in supplying a number of teat dip fluid manifolds 50. Alternatively, supplies can be disposed at various stations in the dairy harvesting facility or even at individual milking stalls. Teat dips, for example, can also be mixed on site or even as they are passing in the teat dip supply lines, 56, 58 with various ingredients, such as concentrates, water, or ingredients with short shelf lives.
The teat dip supply line 56 connects to an inlet 71 protected by an optional mesh filter screen 71A (
The quantity of teat dip supplied to the teat dip fluid manifold 50 can be determined at an upstream location via a suitable dosage valve or it can be provided at a suitable back pressure, so that the upstream valve 100 can be opened for a predetermined interval to provide a desired quantity of teat dip while the upstream valve 100 is open.
Each downstream valve 102 is preferably a safety valve to provide added protection for milk lines in the dairy, but other types of valves can be used as well. The example of a downstream valve 102 illustrated is a safety valve and includes an inlet 111, an outlet 112, and a vent 113 disposed between the inlet 111 and the outlet 113 to create a block-bleed-bock arrangement.
The upstream valve 100 and the downstream valve 102 provide redundancy in protecting the milk lines from contamination from teat dip fluids. To add further protection, a galley 86 is provided from an air check valve 126 and a rinse fluid check valve 134, into and including individual conduits 124 extending to the downstream valve 102. Included in this example of the galley 86, is the passage through the upstream valve 100 from the second inlet 108 to the outlet 110. The galley 86 is monitored for pressure by a pressure monitor 114, which in conjunction with a controller 43, monitors pressure in the galley 86 when the upstream valve 100 is closed to teat dip at inlet 106, and the downstream safety valve 102 is closed to all fluids, except at the vent 113.
The individual conduits 124 of the galley 86 extend through the upstream valve 100 second inlet 108 down to the downstream valve 102. The positions of the upstream valve 100 and the downstream valve 102 are controlled by actuators 115 of any desired type including the solenoid valves illustrated in the figures. If the pressure rises or falls outside of a predetermined range, the pressure monitor 114 generates an appropriate signal that can send an alarm or other notice to a controller or a dairy operator indicating the abnormality. In such a case, the milking stall unit 30 can be taken out of service or the milk can be directed to a “bad milk” line, for example.
When the upstream valve 100 and the downstream valve 102 are both closed as described below, pressure inside the galley 86 can rise or fall if one of the valves is leaking. Even small or subtle leakage can be detected and indicate that valve maintenance is required. Of course, more catastrophic valve failures can be detected and the pressure monitor's 114 signal can send data to the controllers 43 and/or 44 to deactivate all or any portions of the teat dip delivery systems or even the automated dairy milking stall unit 30 itself. Preferably, the pressure monitor 114 senses pressures of about 15 psi, but any desirable pressure range can be selected.
The pressure monitor 114 is preferably a pressure switch that flips when it senses a certain pressure. Also preferably, the pressure switch is adjustable. Pressure sensors can also be used that monitor pressures at varying levels and rates.
This arrangement of a galley 86 and a pressure monitor 114 can monitor for valve leakage as described above, but it can also be used to check for unsatisfactory air or rinsing fluid supplies. This procedure preferably takes place when there is no milking operation occurring. The downstream valve 102 is closed and air or rinsing fluid are introduced into the galley 86 through their respective valves 120 or 130. If the air pressure or rinsing fluid pressure is insufficient to reach a pressure at which the pressure monitor 114 is set, then this is an indication that supply pumps or anything affecting fluid pressures require attention. The failure of air or rinsing fluid pressure to meet predetermined standards can raise an alarm or even be used by the controller 44 to cease operations at that milking stall unit 30 or cause milk obtained at that stall unit 30 to be redirected to a “bad milk” line, for example.
The air supply line 60 connects to the housing 54 at a port 73, and only requires controlling with an air valve 120, which is preferably, a 2 position-2 way pneumatic valve that is in fluid communication with the individual air conduits 124, which each communicate with a corresponding upstream valve 100. To prevent cross-contamination of the air supply line 60 by other teat dipping fluids, an air check valve 126 is provided downstream from the air valve 120. Air (or any other suitable gas or gas mixture) provided to the teat dip fluid manifold 50 is preferably delivered immediately after a teat dip is sent from the teat dip fluid manifold 50. The air provides a back pressure to force (“chase”) the teat dip through delivery lines to ensure delivery of a complete dose of teat dip, as well as a timely delivery of teat dip in the precisely-timed operation of an automated dairy-milking system. A port mesh filter 73A is preferably used to prevent debris from entering.
Next, a rinsing fluid, such as water, can be delivered through a port 75 (with a preferred mesh filter 75A) from the rinsing fluid supply line 62 through a rinsing fluid valve 130, which is preferably a 2 position-3 way hydraulic valve to provide a block-bleed-block arrangement between the rinsing fluid supply line 62 and the rest of the teat dip fluid manifold 50 using a vent 131. The rinsing fluid valve 130 preferably shares the individual air conduits 124 to delivery rinsing fluid through the rest of the teat dip fluid manifold 50 and the delivery lines 68. Nonetheless, separate individual rinsing fluid conduits could be used. Preferably, a rinsing fluid check valve 134 is provided downstream from the rinsing fluid valve 130 to prevent teat dip or air from cross-contaminating the rinsing fluid supply line 62.
In the embodiment of
The upstream valve 100 inlet 108 will then be opened to the individual conduits 124 and the air valve 120 will be activated to open to supply pressurized air (or other gas) through each individual conduit 124, the upstream valves 100, the downstream valves 102 (which remain open from teat dip flow or are re-opened), and into the delivery lines 68 to “chase” the teat dip through the delivery lines 68 to the teats.
Once a desired amount of air is released, the air valve 120 closes, and the rinsing fluid valve 130 is activated to open to release rinsing fluid through the same path as the air traveled until a desired quantity of rinsing fluid has entered the system. Another activation of the air valve 120 could be used to “chase” the rinsing fluid through the system, if desired.
Once rinsing is complete, the rinsing fluid valve 130 and the air valve 120 are activated to be closed and the upstream valve 100 and the downstream safety valve 102 are activated to be closed. In this valve configuration, the teat dip fluid manifold 50 is in essentially a milking position because none of the teat dip fluids can reach the milk lines.
Further, in this milking position, the pressure monitor 114 monitors pressure levels in the galley 86 (heavy lines in
Flow through the air inlet 73 is controlled by an air valve 120, and rinse fluid through the rinse fluid inlet 75 is controlled by a rinse fluid valve 130. Both air and rinse fluid flow through the galley 86 and the individual conduits 124 illustrated in
A pressure monitor 114 is used to monitor pressure in the galley 86 and the individual conduits 124, and will send an appropriate signal to a controller, as described above, in the event pressure in the galley 86 is outside of a predetermined range. Such a signal would indicate the need for valve or system maintenance.
In this embodiment, the housing 54 can in the form of a frame and include a hanger feature 109 with hooks 113 for attaching to corresponding receivers in a mounting panel, such as seen in
In another embodiment illustrated in
The pre-dip teat dip supply line 56 is in fluid communication with the galley 86 (bold lines) before splitting into the individual conduits 124. Each individual conduit 124 is provided with a pre-charging vessel 208 to provide a premeasured dose of teat dip immediately upstream of a set of teat dip fluid manifold valves described below. This arrangement provides an immediate and accurately measured dose of teat dip or other teat dip fluid for delivery to a dairy animal teat or for rinsing the teat dip fluid manifold 250 and the delivery lines 68. Preferably, the pre-charging vessel 208 is sized to receive and store a pressurized volume of between four and eight milliliters (ml) of teat dip fluid, but other volumes or masses can be measured or metered to provide a desired quantity of teat dip.
Downstream from the pre-charging vessel 208 is a drain valve 214 and a downstream valve 216. The drain valve 214 is preferably a 2-position-2 way valve with a drain 218, so that teat dip can be drained from the related pre-charging vessel 208 in the event it is not needed for any reason.
For example, all of the charging vessels 208 must be charged simultaneously. If one of the teats is re-dipped for some reason and only one vessel 208 is emptied for that re-dipping, then the other vessels 208 must be emptied through the drain valves 214. Although slightly wasteful, it provides a reliable means for re-dipping one or more teats, if necessary.
Each downstream safety valve 216 is preferably a suitable safety valve providing a block-bleed-block arrangement or a “block-monitor-block” arrangement as disclosed in patent application Ser. No. 62/581,514 entitled “Automated Milking System Safety Valve Arrangement,” filed on Nov. 3, 2017, and naming inventors Matthew J. Stuessel, Wolfgang Schulze-Wilmert, and Thomas Orban, which is incorporated herein by reference.
A post-dip dip supply 58 is controlled by a post-dip valve 226 arranged in series with the air supply line 60 and the rinsing fluid supply line 62. Preferably, the post-dip valve is a 2-position-3 way valve for receiving post-dip, as well as, air and rinsing fluid through a separate valve inlet 228. Of course, other valve configurations can be used.
The air supply line 60 is controlled by an air valve 230, and the rinsing fluid supply line 62 is controlled by a rinsing fluid valve 232, each of which is preferably a 2-position-2 way valve. An air check valve 236 is provided downstream from the air valve 230 to prevent cross-contamination by teat dip and rinsing fluid.
To further isolate the post-dipping teat dip supply line 58 in the teat dip fluid manifold 50, a safety valve 240 is disposed downstream from the post-dip valve 226. This safety valve 240 can be any desired configuration, including a block-bleed-block or a block-monitor-block, as mentioned above.
Finally, the schematic
As seen in
Generally, when a milking operation is taking place, all of the valves are in closed positions, and an air pressure monitor 114 senses pressure in the galley 86, including the portions between the pre-charging vessel 208 and the downstream valve 216 for the purposes described above.
Before the milking operation, the pre-dip valve 200 is activated and pre-dip passes through the check valve 202 and the galley 86, and then is divided into each of the individual conduits 124 of the galley 86 to charge the pre-charging vessels 208. When pre-dip is desired, the downstream valve 216 opens and back pressure and air from the air valve 230 urge the pre-dip to pass through the delivery lines 68 to a teat cup and liner combination 46. Should all or a portion of the pre-dip fail to reach the teat cup and liner combination 46, the dip valves 200 or 226 can be activated to refill all of the pre-charging vessels 208, and only the teat or teats that did not receive dip can be re-dipped. Afterward, the pre-charging vessels 208 having unused teat dip therein can be dumped through a corresponding drain valve 214, so that all of the charging vessels 208 can receive the next teat dip fluid.
Subsequent to the pre-dip being passed through the manifold 250, an air “chase” passes through the air valve 230, the air check valve 236, the air line 235, the post-dip valve 226, the safety valve 240, the galley 86, and the rest of the path described above for the pre-dip.
Rinsing fluid can then be used, if desired, so that the rinsing fluid valve 232 will be activated to open and allow pressurized rinsing fluid to follow the same path as the “chase” air traveled, as described above.
Before milking is completed, post-dip can be released through an activated post-dip valve 226 and the valve 240, through the galley 86 and into the pre-charge vessels 208. This part of the process preferably can take place during milking or immediately following milking, but before the teat cup and liner combination 46 is detached from the dairy animal.
After milking and before detachment, the downstream safety valve 216 is activated to open and permit the post-dip to flow toward the teat cup and liner combination 46. Chase air and optional rinsing fluid can follow, as described above. Again, if post-dip fails to complete the delivery path, another dose can be provided, as described above in relation to the pre-dip teat dip. As illustrated, the valves include actuators 215.
A third embodiment is illustrated in
One benefit of this embodiment is that the pre-charging vessel 308 can be refilled if for some reason it fails to fill completely, or the teat dip is delivered at a time when a teat is not located in a corresponding teat cup and liner combination 46. This refiling capability is less wasteful of teat dip compared to the
Downstream from the pre-charging vessel 308, is a downstream valve 316, which is preferably a safety valve such as a 2 position-5 way valve or a block-monitor-block valve.
In addition, as described above in relation to the second embodiment of
The
In
The pre-dipping portion 396 and the post-dipping portion 398 each include a galley 486 with individual conduits 488. In each individual conduit 488 there is an upstream valve 400 and a downstream valve 402. The upstream valves 400 are preferably 2 position-3 way valves for receiving teat dip through one inlet, and air and rinsing fluid through another inlet.
The other features of the first embodiment (
The individual conduits 488 of the pre-dip portion 396 are protected from cross-contamination from the post-dip portion 398, by a check valve 440 and the opposite is true because of the check valve 444. Other types of protective valves could be used as well to prevent cross contamination.
In this embodiment, a pressure sensor 414 is in fluid communication with each galley 486 to detect abnormal pressures in each galley 486, which could indicate leakage in any of the various valves, as described above.
The foregoing detailed description of drawings is provided for clearness of understanding only, and no unnecessary limitations therefrom should be read into the following claims. For example, valve types can be replaced with other valve types, or mixed rather than using a single valve type in the manifold. The valves also need not all be located in the same housing or in any housing because they can be mounted in any desirable way. The manifolds can also be mounted at any suitable location in the dairy or dairy unit to facilitate efficiency and access for maintenance.
This application claims the benefit of U.S. Provisional Application 62/581,526, filed Nov. 3, 2017, and U.S. Provisional Application 62/581,514, filed Nov. 3, 2017, the disclosures of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1365665 | Davies | Jan 1921 | A |
2012031 | Woodruff | Aug 1935 | A |
2532088 | Cordis | Nov 1950 | A |
2747544 | Thomas | May 1956 | A |
3014455 | Olander | Dec 1961 | A |
3099246 | Beskow | Jul 1963 | A |
3119401 | Merritt et al. | Jan 1964 | A |
3285297 | Duft et al. | Nov 1966 | A |
3417763 | Fjermestad et al. | Dec 1968 | A |
3461845 | Peterson | Aug 1969 | A |
3474760 | Siddall et al. | Oct 1969 | A |
3482547 | Maier | Dec 1969 | A |
3500839 | Bender | Mar 1970 | A |
3630081 | Nelson | Dec 1971 | A |
3648696 | Keith | Mar 1972 | A |
3688783 | Owens | Sep 1972 | A |
3696790 | Albright | Oct 1972 | A |
3713423 | Sparr, Sr. | Jan 1973 | A |
3726253 | Duncan | Apr 1973 | A |
3762371 | Quayle et al. | Oct 1973 | A |
3789798 | Reisgies et al. | Feb 1974 | A |
3797525 | Lieser | Mar 1974 | A |
3861335 | Przewalski | Jan 1975 | A |
3861355 | Johnson et al. | Jan 1975 | A |
3957018 | Barrett | May 1976 | A |
3971512 | Duncan | Jul 1976 | A |
3973520 | Flocchini | Aug 1976 | A |
3989009 | Robar et al. | Nov 1976 | A |
4034714 | Umbaugh et al. | Jul 1977 | A |
4061504 | Zall et al. | Dec 1977 | A |
4149489 | Umbaugh et al. | Apr 1979 | A |
4168677 | Brown | Sep 1979 | A |
4175514 | Souza et al. | Nov 1979 | A |
4177760 | Slater | Dec 1979 | A |
4222346 | Reisgies | Sep 1980 | A |
4253421 | Slater et al. | Mar 1981 | A |
4254754 | Takada et al. | Mar 1981 | A |
4295490 | Boudreau | Oct 1981 | A |
4305346 | Sparr, Sr. | Dec 1981 | A |
4332215 | Larson | Jun 1982 | A |
4333387 | Seitz | Jun 1982 | A |
4333421 | Schluckbier | Jun 1982 | A |
4344385 | Swanson et al. | Aug 1982 | A |
4372345 | Menus | Feb 1983 | A |
4378757 | Hamann | Apr 1983 | A |
4393811 | Bodmin | Jul 1983 | A |
4395971 | Happel et al. | Aug 1983 | A |
4403568 | Fukuhara et al. | Sep 1983 | A |
4403569 | Bennett | Sep 1983 | A |
4459938 | Noorlander | Jul 1984 | A |
4462425 | Mehus | Jul 1984 | A |
4485762 | Sutton et al. | Dec 1984 | A |
4498419 | Flocchini | Feb 1985 | A |
4516530 | Reisgies et al. | May 1985 | A |
4572105 | Chowdhury et al. | Feb 1986 | A |
4586462 | Icking | May 1986 | A |
4593649 | Britten | Jun 1986 | A |
4903639 | Kessel | Feb 1990 | A |
4907535 | Matsuzawa et al. | Mar 1990 | A |
4924809 | Verbrugge | May 1990 | A |
4936254 | Marshall | Jun 1990 | A |
5052341 | Woolford et al. | Oct 1991 | A |
5101770 | Stevenson | Apr 1992 | A |
5134967 | Marshall | Aug 1992 | A |
5161482 | Griffin | Nov 1992 | A |
5166313 | Archibald et al. | Nov 1992 | A |
5167201 | Peles | Dec 1992 | A |
5178095 | Mein | Jan 1993 | A |
5218924 | Thompson et al. | Jun 1993 | A |
5255628 | Kristoffer | Oct 1993 | A |
5379722 | Larson | Jan 1995 | A |
5386799 | Dietrich | Feb 1995 | A |
5390627 | Van Der Berg et al. | Feb 1995 | A |
5403005 | Avila-Valdez | Apr 1995 | A |
5493995 | Chowdhury | Feb 1996 | A |
5568788 | Van Den Berg et al. | Oct 1996 | A |
5572947 | Larson et al. | Nov 1996 | A |
5673650 | Mottram et al. | Oct 1997 | A |
5697325 | Gehm et al. | Dec 1997 | A |
5722343 | Aurik et al. | Mar 1998 | A |
5769025 | Van Der Lely et al. | Jun 1998 | A |
5778820 | Van Der Lely et al. | Jul 1998 | A |
5850845 | Pareira et al. | Dec 1998 | A |
5881669 | Van Den Berg et al. | Mar 1999 | A |
5896828 | Kronschnabel et al. | Apr 1999 | A |
5909716 | Van Der Lely | Jun 1999 | A |
5934220 | Hall et al. | Aug 1999 | A |
5957081 | Van Der Lely et al. | Sep 1999 | A |
5960736 | Ludington et al. | Oct 1999 | A |
5992347 | Innings et al. | Nov 1999 | A |
6009833 | Van Der Lely | Jan 2000 | A |
6079359 | Van Den Berg | Jun 2000 | A |
6089242 | Buck | Jul 2000 | A |
6098570 | Aurik et al. | Aug 2000 | A |
6202593 | Maier et al. | Mar 2001 | B1 |
6234110 | Xavier | May 2001 | B1 |
6244215 | Oosterling | Jun 2001 | B1 |
6267077 | van den Berg | Jul 2001 | B1 |
6276297 | Van Den Berg et al. | Aug 2001 | B1 |
6308655 | Oosterling | Oct 2001 | B1 |
6318299 | Birk | Nov 2001 | B1 |
6321682 | Eriksson et al. | Nov 2001 | B1 |
6367416 | Van Den Lely | Apr 2002 | B1 |
6371046 | Petterson et al. | Apr 2002 | B1 |
6435132 | Milbrath et al. | Aug 2002 | B1 |
6546893 | Happel et al. | Apr 2003 | B1 |
6550420 | Bjork | Apr 2003 | B1 |
6561126 | Forsen et al. | May 2003 | B2 |
6584930 | Buecker | Jul 2003 | B2 |
6591784 | Eriksson | Jul 2003 | B1 |
6598560 | Van Den Berg | Jul 2003 | B1 |
6619227 | Berger et al. | Sep 2003 | B1 |
6626130 | Eriksson | Sep 2003 | B1 |
6644240 | Dietrich | Nov 2003 | B1 |
6752102 | Dahl et al. | Jun 2004 | B2 |
6755153 | Chowdhury | Jun 2004 | B1 |
6935270 | Wipperfurth et al. | Aug 2005 | B2 |
6997135 | Dewaard | Feb 2006 | B1 |
6997136 | Coates | Feb 2006 | B1 |
7036981 | Veenstra et al. | May 2006 | B2 |
7128020 | Björk et al. | Oct 2006 | B2 |
7143718 | Bosma et al. | Dec 2006 | B2 |
7162970 | Maier, Jr. | Jan 2007 | B2 |
7174848 | Brown et al. | Feb 2007 | B2 |
7178480 | Dahl et al. | Feb 2007 | B2 |
7237694 | Freudinger | Jul 2007 | B2 |
7263948 | Ericsson et al. | Sep 2007 | B2 |
7281493 | Dietrich | Oct 2007 | B2 |
7290497 | Rottier et al. | Nov 2007 | B2 |
7299766 | Van Den Berg et al. | Nov 2007 | B2 |
7350478 | Fernandez | Apr 2008 | B2 |
7377232 | Holmgren et al. | May 2008 | B2 |
7401573 | Torgerson | Jul 2008 | B2 |
7412943 | Ericsson et al. | Aug 2008 | B2 |
7484474 | Van Den Berg et al. | Feb 2009 | B2 |
7536975 | Denes et al. | May 2009 | B2 |
7575022 | Higgins | Aug 2009 | B2 |
7578260 | Shin | Aug 2009 | B2 |
7707966 | Torgerson et al. | May 2010 | B2 |
7765951 | Dietrich | Aug 2010 | B2 |
7793614 | Ericsson et al. | Sep 2010 | B2 |
7926449 | Stellnert et al. | Apr 2011 | B2 |
7963249 | Duke | Jun 2011 | B2 |
8025029 | Torgerson et al. | Sep 2011 | B2 |
8033247 | Torgerson et al. | Oct 2011 | B2 |
8117989 | Torgerson et al. | Feb 2012 | B2 |
8191507 | Persson | Jun 2012 | B2 |
8210123 | Duke | Jul 2012 | B2 |
8240272 | Duke | Aug 2012 | B2 |
8286653 | Lidman | Oct 2012 | B2 |
8342125 | Torgerson et al. | Jan 2013 | B2 |
8590486 | Torgerson et al. | Nov 2013 | B2 |
8677937 | Shin | Mar 2014 | B2 |
8770146 | Buck et al. | Jul 2014 | B2 |
8925483 | Torgerson et al. | Jan 2015 | B2 |
8991335 | Torgerson et al. | Mar 2015 | B2 |
9016238 | Duke | Apr 2015 | B2 |
9049835 | Duke | Jun 2015 | B2 |
9072272 | Bosma et al. | Jul 2015 | B2 |
9072273 | Torgerson et al. | Jul 2015 | B2 |
9332726 | Bosma et al. | May 2016 | B2 |
9468189 | Toregrson et al. | Oct 2016 | B2 |
9468190 | Duke | Oct 2016 | B2 |
9510556 | Torgerson et al. | Dec 2016 | B2 |
9526224 | Balkenhol et al. | Dec 2016 | B2 |
9545079 | Torgerson et al. | Jan 2017 | B2 |
9686958 | Sellner et al. | Jun 2017 | B2 |
9763421 | Torgerson et al. | Sep 2017 | B2 |
9770006 | Torgerson et al. | Sep 2017 | B2 |
9883652 | Torgerson et al. | Feb 2018 | B2 |
9930862 | Torgerson et al. | Apr 2018 | B2 |
10123506 | Bosma | Nov 2018 | B2 |
10426128 | Balkenhol et al. | Oct 2019 | B2 |
10499610 | Toregrson et al. | Dec 2019 | B2 |
10502330 | Balkenhol | Dec 2019 | B2 |
10514316 | Enicki | Dec 2019 | B2 |
10681895 | Sellner et al. | Jun 2020 | B2 |
20020185071 | Guo | Dec 2002 | A1 |
20040089242 | Verstege et al. | May 2004 | A1 |
20040231603 | Bjork et al. | Nov 2004 | A1 |
20050274327 | Johnsson et al. | Dec 2005 | A1 |
20060016399 | Torgerson | Jan 2006 | A1 |
20060037542 | Denes et al. | Feb 2006 | A1 |
20060112887 | Brown et al. | Jun 2006 | A1 |
20070070803 | Urquhart | Mar 2007 | A1 |
20070157887 | Fernandez | Jul 2007 | A1 |
20070186860 | Dietrich | Aug 2007 | A1 |
20070215053 | Duke | Sep 2007 | A1 |
20070277737 | Maier et al. | Dec 2007 | A1 |
20080022932 | Rottier et al. | Jan 2008 | A1 |
20080202433 | Duke | Aug 2008 | A1 |
20080276871 | Auburger et al. | Nov 2008 | A1 |
20080314322 | Stellnert et al. | Dec 2008 | A1 |
20090050061 | Duke | Feb 2009 | A1 |
20090050062 | Auburger et al. | Feb 2009 | A1 |
20090064937 | Rottier et al. | Mar 2009 | A1 |
20090151641 | Schulze Wartenhorst et al. | Jun 2009 | A1 |
20090165724 | Mader et al. | Jul 2009 | A1 |
20090320760 | Torgerson et al. | Dec 2009 | A1 |
20100132626 | Torgerson et al. | Jun 2010 | A1 |
20100154900 | Torgerson et al. | Jun 2010 | A1 |
20100236487 | Stellnert et al. | Sep 2010 | A1 |
20100326360 | Duke et al. | Dec 2010 | A1 |
20110220028 | Duke | Sep 2011 | A1 |
20110220160 | Bosma | Sep 2011 | A1 |
20110232575 | Duke | Sep 2011 | A1 |
20120111275 | Torgerson et al. | May 2012 | A1 |
20120118237 | Torgerson et al. | May 2012 | A1 |
20120118238 | Torgerson et al. | May 2012 | A1 |
20120272911 | Duke | Nov 2012 | A1 |
20130199449 | Daniel | Aug 2013 | A1 |
20140283751 | Buck et al. | Sep 2014 | A1 |
20150173320 | Balkenhol et al. | Jun 2015 | A1 |
20150201577 | Duke | Jul 2015 | A1 |
20150260302 | Peterson et al. | Sep 2015 | A1 |
20160319947 | Balkenhol | Nov 2016 | A1 |
20170014837 | Duke | Jan 2017 | A1 |
20170164576 | Balkenhol et al. | Jun 2017 | A1 |
20170359995 | Sellner et al. | Dec 2017 | A1 |
20180064056 | Torgerson et al. | Mar 2018 | A1 |
20180220616 | Torgerson et al. | Aug 2018 | A1 |
20180235173 | Torgerson et al. | Aug 2018 | A1 |
20190133067 | Stuessel et al. | May 2019 | A1 |
20190145531 | Balkenhol et al. | May 2019 | A1 |
20200088310 | Balkenhol | Mar 2020 | A1 |
20200352129 | Torgerson et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
641229 | Sep 1993 | AU |
2013294747 | Nov 2016 | AU |
2015227478 | Jun 2018 | AU |
2394162 | Aug 2009 | CA |
2772991 | Mar 2011 | CA |
2772993 | Mar 2011 | CA |
3016466 | Mar 2011 | CA |
1801758 | Jun 1970 | DE |
1582939 | Jul 1970 | DE |
2622794 | Dec 1977 | DE |
3540058 | May 1987 | DE |
261300 | Oct 1988 | DE |
4006785 | Sep 1990 | DE |
10160161 | Jun 2003 | DE |
102013114595 | Jun 2015 | DE |
0277396 | Aug 1988 | EP |
0313109 | Apr 1989 | EP |
0319523 | Jun 1989 | EP |
0332235 | Sep 1989 | EP |
0459817 | Dec 1991 | EP |
0479397 | Apr 1992 | EP |
0527509 | Feb 1993 | EP |
0543463 | May 1993 | EP |
0583166 | Feb 1994 | EP |
0630557 | Dec 1994 | EP |
0728412 | Aug 1996 | EP |
0801893 | Oct 1997 | EP |
0945057 | Sep 1999 | EP |
1001199 | May 2000 | EP |
1219167 | Jul 2002 | EP |
1222853 | Jul 2002 | EP |
1089615 | Mar 2003 | EP |
1520469 | Apr 2005 | EP |
1543720 | Jun 2005 | EP |
1790217 | May 2007 | EP |
1795069 | Jun 2007 | EP |
1679956 | Dec 2008 | EP |
2113169 | Nov 2009 | EP |
1933616 | Jan 2011 | EP |
2271373 | Jan 2011 | EP |
1737291 | Nov 2013 | EP |
918766 | Feb 1963 | GB |
1160900 | Aug 1969 | GB |
1440901 | Jun 1976 | GB |
0324647.7 | Oct 2003 | GB |
0402119.2 | Jan 2004 | GB |
0408968.6 | Apr 2004 | GB |
0417392.8 | Apr 2004 | GB |
2475249 | May 2011 | GB |
2002345955 | Dec 2002 | JP |
2002354958 | Dec 2002 | JP |
2005192404 | Jul 2005 | JP |
1016237 | Mar 2002 | NL |
1021950 | May 2004 | NL |
2084137 | Jul 1997 | RU |
1676538 | Sep 1991 | SU |
199313651 | Jul 1993 | WO |
199828969 | Jul 1998 | WO |
199927775 | Jun 1999 | WO |
199946978 | Sep 1999 | WO |
199966767 | Dec 1999 | WO |
199966787 | Dec 1999 | WO |
0117337 | Mar 2001 | WO |
0117338 | Mar 2001 | WO |
0207506 | Jan 2002 | WO |
0223976 | Mar 2002 | WO |
03030630 | Apr 2003 | WO |
03077645 | Sep 2003 | WO |
03098998 | Dec 2003 | WO |
04032608 | Apr 2004 | WO |
2004030445 | Apr 2004 | WO |
05022986 | Mar 2005 | WO |
05043986 | May 2005 | WO |
05072516 | Aug 2005 | WO |
05102035 | Nov 2005 | WO |
2006029797 | Mar 2006 | WO |
2006091710 | Aug 2006 | WO |
2006110079 | Oct 2006 | WO |
2006117019 | Nov 2006 | WO |
2006135917 | Dec 2006 | WO |
2007031783 | Mar 2007 | WO |
2007129884 | Nov 2007 | WO |
2007129888 | Nov 2007 | WO |
2008102567 | Aug 2008 | WO |
2008138862 | Nov 2008 | WO |
2009077607 | Jun 2009 | WO |
2009158000 | Dec 2009 | WO |
2010053577 | May 2010 | WO |
201128292 | Mar 2011 | WO |
201128293 | Mar 2011 | WO |
201128294 | Mar 2011 | WO |
2011102911 | Aug 2011 | WO |
2014016588 | Jan 2014 | WO |
2015118336 | Feb 2015 | WO |
2015145116 | Oct 2015 | WO |
2015150807 | Oct 2015 | WO |
2017191057 | Nov 2017 | WO |
2019090044 | May 2019 | WO |
2019090136 | May 2019 | WO |
Entry |
---|
European Search Report dated Jan. 30, 2020 for European Application No. 19204875.9, 6 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2018/059041, dated May 5, 2020, 12 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2018/058897, dated May 5, 2020, 10 pages. |
“Grade A pasteurized milk ordinance” 2003 Revision; US Department Health and Human Services, Public Health Service; Food and Drug Administration. |
“3-A® Accepted Practices for Permanently Installed Product and Solution Pipelines and Cleaning Systems Used in Milk and Milk Product Processing Plants, No. 605-04,” Section N; Aug. 20, 1994. |
Akam, D.N., “The Development of Equipment for the Mechanization of Manual Operations in Milking Machine,” 17th Annual Meeting, National Mastitis Counsel, Inc., Feb. 21-23, 1978, pp. 417-426. |
Grindal; et al., “Automatic application of teat disinfectant through the milking machine cluster” Journal of Dairy Research, 56:579-585 (1989). |
International Search Report and Written Opinion from PCT/US2011/00322, dated Dec. 20, 2011. |
Letter to Alex Ferguson from Jeffry W. Smith dated Dec. 22, 2006, 2pp. |
Neijenhuis; et al., “Health of dairy cows milked by an automatic milking system; Effects of milking interval on teat condition and milking performance with whole-udder take off”, Oct. 2003, 23 pages. |
Office Action for U.S. Appl. No. 10/576,744 dated Jun. 3, 2010, 8pp. |
Office Action for U.S. Appl. No. 11/652,372 dated Feb. 11, 2008, 14pp. |
Office Action for U.S. Appl. No. 11/662,454 dated Aug. 16, 2010, 20 pp. |
Office Action for U.S. Appl. No. 11/904,769 dated Feb. 20, 2008, 9pp. |
Office Action for U.S. Appl. No. 12/712,787 dated Jun. 27, 2011. |
PCT/GB04/004343—Written Opinion of ISA & IPRP, 5pp. |
“PCT/US06/023075—ISR & Written Opinion”. |
PCT/US09/006026—IPRP, Written Opinion of ISA & ISR, 9pp. |
“PCT/US09/03770—IPRP and Written Opinion”. |
Preliminary Amendment for U.S. Appl. No. 10/576,744, filed Apr. 21, 2006, 16pp. |
Preliminary Amendment for U.S. Appl. No. 10/576,744, filed Aug. 7, 2008, 10 pp. |
Shearn; et al., “Reduction of bacterial contamination of teat cup liners by an entrained wash system,” Veterinary Record (1994), 134, 450, 1p. |
Thompson; et al. “The End-of-Milking Sequence and its Mechanization” 1976 Winter Mtg., Dec. 14-17, 1976, Animal Physiology and Genetics Inst., Beltsville, MD, 15pp. |
U.S. Appl. No. 60/566,313, filed Apr. 29, 2004, J.R.J. Duke. |
U.S. Appl. No. 60/566,314, filed Apr. 29, 2004, J.R.J. Duke. |
U.S. Appl. No. 60/578,997, filed Jun. 12, 2004, Kevin L. Torgerson. |
Notice of Opposition and Opposition brief for EP Patent 1737291, Filed on Aug. 26, 2014 by GEA Farm Technologies GmbH, 74 pages. |
Response filed Feb. 2, 2015 by An Udder IP Company in the Opposition of EP Patent 1737291, 53 pages. |
European Search Report dated Sep. 24, 2015 for EP Application No. 15171008.4, 6 pages. |
Reply filed on Dec. 16, 2015 by GEA Farm Technologies GmbH in the Opposition of EP Patent No. 1737291, 75 pages. |
Wildbrett et al., “Über Reinigung und Desinfektion von Tanks” Materials and Corrosion 12(12):759-764. Nov. 1961. |
European Patent Office Preliminary Opinion and Summons to Attend Oral Proceedings issued Jan. 18, 2016, Opposition of EP Patent 1737291, 12 pages. |
European Search Report dated Aug. 13, 2014, EP Application No. 14159588.4, 5 pages. |
International Search Report and Written Opinion from PCT/EP2014/0//684, dated Apr. 10, 2015, 10 pages. |
International Search Report and Written Opinion from PCT/US2018/058897, dated Feb. 25, 2019, 19 pages. |
International Search Report and Written Opinion from PCT/US2018/059041, dated Mar. 8, 2019, 20 pages. |
Amendments and Observations filed Oct. 24, 2016 by An Udder IP Company Ltd in the Opposition of EP Patent 1737291, 47 pages. |
Amendments and Observations filed Oct. 25, 2016 by GEA Farm Technologies GmbH in the Opposition of EP Patent 1737291, 13 pages. |
Nov. 10, 2016 EPO Communication re: the Proprietor, An Udder IP Company Ltd's request concerning the staying/postponement of the opposition proceedings, Opposition of EP Patent 1737291, 1 page. |
Nov. 25, 2016 EPO Communication re: results of the oral proceedings, Opposition of EP Patent 1737291, 5 pages. |
Dec. 8, 2016 EPO Communication; Details and minutes of the oral proceedings, Opposition of EP Patent 1737291, 13 pages. |
Mar. 30, 2017 EPO Communication, State of the Opposition Procedure and Invitation to File Observations, Opposition of EP Patent 1737291, 10 pages. |
Response filed by Udder IP Company LTD on Jun. 2, 2017, Opposition of EP Patent 1737291, 4 pages. |
Response filed by GEA Farm Technologies GmbH on May 29, 2017, Opposition of EP Patent 1737291, 5 pages. |
Jul. 27, 2017 EPO Communication; State of the Opposition Procedure and Summons to Attend Oral Proceedings, Opposition of EP Patent 1737291, 10 pages. |
European Search Report dated Oct. 13, 2017, for European Application No. 17171229.2, 6 pages. |
Mar. 13, 2018 Letter from the Proprietor, An Udder IP Company Ltd, Regarding the Opposition Procedure for Opposition of EP Patent 1737291, 23 pages. |
May 17, 2018 EPO Communication; Details and minutes of the oral proceedings, Opposition of EP Patent 1737291, 9 pages. |
May 31, 2018 Interlocutory Decision in Opposition Proceedings, Opposition of EP Patent 1737291, 49 pages. |
Sep. 27, 2018 Statement of Grounds for Appeal, Opposition of EP Patent 1737291, 29 pages. |
Feb. 4, 2019 Reply to Grounds for Appeal, Opposition of EP Patent 1737291, 32 pages. |
International Search Report for PCT/EP2017/060232, dated Aug. 3, 2017, 2 pages. |
German Search Report for DE Application No. 10 2016 108 300.3, dated Mar. 10, 2017, 7 pages. |
Mar. 20, 2020 Examination Report for Australian Application No. 2018211343, 7 pages. |
Oct. 15, 2020 Communication Regarding Oral Proceedings in Opposition to EP Patent 1737291, 10 pages. |
Sep. 30, 2021 Minutes of the Oral Proceedings in Opposition to EP Patent 1737291, 4 pages. |
Office Action dated Jan. 18, 2022 in related/corresponding RU Application No. 2020115267. |
Number | Date | Country | |
---|---|---|---|
20190133069 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62581526 | Nov 2017 | US | |
62581514 | Nov 2017 | US |