The present invention generally relates to a computer and Internet based system for automated time and project management using a budgeting method for allocating time.
Traditional time and project management systems work to fill time up by manually adding and readjusting all the added tasks. Several problems arise from this methodology: the user must manually calculate how to best use their time, which is a time consuming and error prone process. The user must continuously readjust their schedule due to new tasks being constantly added and increased multitasking in the work force. As more tasks are added the complexity of scheduling becomes exponentially difficult.
Project management in some cases works to ensure that tasks stay on schedule. However, the resources that should be constantly monitored are often neglected. The previous systems assume that everything will work out as planned, but more and more often this is not the case. The digital age has increased the speed at which tasks change, requiring multitasking and flexibility that wasn't previously needed.
Gantt charts and to-do lists historically have solved most time management processes, however the digital age has increased the amount of change and multitasking. Tasks can trickle down from management in a matter of minutes with email and other forms of digital communication. More and more the modern day digital worker must shuffle tasks constantly to meet deadlines, and handle the dynamic nature of workflow.
The Gantt chart approach is difficult as more and more tasks become very small in time. Traditionally there were many tasks that spanned a long period of time, several months to several years. However today more and more tasks can be completed very rapidly due mainly to new software and computing power. Instead of having only a few projects, today many workers are inundated with hundreds of tasks per year, from more sources than in the past. The worker must continuously determine which of many tasks should be worked on today. Often, interruptions occur or new tasks are added. In the workflow process, tasks often get bottlenecked by other workers. The modern day worker needs to be able to calculate which is the next best action, now more than ever. What is needed is an integrated time and project management system that will dynamically update and accommodate flexibility.
The integration of traditional time management and project management leaves the modern worker overwhelmed to know which tasks should be done right now. A better system for allocating time resources is in high demand.
The above mentioned problems can be solved by creating an automated time management process that works by budgeting time similar to budgeting money, the system can then intelligently maximize how the user uses their time.
The automated time budgeting approach offers many advantages to traditional time and project management systems. The goal of the invention is to integrate time and project management systems by use of an automated budgeting approach that is simple and easy to use, providing maximum flexibility to the user and highest and best production output from the user. The Internet, computers and other portable electronic devices are the ideal input and output devices to track the users schedule.
First the user determines the resources available and has the ability to change the number of hours available. Exceptions to time availability can be accommodated, i.e. days off, and time available per day. The user can then schedule tasks. Tasks are categorized into fixed and variable tasks. Fixed tasks are tasks that have to be done in a certain block of time, for instance a meeting. Another type of fixed tasks includes tasks that have to be done at a certain time for a process that is in place. The third type of fixed task is a task that is done repetitively to develop a skill.
All fixed tasks are subtracted from the time available in the amount of time allocated to a given day. The remaining time is then available for variable tasks. Variable tasks are tasks that have a due date, an estimated time required, are created for a certain client or project, and potentially have dependencies on other tasks that must be finished before or after the given task. Variable tasks should ideally be spread between a few days to a few weeks depending on the size of the task.
The tool analyzes the variable tasks every time the schedule changes by using an algorithm to calculate which tasks should be done today and lays out a plan for future tasks. The algorithm is a powerful component in the automated time budgeting process because it adjusts for all new tasks, completed tasks, and omitted tasks, continuously adapting to all changes and providing maximum flexibility for all users.
Tasks that need to be delegated to others can easily be sent by communication devices and accepted by users using the same tool.
After adding a task 16, if the task is being directly entered by the user 22, it goes into the task bin 21 directly. If the user is receiving a task 16 from another user they may choose whether they will accept the task 17. If they accept the task 19 it is added to their task bin 21. If they choose not to accept the task 18 a rejection notice 20 is sent to the user who sent the task 14 and the task never enters the user's task bin 21.
Adding a task as shown in
When the schedule is finished and presented to the user, they have the opportunity to update the schedule 10, wherein they can enter work they have completed 11, thus updating the remaining time estimated for a task. If the task is not yet entirely complete, it returns to the task bin 3 to be rescheduled with its new time estimate. If the task is finished, it can optionally become part of a feedback loop 12 whereby the user can receive feedback, reporting, and other data that can help the user measure and improve their use of time. The user also has the opportunity to manage tasks 13 in their schedule, updating any of the data entered when adding the task 2, or delegating it to another user by sending the task to them, where upon the receiving user would be given the opportunity to accept or reject the delegated task. This may be particularly useful for teams where team members or managers may assign tasks to other team members.