Low urinary output in those with congestive heart failure (“CHF”) can be a symptom of low cardiac output. It can be difficult to non-invasively measure urinary output in those with CHF as they are often ambulatory, and most automated urinary output measuring devices are invasive and engineered for the intensive care unit and non-ambulatory patients. It would be beneficial to CHF patients and clinicians to be able to measure urinary output accurately and automatically in ambulatory CHF patients.
Disclosed herein are automated urinary output (“UO”)-measuring systems and methods that address the foregoing.
Disclosed herein is an automated UO-measuring system including a container configured to collect fluid, the container having a console, one or more ultrasonic sensors coupled to the console, one or more accelerometers coupled to the console, and a valve configured to pass fluid therethrough. The system also includes a fluid line coupled to the valve and a container holder. The container holder has a sleeve configured to be secured to a user and a pocket configured to securely hold the container.
In some embodiments, the console, the one-or-more ultrasonic sensors, the one-or-more accelerometers, and the valve are organized into a panel.
In some embodiments, the panel divides the container into a proximal section or a distal section.
In some embodiments, the panel is located at a proximal end or a distal end of the container.
In some embodiments, the panel includes a pump configured to create a low-pressure environment inside the container.
In some embodiments, the console includes one of more processors, a non-transitory storage medium, an energy source and one or more logic modules.
In some embodiments, the one-or-more logic modules are configured to receive accelerometer values from the one-or-more accelerometers, determine an acceleration state of the container, activate the one-or-more ultrasonic sensors, receive ultrasonic sensor values from the one-or-more ultrasonic sensors, correlate the ultrasonic sensor values with a volume-of-voided-urine value within the container and a time-of-day value for a correlation, determine a volume of urine using the ultrasonic sensor values, activate a pump to create and maintain a low-pressure environment inside the container, transmit the correlation to a computing device, or a combination thereof.
In some embodiments, the one-or-more logic modules are configured to activate the one-or-more ultrasonic sensors occurs when the acceleration state of the container is below a threshold.
In some embodiments, the container holder is configured to be detachably secured to the user.
In some embodiments, the sleeve includes two or more arms configured to wrap around an appendage of the user.
In some embodiments, the two-or-more arms are organized into a first pair of fastening arms and a first pair of securing arms.
In some embodiments, the container holder is secured to the appendage of the user by hook-and-loop fasteners or magnets.
In some embodiments, the sleeve includes a compression sock configured to be slidably secured to an appendage of the user.
In some embodiments, the container includes a rigid container.
Also disclosed herein is a method of automatically measuring urine output including capturing a volume of voided urine from a user, in a container using a fluid line, the container being coupled to the user, distal a bladder of the user, the container having a valve configured to pass fluid therethrough and a console coupled to one or more ultrasonic sensors and one or more accelerometers. The method also includes detecting an acceleration state of the container, measuring the volume of voided urine over time in the container, correlating the measured volume of voided urine with a volume value and a time-of-day value, and transmitting the volume value and the time-of-day value to a computing device.
In some embodiments, capturing the volume of voided urine from the user includes maintaining a low-pressure environment in the container with a pump of the container.
In some embodiments, detecting the acceleration state of the container includes using the one-or-more accelerometers to detect the acceleration state of the container.
In some embodiments, measuring the volume of voided urine over time in the container includes measuring the volume when the acceleration state of the container is zero.
In some embodiments, measuring the volume of voided urine over time in the container includes using the one-or-more ultrasonic sensors to measure the volume of voided urine over time.
In some embodiments, measuring the volume of voided urine over time in the container includes both measuring and recording at evenly spaced time intervals.
In some embodiments, the time intervals are user-defined.
In some embodiments, transmitting the volume value and the time-of-day value to the computing device includes wirelessly transmitting the volume value and the time-of-day value to the computing device.
These and other features of the concepts provided herein will become more apparent to those of skill in the art in view of the accompanying drawings and following description, which describe particular embodiments of such concepts in greater detail.
A more particular description of the automated UO-measuring systems and methods will be rendered by reference to specific embodiments thereof that are illustrated in the drawings. It is appreciated that these drawings depict only some embodiments of the foregoing and are, therefore, not to be considered limiting to the scope of the concepts provided herein. Example embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.
Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
With respect to “proximal,” a “proximal portion” or a “proximal-end portion” of, for example, a container disclosed herein includes a portion of the container intended to be near a clinician when the container is used on a user. Likewise, a “proximal length” of, for example, the container includes a length of the container intended to be near the clinician when the container is used on the user. A “proximal end” of, for example, the container includes an end of the container intended to be near the clinician when the container is used on the user. The proximal portion, the proximal-end portion, or the proximal length of the container can include the proximal end of the container; however, the proximal portion, the proximal-end portion, or the proximal length of the container need not include the proximal end of the container. That is, unless context suggests otherwise, the proximal portion, the proximal-end portion, or the proximal length of the container is not a terminal portion or terminal length of the container.
With respect to “distal,” a “distal portion” or a “distal-end portion” of, for example, a container disclosed herein includes a portion of the container intended to be near or in a user when the container is used on the user. Likewise, a “distal length” of, for example, the container includes a length of the container intended to be near or in the user when the container is used on the user. A “distal end” of, for example, the container includes an end of the container intended to be near or in the user when the container is used on the user. The distal portion, the distal-end portion, or the distal length of the container can include the distal end of the container; however, the distal portion, the distal-end portion, or the distal length of the container need not include the distal end of the container. That is, unless context suggests otherwise, the distal portion, the distal-end portion, or the distal length of the container is not a terminal portion or terminal length of the container.
Alternatively, logic can be software, such as executable code in the form of an executable application, an Application Programming Interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. The software can be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium can include, but are not limited or restricted to a programmable circuit; semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); or persistent storage such as non-volatile memory (e.g., read-only memory “ROM,” power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code can be stored in persistent storage.
The term “computing device” should be construed as electronics with the data processing capability and/or a capability of connecting to any type of network, such as a public network (e.g., Internet), a private network (e.g., a wireless data telecommunication network, a local area network “LAN,” etc.), or a combination of networks. Examples of a computing device can include, but are not limited or restricted to, the following: a server, an endpoint device (e.g., a laptop, a smartphone, a tablet, a “wearable” device such as a smart watch, augmented or virtual reality viewer, or the like, a desktop computer, a netbook, a medical device, or any general-purpose or special-purpose, user-controlled electronic device), a mainframe, internet server, a router; or the like.
A “message” generally refers to information transmitted in one or more electrical signals that collectively represent electrically stored data in a prescribed format. Each message can be in the form of one or more packets, frames, HTTP-based transmissions, or any other series of bits having the prescribed format.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.
In some embodiments, the container 110 includes a valve 126 on a proximal end 112 of the container 110. In some embodiments, the valve 126 can include a directional valve, a check valve, umbrella valve, flapper valve or the like. In some embodiments, the valve 126 can be configured to be removed, to dispose of the volume of voided urine in the container 110. In some embodiments, a fluid line 156 from the user configured to transport voided urine therein, can be distally coupled to the valve 126 of the container 110. In some embodiments, the fluid line 156 can include a hollow tubing constructing of a clear plastic polymer such as polycarbonate, polyethylene terephthalate, polystyrene, urethane, nylon or the like. In some embodiments, the fluid line 156 can be coupled to a urine collection device, wherein the urine collection device is configured to capture a volume of voided urine from the user's bladder 154 and the fluid line 156 is configured to channel the urine to the container 110 through the valve 126. The container 110 is configured to be secured to a user, distal of the user's bladder 154 in order to allow fluid flow to the container 110 through passive gravity flow. For example, in some embodiments, the container 110 can be secured to a thigh, a calf or an ankle.
In some embodiments, the panel 120 can be configured to divide the container 110 into a proximal section 111 and a distal section 113. The container 110 can be configured to detachably separate at the panel 120, into the proximal section 111 and the distal section 113, and can be configured to be rejoined into one piece through a press fit, a snap fit, an interference fit or the like. In some embodiments, the container 110 can be configured to detachably separate to dispose of the volume of voided urine. In some embodiments, the panel 120 can be secured within the proximal section 111. In some embodiments, the fluid line 156 can be detached from the valve 126 to dispose of the volume of voided urine through the valve 126.
In some embodiments, the volume determination logic 144 can be configured to determine the volume of voided urine contained within the container 110 by correlating the measured time value of the reflected ultrasonic wave with a volume value corresponding to the volume of voided urine within the container 110. In some embodiments, the volume determination logic 144 can be further configured to associate a time-of-day value with each the volume value at the time of day the volume value was determined. In some embodiments, the volume determination logic 144 can be configured to generate an associated pairing of the {time-of-day value, volume value}. In some embodiments, the volume determination logic 144 can be configured to associate other parameters with the associated pairing in an associated trio, an associated quartet, an associated quintet, and an associated sextet or the like. For example, the volume determination logic 144 can associate a device-operating-condition value, a voided number in a user-defined timer-period value, a device-status value or the like. In some embodiments, the pump control logic 146 can be configured to activate the pump 128 to create the low-pressure environment within the container 110. In some embodiments, the pump control logic 146 can be configured to activate the pump 128 to maintain the low-pressure environment within the container 110. In an embodiment, the pump 128 includes the pressure sensor configured to detect the pressure within the container 110 and acquire pressure readings within the container 110. In this embodiment, the pressure sensor can transmit the pressure readings to the console 130 and the pump control logic 146 can be configured to activate the pump 128 to maintain a consistent low-pressure environment within the container 110. In some embodiments, a low-pressure environment within the container 110 can be configured to help draw fluid into the container 110.
The ultrasonic-sensor data store 150 can be configured to store the volume values, the measured time values from the one-or-more ultrasonic sensors 124, the time-of-day values, the device-status value, the device-operating-condition value, the voided number in the user-defined time-period value or a combination thereof. In some embodiments, the ultrasonic-sensor data store 150 can store the volume values and time-of-day values as the associated pairings of {time-of-day value, volume value}. In some embodiments, the communications logic 148 can be configured to transmit each associated pairing of {time-of-day value, volume value} to a computing device, an electronic medical record (“EMR”) system or the like. The communications logic 148 can be configured to wirelessly transmit the associated pairings of {time-of-day value, volume value} to the computing device. Wireless communication modalities can include Wi-Fi, Bluetooth®, Near Field Communications (NFC), cellular Global System for Mobile Communication (“GSM”), electromagnetic (EM), radio frequency (RF), combinations thereof, or the like.
In some embodiments, the one-or-more accelerometers 122 can be configured to detect acceleration of the container 110 at regular timed intervals (e.g., every five minutes, every hour, every 30 seconds, or the like). In some embodiments, the one-or-more accelerometers 122 can be configured to detect acceleration of the container 110 at user-defined intervals. The automated UO-measuring system 100 can be configured to take a volume value every time the accelerometer value is below the near-zero threshold accelerometer value. In some embodiments, the automated UO-measuring system 100 can be configured to take a volume value when two consecutive accelerometer values are below the near-zero threshold accelerometer value. In some embodiments, the automated UO-measuring system 100 can be configured to take a volume value at either regular timed intervals or the user-defined intervals. In an embodiment, the user can define how many volume values the console 130 generates in a specific time period. For example, the user can desire 8 volume values in 8 hours and the automated UO-measuring system 100 can be configured to detect 1 volume value per hour or the automated UO-measuring system 100 can be configured to continually detect the acceleration state of the container 110 until 1 volume value is obtained within the hour time block.
In an embodiment, the one-or-more accelerometers 122 can be configured to detect accelerometer values of the container 110 at a regular timed interval of once every one hour. In this embodiment, if the one-or-more accelerometers 122 do detect accelerometer values of the container 110 greater than the near-zero threshold accelerometer value during the hour, the one-or-more accelerometers 122 can be configured to either wait until the next hour to detect accelerometer values of the container 110 or can wait a certain amount of time (e.g. 5 minutes) to commence detecting accelerometer values of the container 110.
In some embodiments, the console 130 can be configured to notify the user when the volume value of the volume of voided urine within the container 110 is approaching the maximum allowable volume within the container 110. In some embodiments, the maximum allowable volume can be the maximum allowable volume contained within the container 110 or can be the maximum volume of voided urine the container 110 can hold before the volume of voided urine expands into the proximal section 111 of the container 110. The console 130 can wirelessly send the information to the computing device to notify the user through visual or an audible signal.
As illustrated in
In an embodiment, the valve 126 can be located at the proximal end 112 of the container 110 and the panel 120 including the one-or-more accelerometers 122 and the one-or-more ultrasonic sensors 124 can be located at the distal end 114 of the container 110. The one-or-more ultrasonic sensors 124 can generate an ultrasonic wave that travels through the volume of voided urine until the wave reaches the urine/air interface 160 where it is reflected back to the one-or-more ultrasonic sensors 124.
In some embodiments, the method 200 includes detecting an acceleration state of the container 110 (block 204). In some embodiments, detecting the acceleration of the container 110 includes using the one-or-more accelerometers 122 to obtain accelerometer values of the container 110. In some embodiments, the accelerometer values are transmitted to the console 130 and to the computing device where the acceleration state of the container 110 can be determined by comparing the accelerometer values with the near-zero threshold accelerometer value. In some embodiments, detecting the acceleration state of the container 110 includes detecting accelerometer values at regular time intervals, user-defined intervals or continuously detecting accelerometer values.
In some embodiments, the method 200 further includes measuring the volume of voided urine over time in the container 110 (block 206). In some embodiments, measuring the volume of voided urine over time includes measuring the volume of voided urine when the acceleration state of the container 110 is below the near-zero threshold accelerometer value. In some embodiments, measuring the volume of voided urine over time in the container 110 includes generating one or more ultrasonic waves by the one-or-more ultrasonic sensors 124 that travel through the air in the container 110 until the ultrasonic waves reach the air/urine interface 160. Once reaching the air/water interface 160, the ultrasonic waves are reflected back towards the one-or-more ultrasonic sensors 124. In some embodiments, the one-or-more ultrasonic sensors 124 can generate one or more ultrasonic waves that travel through the urine in the container 110 until the ultrasonic waves reach the urine/air interface 160 where they are reflected back through the urine to the one-or-more ultrasonic sensors 124. The time from generation of the ultrasonic wave to receiving the reflected ultrasonic wave can be measured and transmitted to the console 130.
In some embodiments, the method 200 includes correlating the measured volume of voided urine with a volume value and a time-of-day value (block 208). In some embodiments, correlating the measured volume of voided urine with a volume value includes the console 130 correlating the measured time with the volume value, corresponding to the volume of voided urine within the container 110. In some embodiments, correlating the measured volume of voided urine with a volume value and a time-of-day value includes the console 130 and the computing device correlating the volume value with the time-of-day value. In some embodiments, correlating the measured volume of voided urine with a volume value and a time-of-day value includes generating an associated pairing of {time-of-day value, volume value}. In some embodiments, measuring the volume of voided urine over time includes measuring the volume of voided urine at automatically defined or user-defined time intervals.
In some embodiments, the method 200 includes transmitting the volume value and time-of-day value to a computing device (block 210). In some embodiments, transmitting the volume value and time-of-day value to the computing device includes transmitting the associated pairings of {time-of-day value, volume value}. In some embodiments, transmitting the volume value and time-of-day value to the computing device includes transmitting an associated trio of {device-operating-condition value, time-of-day value, volume value}. In some embodiments, transmitting the volume value and time-of-day value to the computing device includes wirelessly transmitting from the console 130 to the computing device. Wireless communication modalities can include Wi-Fi, Bluetooth®, Near Field Communications (NFC), cellular Global System for Mobile Communication (“GSM”), electromagnetic (EM), radio frequency (RF), combinations thereof, or the like. In some embodiments, transmitting the volume value and time-of-day value to the computing device includes transmitting the volume value and time-of-day value as each is measured or determined. In some embodiments, transmitting the volume value and time-of-day value to a computing device includes transmitting the associated volume value and time-of-day value pairing at the end of a user-defined time interval. In some embodiments, transmitting the associated volume value and time-of-day value pairing at includes transmitting the associated trio of {device-operating-condition value, time-of-day value, volume value} at the end of the user-defined time interval. In some embodiments, transmitting the volume value and the time-of-day value to the computing device includes transmitting the volume value and time-of-day value before the volume of voided urine is disposed out of the container 110.
While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications might appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures can be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.
This application claims the benefit of priority to U.S. Provisional Patent Application No. 63/128,558, filed Dec. 21, 2020, which is incorporated by reference in its entirety into this application.
Number | Name | Date | Kind |
---|---|---|---|
3661143 | Henkin | May 1972 | A |
3781920 | Browne et al. | Jan 1974 | A |
3851650 | Darling | Dec 1974 | A |
3919455 | Sigdell et al. | Nov 1975 | A |
4276889 | Kuntz et al. | Jul 1981 | A |
4286590 | Murase | Sep 1981 | A |
4291692 | Bowman et al. | Sep 1981 | A |
4296749 | Pontifex | Oct 1981 | A |
4305405 | Meisch | Dec 1981 | A |
4312352 | Meisch et al. | Jan 1982 | A |
4343316 | Jespersen | Aug 1982 | A |
4443219 | Meisch et al. | Apr 1984 | A |
4448207 | Parrish | May 1984 | A |
4509366 | Matsushita et al. | Apr 1985 | A |
4532936 | LeVeen et al. | Aug 1985 | A |
4658834 | Blankenship et al. | Apr 1987 | A |
4712567 | Gille et al. | Dec 1987 | A |
4723950 | Lee | Feb 1988 | A |
4834706 | Beck et al. | May 1989 | A |
4850375 | Rosenberg | Jul 1989 | A |
4889532 | Metz et al. | Dec 1989 | A |
5002541 | Conkling et al. | Mar 1991 | A |
5146637 | Bressler et al. | Sep 1992 | A |
5409014 | Napoli et al. | Apr 1995 | A |
5586085 | Lichte | Dec 1996 | A |
5725515 | Propp | Mar 1998 | A |
5733319 | Neilson et al. | Mar 1998 | A |
5738656 | Wagner | Apr 1998 | A |
5747824 | Jung et al. | May 1998 | A |
5769087 | Westphal et al. | Jun 1998 | A |
5807278 | McRae | Sep 1998 | A |
5823972 | McRae | Oct 1998 | A |
5891051 | Han et al. | Apr 1999 | A |
5911786 | Nielsen et al. | Jun 1999 | A |
6129684 | Sippel et al. | Oct 2000 | A |
6132407 | Genese et al. | Oct 2000 | A |
6250152 | Klein et al. | Jun 2001 | B1 |
6256532 | Cha | Jul 2001 | B1 |
6261254 | Baron et al. | Jul 2001 | B1 |
6434418 | Neal et al. | Aug 2002 | B1 |
6579247 | Abramovitch et al. | Jun 2003 | B1 |
6592612 | Samson et al. | Jul 2003 | B1 |
6709420 | Lincoln et al. | Mar 2004 | B1 |
6716200 | Bracken et al. | Apr 2004 | B2 |
7011634 | Paasch et al. | Mar 2006 | B2 |
7161484 | Tsoukalis | Jan 2007 | B2 |
7211037 | Briggs et al. | May 2007 | B2 |
7437945 | Feller | Oct 2008 | B1 |
7442754 | Tepper et al. | Oct 2008 | B2 |
7739907 | Boiarski | Jun 2010 | B2 |
7871385 | Levinson | Jan 2011 | B2 |
7931630 | Nishtala et al. | Apr 2011 | B2 |
7976533 | Larsson | Jul 2011 | B2 |
7998126 | Fernandez | Aug 2011 | B1 |
8295933 | Gerber et al. | Oct 2012 | B2 |
8328733 | Forte et al. | Dec 2012 | B2 |
8328734 | Salvadori et al. | Dec 2012 | B2 |
8337476 | Greenwald et al. | Dec 2012 | B2 |
8374688 | Libbus et al. | Feb 2013 | B2 |
8403884 | Nishtala | Mar 2013 | B2 |
8471231 | Paz | Jun 2013 | B2 |
8663128 | Paz et al. | Mar 2014 | B2 |
8773259 | Judy et al. | Jul 2014 | B2 |
8790277 | Elliott et al. | Jul 2014 | B2 |
8790320 | Christensen | Jul 2014 | B2 |
8790577 | Mizumoto et al. | Jul 2014 | B2 |
8813551 | Boiarski | Aug 2014 | B2 |
8827924 | Paz et al. | Sep 2014 | B2 |
8832558 | Cardarelli et al. | Sep 2014 | B2 |
8900196 | Andino | Dec 2014 | B2 |
9045887 | O'Malley | Jun 2015 | B2 |
9050046 | Elliott et al. | Jun 2015 | B2 |
9074920 | Mendels et al. | Jul 2015 | B2 |
9216242 | Nishtala et al. | Dec 2015 | B2 |
9480821 | Ciccone et al. | Nov 2016 | B2 |
9592034 | Hall et al. | Mar 2017 | B2 |
9642987 | Bierman et al. | May 2017 | B2 |
9731097 | Andino et al. | Aug 2017 | B2 |
9895095 | Chen | Feb 2018 | B2 |
9962516 | Lampotang et al. | May 2018 | B2 |
10182747 | Charlez et al. | Jan 2019 | B2 |
10245008 | Paige | Apr 2019 | B2 |
10362981 | Paz et al. | Jul 2019 | B2 |
10383606 | McCord et al. | Aug 2019 | B1 |
10448875 | Holt et al. | Oct 2019 | B2 |
10799386 | Harrison, Sr. | Oct 2020 | B1 |
10881778 | Scarpaci et al. | Jan 2021 | B2 |
11540760 | Guillemette | Jan 2023 | B1 |
11703365 | Tourchak et al. | Jul 2023 | B2 |
20010056226 | Zodnik et al. | Dec 2001 | A1 |
20020016719 | Nemeth et al. | Feb 2002 | A1 |
20020161314 | Sarajarvi | Oct 2002 | A1 |
20020193760 | Thompson | Dec 2002 | A1 |
20030000303 | Livingston et al. | Jan 2003 | A1 |
20030163183 | Carson | Aug 2003 | A1 |
20030163287 | Vock et al. | Aug 2003 | A1 |
20040267086 | Anstadt et al. | Dec 2004 | A1 |
20050020958 | Paolini et al. | Jan 2005 | A1 |
20050065583 | Voorhees et al. | Mar 2005 | A1 |
20050172712 | Nyce | Aug 2005 | A1 |
20050247121 | Pelster | Nov 2005 | A1 |
20060065713 | Kingery | Mar 2006 | A1 |
20060100743 | Townsend et al. | May 2006 | A1 |
20060253091 | Vernon | Nov 2006 | A1 |
20070010797 | Nishtala et al. | Jan 2007 | A1 |
20070106177 | Hama | May 2007 | A1 |
20070145137 | Mrowiec | Jun 2007 | A1 |
20070225668 | Otto | Sep 2007 | A1 |
20070252714 | Rondoni et al. | Nov 2007 | A1 |
20080217391 | Roof et al. | Sep 2008 | A1 |
20080312550 | Nishtala et al. | Dec 2008 | A1 |
20080312556 | Dijkman | Dec 2008 | A1 |
20090056020 | Caminade et al. | Mar 2009 | A1 |
20090099629 | Carson et al. | Apr 2009 | A1 |
20090157430 | Rule et al. | Jun 2009 | A1 |
20090287170 | Otto | Nov 2009 | A1 |
20090315684 | Sacco et al. | Dec 2009 | A1 |
20100064426 | Chikara Imamura | Mar 2010 | A1 |
20100094204 | Nishtala | Apr 2010 | A1 |
20100130949 | Garcia | May 2010 | A1 |
20100137743 | Nishtala et al. | Jun 2010 | A1 |
20110113540 | Plate et al. | May 2011 | A1 |
20110120219 | Barlesi et al. | May 2011 | A1 |
20110178425 | Nishtala et al. | Jul 2011 | A1 |
20110224636 | Keisic | Sep 2011 | A1 |
20110230824 | Salinas et al. | Sep 2011 | A1 |
20110238042 | Davis et al. | Sep 2011 | A1 |
20110251572 | Nishtala et al. | Oct 2011 | A1 |
20110263952 | Bergman et al. | Oct 2011 | A1 |
20120029408 | Beaudin | Feb 2012 | A1 |
20120035496 | Denison et al. | Feb 2012 | A1 |
20120059286 | Hastings et al. | Mar 2012 | A1 |
20120078137 | Mendels et al. | Mar 2012 | A1 |
20120078235 | Martin et al. | Mar 2012 | A1 |
20120095304 | Biondi | Apr 2012 | A1 |
20120109008 | Charlez et al. | May 2012 | A1 |
20120118650 | Gill | May 2012 | A1 |
20120123233 | Cohen | May 2012 | A1 |
20120127103 | Qualey et al. | May 2012 | A1 |
20120226196 | DiMino et al. | Sep 2012 | A1 |
20120234434 | Woodruff et al. | Sep 2012 | A1 |
20120302917 | Fitzgerald et al. | Nov 2012 | A1 |
20120323144 | Coston et al. | Dec 2012 | A1 |
20120323502 | Tanoura et al. | Dec 2012 | A1 |
20130066166 | Burnett et al. | Mar 2013 | A1 |
20130109927 | Menzel | May 2013 | A1 |
20130109928 | Menzel | May 2013 | A1 |
20130131610 | Dewaele et al. | May 2013 | A1 |
20130218106 | Coston et al. | Aug 2013 | A1 |
20130245498 | Delaney et al. | Sep 2013 | A1 |
20130267871 | Delaney et al. | Oct 2013 | A1 |
20140039348 | Bullington et al. | Feb 2014 | A1 |
20140155781 | Bullington et al. | Jun 2014 | A1 |
20140155782 | Bullington et al. | Jun 2014 | A1 |
20140159921 | Qualey et al. | Jun 2014 | A1 |
20140187666 | Aizenberg et al. | Jul 2014 | A1 |
20140207085 | Brandt et al. | Jul 2014 | A1 |
20140243635 | Arefieg | Aug 2014 | A1 |
20140335490 | Baarman et al. | Nov 2014 | A1 |
20150120321 | David et al. | Apr 2015 | A1 |
20150233749 | Wang et al. | Aug 2015 | A1 |
20150342576 | Hall et al. | Dec 2015 | A1 |
20150343173 | Tobescu et al. | Dec 2015 | A1 |
20150359522 | Recht et al. | Dec 2015 | A1 |
20150362351 | Joshi et al. | Dec 2015 | A1 |
20160051176 | Ramos et al. | Feb 2016 | A1 |
20160183819 | Burnett et al. | Jun 2016 | A1 |
20170035342 | Elia et al. | Feb 2017 | A1 |
20170043089 | Handler | Feb 2017 | A1 |
20170100068 | Kostov | Apr 2017 | A1 |
20170113000 | Tobescu et al. | Apr 2017 | A1 |
20170136209 | Burnett | May 2017 | A1 |
20170140103 | Angelides | May 2017 | A1 |
20170196478 | Hunter | Jul 2017 | A1 |
20170202698 | Zani et al. | Jul 2017 | A1 |
20170249445 | Devries et al. | Aug 2017 | A1 |
20170290540 | Franco | Oct 2017 | A1 |
20170291012 | Iglesias | Oct 2017 | A1 |
20170307423 | Pahwa et al. | Oct 2017 | A1 |
20170322197 | Hall et al. | Nov 2017 | A1 |
20180015251 | Lampotang et al. | Jan 2018 | A1 |
20180110456 | Cooper et al. | Apr 2018 | A1 |
20180160961 | Gopinathan et al. | Jun 2018 | A1 |
20180214122 | Ansell et al. | Aug 2018 | A1 |
20180214297 | Hughett et al. | Aug 2018 | A1 |
20180245967 | Parker et al. | Aug 2018 | A1 |
20180280236 | Ludin et al. | Oct 2018 | A1 |
20180317891 | Kim | Nov 2018 | A1 |
20180344234 | McKinney et al. | Dec 2018 | A1 |
20190006047 | Gorek et al. | Jan 2019 | A1 |
20190017535 | Ormsbee et al. | Jan 2019 | A1 |
20190046102 | Kushnir et al. | Feb 2019 | A1 |
20190069829 | Bulut | Mar 2019 | A1 |
20190069830 | Holt et al. | Mar 2019 | A1 |
20190126006 | Rehm et al. | May 2019 | A1 |
20190150821 | Waters et al. | May 2019 | A1 |
20190167144 | Jung et al. | Jun 2019 | A1 |
20190201596 | Luxon et al. | Jul 2019 | A1 |
20190223844 | Aboagye et al. | Jul 2019 | A1 |
20190247236 | Sides et al. | Aug 2019 | A1 |
20190254582 | Wei et al. | Aug 2019 | A1 |
20190321588 | Burnett et al. | Oct 2019 | A1 |
20190328945 | Analytis et al. | Oct 2019 | A1 |
20190358387 | Elbadry et al. | Nov 2019 | A1 |
20190365308 | Laing et al. | Dec 2019 | A1 |
20190381223 | Culbert et al. | Dec 2019 | A1 |
20200022637 | Kurzrock et al. | Jan 2020 | A1 |
20200064172 | Tabaczewski et al. | Feb 2020 | A1 |
20200085378 | Burnett et al. | Mar 2020 | A1 |
20200187863 | Tu et al. | Jun 2020 | A1 |
20200268302 | Oh | Aug 2020 | A1 |
20200268303 | Oliva | Aug 2020 | A1 |
20200289749 | Odashima et al. | Sep 2020 | A1 |
20200405524 | Gill | Dec 2020 | A1 |
20210054610 | Hall et al. | Feb 2021 | A1 |
20210077007 | Jouret et al. | Mar 2021 | A1 |
20210100533 | Seres et al. | Apr 2021 | A1 |
20210299353 | Mannu | Sep 2021 | A1 |
20220018692 | Tourchak et al. | Jan 2022 | A1 |
20220026001 | Cheng et al. | Jan 2022 | A1 |
20220026261 | Funnell et al. | Jan 2022 | A1 |
20220079487 | Horiguchi et al. | Mar 2022 | A1 |
20220192564 | Kriscovich et al. | Jun 2022 | A1 |
20220192565 | Cheng et al. | Jun 2022 | A1 |
20220193375 | Rehm et al. | Jun 2022 | A1 |
20220233120 | Beuret | Jul 2022 | A1 |
20220296140 | Nguyen et al. | Sep 2022 | A1 |
20220330867 | Conley et al. | Oct 2022 | A1 |
20220386917 | Mann et al. | Dec 2022 | A1 |
20230019703 | Behzad et al. | Jan 2023 | A1 |
20230022547 | Cho et al. | Jan 2023 | A1 |
20230025333 | Patel et al. | Jan 2023 | A1 |
20230028966 | Franano | Jan 2023 | A1 |
20230035669 | Raja et al. | Feb 2023 | A1 |
20230040915 | Compton et al. | Feb 2023 | A1 |
20230058553 | Fallows et al. | Feb 2023 | A1 |
20230060232 | Patel et al. | Mar 2023 | A1 |
20230084476 | Robichaud et al. | Mar 2023 | A1 |
20240042120 | Cheng et al. | Feb 2024 | A1 |
20240081708 | Kelly et al. | Mar 2024 | A1 |
20240108268 | Woodard et al. | Apr 2024 | A1 |
20240252783 | Waitkus et al. | Aug 2024 | A1 |
20240347162 | Meese et al. | Oct 2024 | A1 |
20240360938 | Cheng et al. | Oct 2024 | A1 |
20240424186 | Justice et al. | Dec 2024 | A1 |
20250090066 | Tourchak | Mar 2025 | A1 |
20250120636 | Compton et al. | Apr 2025 | A1 |
Number | Date | Country |
---|---|---|
2882654 | Oct 2007 | CA |
2445749 | Sep 2001 | CN |
200951235 | Sep 2007 | CN |
201492414 | Jun 2010 | CN |
102647939 | Aug 2012 | CN |
103054559 | May 2015 | CN |
107952140 | Apr 2018 | CN |
109498013 | Mar 2019 | CN |
110859636 | Mar 2020 | CN |
112426156 | Mar 2021 | CN |
0342028 | Nov 1989 | EP |
2760470 | May 2020 | ES |
2437549 | Oct 2007 | GB |
2576743 | Mar 2020 | GB |
S49-75171 | Jul 1974 | JP |
S54-147066 | Nov 1979 | JP |
S58-190719 | Nov 1983 | JP |
S60-219517 | Nov 1985 | JP |
H02-057240 | Dec 1990 | JP |
H08-271301 | Oct 1996 | JP |
H10-104041 | Apr 1998 | JP |
2007-303982 | Nov 2007 | JP |
2008-524618 | Jul 2008 | JP |
2009-068959 | Apr 2009 | JP |
2010-121950 | Jun 2010 | JP |
2010-530978 | Sep 2010 | JP |
2012-105947 | Jun 2012 | JP |
2012-225790 | Nov 2012 | JP |
2018108356 | Jul 2018 | JP |
20070115495 | Dec 2007 | KR |
2013740 | Aug 2016 | NL |
2615727 | Apr 2017 | RU |
1981003427 | Dec 1981 | WO |
2004045410 | Jun 2004 | WO |
2013013782 | Jan 2013 | WO |
20130178742 | Dec 2013 | WO |
2014043650 | Mar 2014 | WO |
2014105755 | Jul 2014 | WO |
2014108690 | Jul 2014 | WO |
2014135856 | Sep 2014 | WO |
2014151068 | Sep 2014 | WO |
2014145971 | Sep 2014 | WO |
201511402 | Jan 2015 | WO |
2015105916 | Jul 2015 | WO |
2015127390 | Aug 2015 | WO |
2015191125 | Dec 2015 | WO |
2016177901 | Nov 2016 | WO |
2017023794 | Feb 2017 | WO |
2018156624 | Aug 2018 | WO |
2019066357 | Apr 2019 | WO |
2019106675 | Jun 2019 | WO |
2019226697 | Nov 2019 | WO |
2020033752 | Feb 2020 | WO |
2020154370 | Jul 2020 | WO |
2022108589 | May 2022 | WO |
2022182794 | Sep 2022 | WO |
2023022895 | Feb 2023 | WO |
2023027871 | Mar 2023 | WO |
2023076067 | May 2023 | WO |
Entry |
---|
“Urocare Reusable Night Drain Bottle—Urinary Collection System” Aug. 13, 2020, HealthProductsForYou.com, <https://www.healthproductsforyou.com/p-urocare-reusable-night-drain-bottle-urinary-collection-system.html> retrieved from Archive.org (Year: 2020). |
English translation of Danilov (RU 2615727 C2) (Year: 2017). |
U.S. Appl. No. 15/748,107, filed Jan. 26, 2018 Notice of Allowance dated Dec. 12, 2022. |
U.S. Appl. No. 17/054,493, filed Nov. 10, 2020 Non-Final Office Action dated Jan. 27, 2023. |
U.S. Appl. No. 17/3026,821, filed May 3, 2021 Non-Final Office Action dated Jan. 10, 2023. |
U.S. Appl. No. 17/373,535, filed Jul. 12, 2021 Non-Final Office Action dated Nov. 9, 2022. |
Bard Medical, Criticore Disposables—Non I.C., 3 pages, www.bardmedical.com/products/patienl-moniloring-,ystems/criticore®-system/criticore®-disposables-non-ic/ Jan. 30, 2015. |
Bard Medical, Criticore Infection Control Disposables, 3 pages, www.bardmedical.com/patienl-monitoring-,ystems/criticore®-system/criticore®-infection-control-disposables/ Jan. 30, 2015. |
Bard Medical, Criticore Monitor, 11 pages, www.bardmedical.com/products/patient-monitoring-systems/criticore®-monitor/ Jan. 30, 2015. |
Bard Medical, Urine Meiers, 3 pages, www.bardmedical.com/producls/urological-drainage/urine-collection/urinemeters/Jan. 30, 2015. |
Biometrix, Urimetrix, 4 pages, www.biometrixmedical.com/Products/56/Urimetrix%E2%84%A2 Oct. 29, 2014. |
Observe Medical, sippi, 3 pages, www.observemedical.com/products.html Oct. 29, 2014. |
PCT/US19/33389 filed May 21, 2019 International Search Report and Written Opinion dated Aug. 2, 2019. |
PCT/US2016/044835 filed Jul. 20, 2016 International Search Report and Written Opinion dated Dec. 16, 2016. |
U.S. Appl. No. 17/054,493, filed Nov. 10, 2020 Final Office Action dated May 31, 2022. |
U.S. Appl. No. 15/748,107, filed Jan. 26, 2018 Final Office Action dated Dec. 23, 2020. |
U.S. Appl. No. 15/748,107, filed Jan. 26, 2018 Final Office Action dated Feb. 7, 2022. |
U.S. Appl. No. 15/748,107, filed Jan. 26, 2018 Non-Final Office Action dated Sep. 3, 2021. |
U.S. Appl. No. 15/748,107, filed Jan. 26, 2018 Non-Final Office Action dated Sep. 4, 2020. |
U.S. Appl. No. 17/054,493, filed Nov. 10, 2020 Non-Final Office Action dated Nov. 24, 2021. |
PCT/US2022/017574 filed Feb. 23, 2022 Internation Search Report and Written Opinion dated Jun. 8, 2022. |
Schlebusch, T. et al., “Bladder volume estimation from electrical impedance tomography” Physiological Measurement Institute of Physics Publishing, Bristol, GB. vol. 35 No. 9 Aug. 20, 2014. (Aug. 20, 2014). |
U.S. Appl. No. 17/306,821, filed May 3, 2021 Final Office Action dated Jul. 19, 2023. |
U.S. Appl. No. 17/556,907, filed Dec. 20, 2021 Non-Final Office Action dated Aug. 17, 2023. |
PCT/US2019/045787 filed Aug. 8, 2019 International Preliminary Report on Patentability dated Feb. 16, 2021. |
PCT/US2019/045787 filed Aug. 8, 2019 International Search Report and Written Opinion dated Oct. 2, 2019. |
DFree Personal—Consumer Product Brochure, 2019. |
DFree Pro Brochure 2019. |
Leonhäuser, D et al., “Evaluation of electrical impedance tomography for determination of urinary bladder volume: comparison with standard ultrasound methods in healthy volunteers.”—BioMed Engr On-line; 17:95; 2018. |
Li, R., et al., “Design of a Noninvasive Bladder Urinary Volume Monitoring System Based on Bio-Impedance.”—Engineering; vol. 5; pp. 321-325; 2013. |
Reichmuth, M., et al., “A Non-invasive Wearable Bioimpedance System to Wirelessly Monitor Bladder Filling.”—Dep. of Health Sciences and Technology—Department of Information Technology and Electrical Engineering ETH Zurich, Zurich, Switzerland—Conference Paper; Mar. 2020. |
SECA product catalog, https://us.secashop.com/products/seca-mbca/seca-mbca-514/5141321139, last accessed Sep. 11, 2020. |
U.S. Appl. No. 17/054,493, filed Nov. 10, 2020 Final Office Action dated Oct. 4, 2023. |
U.S. Appl. No. 17/262,080, filed Jan. 21, 2021 Final Office Action dated Sep. 11, 2023. |
U.S. Appl. No. 17/262,080, filed Jan. 21, 2021 Notice of Allowance dated Oct. 13, 2023. |
U.S. Appl. No. 17/306,821, filed May 3, 2021 Advisory Action dated Oct. 3, 2023. |
U.S. Appl. No. 17/373,546, filed Jul. 12, 2021 Non-Final Office Action dated Nov. 1, 2023. |
EP 23188337.2 filed May 21, 2019 Extended European Search Report dated Dec. 4, 2023. |
PCT/US2019/033389 filed Nov. 26, 2020 Extended European Search Report dated Jun. 4, 2021. |
U.S. Appl. No. 17/054,493, filed Nov. 10, 2020 Notice of Allowance dated Jan. 4, 2024. |
U.S. Appl. No. 17/556,907, filed Dec. 20, 2021 Notice of Allowance dated Dec. 6, 2023. |
PCT/US20/61367 filed Nov. 19, 2020 International Search Report and Written Opinion dated Feb. 22, 2021. |
U.S. Appl. No. 17/262,080, filed Jan. 21, 2021 Non-Final Office Action dated Apr. 6, 2023. |
U.S. Appl. No. 17/373,535, filed Jul. 12, 2021 Notice of Allowance dated Feb. 23, 2023. |
U.S. Appl. No. 17/556,907, filed Dec. 20, 2021 Restriction Requirement dated May 12, 2023. |
EP 20962628.2 filed May 31, 2023 Extended European Search Report dated Apr. 20, 2024. |
PCT/US2022/039191 filed Aug. 2, 2022 International Search Report and Written Opinion dated Dec. 5, 2022. |
PCT/US2022/039746 filed Aug. 8, 2022 International Search Report and Written Opinion dated Nov. 18, 2022. |
U.S. Appl. No. 17/306,821, filed May 3, 2021 Notice of Allowance dated Apr. 23, 2024. |
U.S. Appl. No. 17/373,546, filed Jul. 12, 2021 Notice of Allowance dated Mar. 7, 2024. |
U.S. Appl. No. 17/373,546, filed Jul. 12, 2021 Notice of Allowance dated May 29, 2024. |
U.S. Appl. No. 17/552,250, filed Dec. 15, 2021 Non-Final Office Action dated Sep. 19, 2024. |
PCT/US2022/046920 filed Oct. 17, 2022 International Search Report and Written Opinion dated Feb. 20, 2023. |
U.S. Appl. No. 17/560,079, filed Dec. 22, 2021 Notice of Allowance dated Oct. 29, 2024. |
“Volumetric Flow Rate”, www.vcalc.com/wiki/JeffNolumetric+%28Fluid%29+Flow+Rate, accessed Jan. 9, 2025, created Mar. 8, 2018 (Year: 2018). |
U.S. Appl. No. 17/552,250, filed Dec. 15, 2021 Final Office Action dated Feb. 11, 2025. |
U.S. Appl. No. 17/587,938, filed Jan. 28, 2022 Restriction Requirement dated Jan. 22, 2025. |
U.S. Appl. No. 17/833,682, filed Jun. 6, 2022 Non-Final Office Action dated Jan. 15, 2025. |
U.S. Appl. No. 17/870,698, filed Jul. 21, 2022 Restriction Requirement dated Feb. 12, 2025. |
U.S. Appl. No. 17/879,658, filed Aug. 2, 2022 Non-Final Office Action dated Dec. 30, 2024. |
U.S. Appl. No. 17/893,435, filed Aug. 23, 2022 Non-Final Office Action dated Jan. 17, 2025. |
U.S. Appl. No. 17/552,250, filed Dec. 15, 2021 Advisory Action dated May 8, 2025. |
U.S. Appl. No. 17/552,250, filed Dec. 15, 2021 Notice of Allowance dated May 20, 2025. |
U.S. Appl. No. 17/587,938, filed Jan. 28, 2022 Non-Final Office Action dated May 12, 2025. |
U.S. Appl. No. 17/682,785, filed Feb. 28, 2022 Restriction Requirement dated Apr. 2, 2025. |
U.S. Appl. No. 17/833,682, filed Jun. 6, 2022 Final Office Action dated May 12, 2025. |
U.S. Appl. No. 17/863,223, filed Jul. 12, 2022 Non-Final Office Action dated Apr. 2, 2025. |
U.S. Appl. No. 17/863,923, filed Jul. 13, 2022 Restriction Requirement dated May 21, 2025. |
U.S. Appl. No. 17/870,698, filed Jul. 21, 2022 Non-Final Office Action dated Apr. 9, 2025. |
U.S. Appl. No. 17/873,834, filed Jul. 26, 2022 Non-Final Office Action dated May 19, 2025. |
U.S. Appl. No. 17/879,658, filed Aug. 2, 2022 Final Office Action dated May 14, 2025. |
U.S. Appl. No. 17/883,507, filed Aug. 8, 2022 Restriction Requirement dated May 19, 2025. |
U.S. Appl. No. 18/278,167 filed Aug. 21, 2023 Non-Final Office Action dated Apr. 24, 2025. |
Number | Date | Country | |
---|---|---|---|
20220192566 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
63128558 | Dec 2020 | US |