This invention relates generally to therapy tables, and more specifically, to an automated therapy table having various support portions capable of independent automatic actuation of a person's lower extremities through passive exercise by performing leg elevation, approximation/decompression of the leg, internal/external rotation of the leg, ankle plantar flexion/dorsiflexion, and foot inversion/eversion.
Over 2.5 million people worldwide suffer from Multiple Sclerosis (MS) and over a quarter of a million children and adults suffer from some form of joint contracture. Joint contracture is a stiffening of the muscles near the joints that can make it difficult for individuals to move. In some cases, this leads to joints locking in a painful position.
Physical therapy, especially regular stretching, is important in helping to enhance the range of motion for affected muscles and to prevent or delay contractures. Physical therapy can also help maintain muscle tone and reduce the severity of joint contractures. With regular exercise, muscles are kept strong and joints more flexible. It is believed that strengthening supporting muscle groups to compensate for weakened muscle groups might be beneficial to patients with early stages of Muscular Dystrophy (MD).
People with various forms of debilitating illnesses, such as Multiple Sclerosis (MS), Charcot-Marie-Tooth (CMT), and Muscular Dystrophy (MD) suffer from progressive weakness, pain, and degeneration of skeletal muscles that are required for voluntary movement. For treatment, these people often seek the assistance of a physical therapist, chiropractor, or other medical practitioner in order to alleviate their discomfort. A physical therapist will often resort to stretching techniques to ease a patient's discomfort—positioning the patient on a therapy table and manually stretching and manipulating the patient's body. This can be physically demanding for the therapist. The lower extremities are especially difficult to manipulate because of their length, size, and weight.
A need therefore existed for an automated therapy table which may be controlled by a physical therapist or other medical practitioner to actuate various component portions of the table in order to move parts of a person's body, specifically the lower extremities, in a desired direction for a desired period of time without causing physical stress to the physical therapist or medical practitioner. All of the functions of the automated therapy table, accompanied by the thought process of the patient assisting in the direction of every movement, help to rehabilitate and strengthen muscles.
In accordance with one embodiment of the present invention, a therapy table is disclosed. The therapy table comprises at least one torso platform for supporting a torso of a person, and an exercise platform coupled to the torso platform, the exercise platform for exercising at least one of a leg and a foot of the person in a desired range of motion.
In accordance with another embodiment of the present invention, a therapy table is disclosed. The therapy table comprises a base, a torso platform coupled to the base for supporting a torso of a person, and at least one exercise platform coupled to the torso platform, the exercise platform for exercising at least one of a leg and a foot of the person in at least one of leg elevation, leg approximation, leg decompression, medial leg rotation, lateral leg rotation, ankle plantar flexion, ankle dorsiflexion, foot inversion, and foot eversion.
In accordance with another embodiment of the present invention a method for treating the lower extremities of a person is disclosed. The method comprises the steps of providing a therapy table comprising a torso platform for supporting a torso of a person; at least one exercise platform coupled to the torso platform, the exercise platform for exercising at least one of a leg and a foot of the person in at least one of leg elevation, leg approximation, leg decompression, medial leg rotation, lateral leg rotation, ankle plantar flexion, ankle dorsiflexion, foot inversion, and foot eversion; and thinking by the person of a particular movement while performing one of leg elevation, leg approximation, leg decompression, medial leg rotation, lateral leg rotation, ankle plantar flexion, ankle dorsiflexion, foot inversion, and foot eversion.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The novel features believed characteristic of the invention are set forth in the appended claims. The invention will best be understood by reference to the following detailed description of illustrated embodiments when read in conjunction with the accompanying drawings, wherein like reference numerals and symbols represent like elements.
Referring to
Referring to
The automated therapy table 10 is shown as having two leg platforms 22 and two foot plates 44 movably coupled to an inferior end of the torso platform 20. While each leg platform 22 could comprise a single section capable of medial/lateral or posterior/anterior movement, it is preferred that each leg platform 22 be multi-sectioned in a manner corresponding to the leg 48 and ankle 52 joints.
In order for the therapy table 10 to be able to assist a person 46 in the performance of this movement, the exercise platform 21 may have a leg platform 22 hingedly coupled to the torso platform 20 with a hinge assembly 32. In one embodiment, the therapy table 10 will have a support member 60 coupled to a bottom surface of the leg platform 22. A pivot arm 62 may have one end pivotably coupled to a distal end of the support member 60 of the leg platform 22 and may have another end pivotably coupled to a bottom surface of the torso platform 20. There may also be an actuator 34 having one end that is pivotably coupled to a proximal end of the support member 60 of the leg platform 22 and another end that is pivotably coupled to the base 11 of the therapy table 10. When the actuator 34 extends, the leg platform 22 is raised and when the actuator 34 retracts, the leg platform 22 is lowered back to a resting position. While it is shown in the figure that the hinge assembly 32 has two pivot arms 62, it should be clearly understood that substantial benefit may be achieved from a single pivot arm 62 or more than two pivot arms 62.
In order for the therapy table 10 to be able to assist a person 46 in this type of movement, the exercise platform 11 may have a leg platform 22 for supporting the leg 48 of the person 46, a foot housing 42 coupled to the leg platform 22 for supporting the foot 50 of the person 46, and at least one actuator 34. The actuator 34 may have one end coupled to the foot housing 42 and may have another end coupled to the leg platform 22. When the actuator 34 extends, the foot housing 42 moves in an inferior direction, and thus allows the leg 48 to move inferiorly along a frontal plane (leg approximation). When the actuator 34 retracts, the foot housing 42 moves in a superior direction, and thus allows the leg 48 to move superiorly along a frontal plane (leg decompression).
To further assist in this movement, the exercise platform 11 may also have a roller assembly 35. The roller assembly 35 may comprise a roller block housing 38 (see
In order to assist with these movements the exercise platform 21 may have a leg platform 22 for supporting the leg 48 of the person 46, a foot housing 42 coupled to the leg platform 22 for supporting the foot 50, a foot plate 44 pivotably coupled to the foot housing 42, and at least two actuators 34. One actuator 34 may be a superior actuator 34 having one end coupled to the leg platform 22 and having another end coupled to an anterior portion of the foot housing 38. The other actuator 34 may be an inferior actuator 34 having one end coupled to the leg platform 22 and having another end coupled to a posterior portion of the foot housing 38. When the superior actuator 34 extends, it causes the anterior portion of the foot housing 38 to move, thereby allowing foot plantar flexion. When the inferior actuator 34 extends, it causes the posterior portion of the foot housing 38 to move, thereby allowing foot dorsiflexion.
In order to assist these movements, the exercise platform 21 may have a leg platform 22, a foot housing 42 coupled to the leg platform 22, a foot plate 44 pivotably coupled to the foot housing 42, and four actuators 34. A lateral superior actuator 34a may have one end coupled to a lateral portion of the leg platform 22 and may have another end coupled to a lateral anterior portion of the foot housing 42 and a medial superior actuator 34b may have one end coupled to a medial portion of the leg platform 22 and may have another end coupled to a medial anterior portion of the foot housing 42. A lateral inferior actuator 34c may have one end coupled to the lateral portion of the leg platform and may have another end coupled to a lateral posterior portion of the foot housing 42 and a medial inferior actuator 34d may have one end coupled to the medial portion of the leg platform 22 and may have another end coupled to a medial posterior portion of the foot housing 42. When the lateral superior actuator 34a and the lateral inferior actuator 34c extend, this allows for the movement of foot inversion. When the medial superior actuator 34b and the medial inferior actuator 34d, this allows for the movement of foot eversion.
The leg platform 22 may be movably coupled to an inferior end of the torso platform 20 by the hinge assembly 32. An actuator 34 or drive mechanism raises and lowers the leg platform 22 along a sagittal plane during leg elevation movements (see
As shown in
As shown in
There may be a pair of actuators 34 or drive mechanisms on each of the lateral side and the medial side of each leg platform 22. There may be one lateral superior actuator 34a, one medial superior actuator 34b, one lateral inferior actuator 34c, and one medial inferior actuator 34d may be used to move the foot housing 42 in relation to the leg platform 22. The superior actuators 34a/34b may be located directly lateral and medial to the patient's 46 legs 48. An alignment enclosure 30 may be used to keep the superior actuators 34a/34b straight. If all four actuators 34a/34b/34c/34d extend at the same time, then the automated therapy table 10 will assist the movement of leg approximation (see
If the superior actuators 34a/34b extend and the inferior actuators 34c/34d contract or remain stationary, then the automated therapy table 10 will assist the movement of ankle plantar flexion (see
It is preferred that the patient 46 internalize or think about each movement while performing the movement. As an example, when the patient 46 performs the movement of decompression, the patient 46 may think “long” or “lengthening” as he/she performs the movement. This type of communicative balancing amplifies the benefit of the movement and is a valuable aspect of the method because it will help to maintain long-term effects from use of the automated therapy table 10.
In a preferred embodiment, the automated therapy table 10 is pneumatically driven. However, it should be clearly understood that substantial benefit could be derived from an alternative configuration of the automated therapy table 10 in which other automated means for adjusting the component portions and supports is used, such as hydraulic, electric or perhaps even lever-type means.
This apparatus and process makes the job of the therapist significantly less difficult and less physically demanding. Thus, instead of the therapist being required to bend over the automated therapy table 10, grasp a portion of the patient's 46 leg 48, and physically move the patient's 46 leg 48 in the desired direction for the required period of time—the therapist can select the desired portion of the patient's 46 leg 48, the desired direction of movement, and activate the appropriate actuators 34. The actuators 34 will then move the appropriate part of the patient's 46 leg 48 in the proper direction, and the part of the patient's 46 leg 48 will be held there until the therapist determines that sufficient time has passed to make it appropriate to release the part of the patient's 46 leg 48. While it is generally contemplated that the therapist will activate the actuators 34, it would be possible for the patient to do so as well.
It is preferred that a world trained technician, physical therapist, or other health professional operate the automated therapy table 10 of the present invention. It should also be clearly understood that substantial benefit may be derived from the patient being able to operate the automated therapy table 10 himself/herself.
Prior to receiving any treatment, the patient 46 will ideally undergo a physical assessment to determine the existence of any contraindications. If there are any, then certain modifications may be made to the usual movements.
For the movements of leg elevation, internal/external leg rotation, ankle plantar flexion/dorsiflexion, and foot inversion/eversion, the movement will be held for several seconds. Preferably, these movements will be held for less than ten seconds each. For the weight bearing movement of approximation (or compression), the movement may be held for longer than ten seconds. During each movement, the patient 46 will preferably be instructed to think in the direction of the movement. It has been found that doing so helps increase the healing effects. For example, during the movement of foot inversion, the patient 46 will think that his/her foot is moving inwardly toward the midsagittal plane of the body while his/her foot is actually moving inwardly toward the midsagittal plane of the body. As another example, during the movement of leg decompression, the patient 46 will think that about the lengthening of his/her hip muscle(s). Thinking in the direction of the movement is recommended for every movement of the automated therapy table 10, except the weight bearing movement of leg approximation.
The patient 46 may alternate movement of each of the lower extremities or the movements may be performed synergistically. Arm movement may also be performed in combination with the leg movements. For example, the patient's 46 arms 56 may be raised above the patient's head 58 and decompressed along the same plane (sagittal plane) as the patient's 46 legs 48. And preferably, the patient 46 will be thinking about stretching his/her arms 56 and legs 48.
All of the movements described herein help to treat myofascial abnormalities. Myofascia is a thin film that wraps around muscle tissue. It wraps around the muscle fibers individually as well as the muscles themselves and also forms the tendons and ligaments which connect the muscles to other parts of the body. A great deal of pain can result when the myofascia of a person becomes tight or thick. Fibromyalgia syndrome (FMS) is an example of a condition wherein the lack of myofascial flexibility is present. When the myofascia loses its elasticity, the efficiency of neurotransmitters, which communicate messages between the brain and the rest of the body, are impaired. Among other symptoms, physical pain usually results from myofascial abnormalities. All of the movements disclosed herein will help to create myofascial release.
This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in structure, dimension, type of material and manufacturing process may be implemented by one of skill in the art in view of this disclosure.
This application claims priority to a corresponding provisional application U.S. Ser. No. 61/187,168, filed Jun. 15, 2009 in the name of the Applicant, which is incorporated herein by reference. This application is also related to U.S. Pat. No. 6,821,288, which was issued on Nov. 23, 2004 in the name of the Applicant and which is also incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5050589 | Engle | Sep 1991 | A |
5207216 | Sweeny | May 1993 | A |
5376060 | Murray | Dec 1994 | A |
6692451 | Splane, Jr. | Feb 2004 | B2 |
6821288 | Schaeffer | Nov 2004 | B2 |
20050256538 | Cuccia | Nov 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20100313897 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
61187168 | Jun 2009 | US |