This disclosure generally relates to a simulated-attribute guidance system, and more particularly relates to a system that operates a host-vehicle in accordance with simulated-attribute provided in a digital-map.
It is known to program an automated vehicle to steer according to lane-markings on a travel-surface such as a roadway or parking lot. However, circumstances have been identified when it would be preferable to have an automated vehicle follow a travel-path that is not consistent with or in accordance with existing lane-markings, or follow a travel-path defined by a local entity when no lane-markings are present or existing lane-markings cannot be detected because, for example, the lane-markings are obscured by snow.
There are a variety of circumstances where highly-dynamic or real-time path planning by a central or local authority for a relatively small controlled area may be beneficial for orderly traffic management. Causes may include, but are not limited to, maps may not be up to date, lane-markings may be obscured, temporary obstacles may be present, complex traffic control may be required, or real-time rerouting of individual vehicles may be necessary, including placing selected vehicles in wait states. Described herein is a simulated-attribute guidance system that overlays simulated lane-markings and/or obstacle information onto guidance information. In one embodiment, the system overlays the simulated lane-markings and/or obstacle information onto camera images of a control area or controlled section of a travel surface. The images may be collected or rendered by sensors (e.g. cameras) of a central control at or associated with the controlled area. The processed images may be received and followed by the automated vehicle systems to drive within the controlled area. The central control (CC) may store previously captured images of the control area (CA) without any vehicles present in the view and use these images as a basis for boundaries of vehicle movement. The CC may maintain real-time traffic information of the current conditions of the CA by using a variety of sensors. The CC may overlay simulated lane-markings on the images of the CA. In one embodiment, the automated vehicle may register with the CC as soon as the automated vehicle enters the CA. The CC may send a starting position to the automated vehicle to start navigating the CA. The CC may then send a simulated environment around the automated vehicle that is overlaid on the image so that the automated vehicle can safely travel through the CA. The simulated lane-markings could include any type of roadway artifacts like stop sign, speed limit signs, and others. These simulated lane-markings may be ingested into the vehicle's system for perspective transformations and graphical processing. The vehicle may build trajectories with its own path planning algorithms. Non-limiting examples of the CA include intersections, parking lots, vehicle pickup areas, and drive through areas. Alternately, the CC could send the trajectories to the vehicles. Guidance information could also be based on a live video feed from the CC with only the host vehicle in it. The overlays would be seen in real-time with the vehicle position relative to the simulated lane-markings.
In accordance with one embodiment, a simulated-attribute guidance system for an automated vehicle is provided. The system includes a location-device, a digital-map, and a controller. The location-device indicates a location of a host-vehicle. The digital-map indicates a position of a simulated-attribute proximate to the location of the host-vehicle. The controller is in communication with the location-device and the digital-map. The controller is configured to operate the host-vehicle in accordance with the simulated-attribute.
Further features and advantages will appear more clearly on a reading of the following detailed description of the preferred embodiment, which is given by way of non-limiting example only and with reference to the accompanying drawings.
The present invention will now be described, by way of example with reference to the accompanying drawings, in which:
The system 10 includes a location-device 20 that indicates a location 22 of the host-vehicle 12. The location-device 20 may be a global-position-system (GPS) receiver that determines the location 22 based on a coordinate (latitude, longitude, elevation) of the host-vehicle 12, which may be based on signals received from satellites, as will be recognized by those in the art.
The system 10 includes a digital-map 24 that indicates a position 28 of a simulated-attribute 26 (see also
The system 10 includes a controller 30 in communication with the location-device 20 and the digital-map 24. The controller 30 may include a processor (not specifically shown) such as a microprocessor or other control circuitry such as analog and/or digital control circuitry including an application specific integrated circuit (ASIC) for processing data as should be evident to those in the art. The controller 30 may include memory (not specifically shown), including non-volatile memory, such as electrically erasable programmable read-only memory (EEPROM) for storing one or more routines, thresholds, and captured data. The one or more routines may be executed by the processor to perform steps for determining a travel-path 32 based on information received by the controller 30 from the digital-map 24.
The system 10 may also include an object-detector 34 that may include or be formed of, but is not limited to, a camera 36, a radar 38, a lidar 40, an ultrasonic-transducer (not shown), or any combination thereof. As will be recognized by those it the art, normally the host-vehicle 12 would be operated (either by the controller 30 when in the automated-mode 14 or by the human-operator when in the manual-mode 16) using vehicle-controls 42 to follow the lane-markings 18 that are detected by the object-detector 34. However, as suggested above and will be explained in more detail below by way of non-limiting examples, the controller 30 is also configured to operate (steer, brake, accelerate) the host-vehicle 12 in accordance with the simulated-attribute 26 when desired. That is, the controller 30 may ignore instances of the lane-markings 18 detected by the object-detector 34. In the case of operation in the manual-mode 16, the human-operator may receive or be informed of the relative positions of the simulated-attribute 26 by way of any number of aforementioned display technologies.
In one non-limiting embodiment of the system 10, the camera 36 renders an image 48 of an area 50 proximate to a host-vehicle 12. The image 48 may be used by the controller 30 to determine where to steer the host-vehicle 12 based on, for example, instances of the lane-markings 18, and/or one or more instances of an other-vehicle 52, and/or one or more instances of a barrier 53, as will be recognized by those in the art. That is, the image 48 may include or consist of only real objects that are actually physically present about the host-vehicle 12. However, if for some reason it is desired that the host-vehicle follow instances of the simulated-attribute 26, either instead of or in addition to instances of the lane-markings 18, the system 10 may include an image-processor 54 configured to overlay or insert the simulated-attribute 26 onto the image 48. By this technique, the controller 30 may then determine where to steer the host-vehicle based on the modified version of the image 48, and thereby operate the host-vehicle 12 in accordance with the simulated-attribute indicated in the image, i.e. operate the host-vehicle in accordance with a modified image.
It is contemplated that in some instances the simulated-attribute 26 may correspond to, i.e. align with, and an actual instance of the lane-marking 18. This may be desirable when the lane-marking 18 is not detectable by the object-detector 34 because, for example, the lane-marking 18 is covered by snow, or the lane-marking 18 has worn away to a degree that makes it difficult to discern. This duplication of the lane-marking 18 by the simulated-attribute 26 may be used to provide a modified version of the image 48 so the controller 30 can operate the host-vehicle 12 while operating in the automated-mode 14, or the human-operator may view the modified version of the image 48 to help with operating the host-vehicle 12 while operating in the manual-mode 16.
It is contemplated that in some instances the simulated-attribute 26 may include pattern-information 27 that conveys additional information regarding the simulated-attribute 26.
By way of additional example, the simulated-attribute 26 may be a traffic-signal 62. Instead of providing sufficient simulated lane-markings for two-way traffic to avoid the keep-out-zone, the simulated instance of the traffic-signal 62 may be provided to control the flow of two-way traffic using a single lane. That is, instead of the simulated-attribute 26 defining two traffic-lanes as shown in
Accordingly, a simulated-attribute guidance system (the system 10), a controller 30 for the system 10, and a method of operating the system 10 are provided. The simulated-attribute 26 provides guidance for operating the host-vehicle 12 by the controller 30 or the human-operator when the lane-marking 18 is not detectable, or is not preferable. Communication of the simulated-attribute to the host-vehicle 12 provides a means by which detours or vehicle specific guidance can be communicated.
While this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
9082239 | Ricci | Jul 2015 | B2 |
9373149 | Abhyanker | Jun 2016 | B2 |
10280054 | High | May 2019 | B2 |
10281920 | Frazzoli | May 2019 | B2 |
20080161986 | Breed | Jul 2008 | A1 |
20080161987 | Breed | Jul 2008 | A1 |
20100100268 | Zhang | Apr 2010 | A1 |
20100253598 | Szczerba | Oct 2010 | A1 |
20100292886 | Szczerba | Nov 2010 | A1 |
20110301813 | Sun et al. | Dec 2011 | A1 |
20150197248 | Breed | Jul 2015 | A1 |
20150339589 | Fisher | Nov 2015 | A1 |
20160357187 | Ansari | Dec 2016 | A1 |
20160357188 | Ansari | Dec 2016 | A1 |
20160357262 | Ansari | Dec 2016 | A1 |
20170225567 | Tsuda | Aug 2017 | A1 |
20180113455 | Iagnemma | Apr 2018 | A1 |
20180113456 | Iagnemma | Apr 2018 | A1 |
20180113457 | Iagnemma | Apr 2018 | A1 |
20180113463 | Iagnemma | Apr 2018 | A1 |
20180113470 | Iagnemma | Apr 2018 | A1 |
20180188046 | Akiva | Jul 2018 | A1 |
20180259967 | Frazzoli | Sep 2018 | A1 |
20180259968 | Frazzoli | Sep 2018 | A1 |
20180373268 | Antunes Marques Esteves | Dec 2018 | A1 |
20190113927 | Englard | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
3 190 022 | Jul 2017 | EP |
Entry |
---|
European Search Report for Application No. 18196088.1, European Patent Office, dated Feb. 4, 2019. |
Number | Date | Country | |
---|---|---|---|
20190094880 A1 | Mar 2019 | US |