When preparing to cut a work piece on a miter saw or table saw, an operator typically measures and marks the work piece, lines up the mark with the work piece placed near the saw blade, and then starts the saw to begin cutting. In this overall process, the cutting step is the one that is the most permanent because it cannot be easily undone if performed incorrectly. A mistake in any of the steps prior to the cutting step usually results in an incorrect cut and/or wasted materials. However, many currently available products that could assist with reducing errors in the cutting process are too expensive for many users, do not leverage wireless communication technology, or do not take full advantage of collecting data from a pre-existing list of materials to be cut (i.e., a cut-list).
Accordingly, enhanced systems, tools, and techniques are needed which can reduce or eliminate operator reliance on the initial steps in the measuring, placement, and cutting process, especially in cases where a predetermined cut-list, specification, or design plan is available. Technology is needed that can leverage wireless data communication (e.g., Bluetooth technology or a similar wireless communication protocol) to relay work piece data and processing information between or among an electronic or non-electronic measurement device (e.g., tape measure), a mobile computing device, and/or one or more wireless-enabled components of work piece processing equipment (e.g., table saw). There is also a need to provide an automated work piece positioning mechanism at an economical cost but without sacrificing adequate precision. In addition, a modular system is needed that is flexible enough to process different kinds of materials, different material dimensions, or other operational parameters which vary as a function of a given work piece, project, or type of equipment.
In various embodiments, enhanced systems, tools, and techniques are provided for automatically preparing and wirelessly communicating with various types of work piece processing equipment for performing different operations on a variety of work pieces.
In one embodiment, a work piece positioning system is provided which comprises a guide rail assembly and a carriage assembly. The guide rail assembly is structured for connection to an item of work piece processing equipment and includes one or more guide rails and a measurement pattern positioned on at least a portion of at least one guide rail. The carriage assembly is structured for slidable engagement with at least a portion of the guide rail of the guide rail assembly. The carriage assembly may include a controller configured for wireless data communication with at least one mobile computing device and a stop block. programmed to receive data communicated from an electronic measurement device. In various embodiments, the controller may be programmed to receive a cut-list including a list of cuts to be made on the work piece processing equipment; to receive data derived from at least one information source associated with at least one dimension of a work piece or at least one attribute of a work piece environment; and/or to receive data associated with captured image data
In certain embodiments, a braking and positioning mechanism of the system may be configured for positioning the stop block in connection with a cutting operation to be performed on a work piece on the item of work piece processing equipment. The braking and positioning mechanism may comprise a coarse-adjust mechanism and a fine-positioning mechanism, wherein the coarse-adjustment mechanism is configured to move the carriage assembly along the guide rail assembly to position the stop block within a predetermined reach of the fine-positioning mechanism. The fine -positioning mechanism can be configured to move the stop block to a predetermined position on the guide rail assembly. In certain embodiments, the coarse-adjustment mechanism can be configured to permit manually sliding the carriage assembly to within a predetermined reach of the fine-positioning mechanism.
In various embodiments, a detection system may be configured to interact with the measurement pattern positioned on the guide rail assembly and to assist with positioning the stop block in a predetermined position on the guide rail assembly. In certain embodiments, the measurement pattern comprises an optical measurement pattern; the detection system comprises an optical detection system; and, the controller is programmed to determine the position of the stop block in response to the interaction of the optical detection system and the optical measurement pattern. In other embodiments, the measurement pattern comprises a metal-shaped pattern; the detection system comprises an inductive sensing detection system having a sensor board programmed to detect an amount of metal in the metal-shaped pattern; and, the controller is programmed to determine the position of the stop block in response to interaction of the detection system and the measurement pattern.
In certain embodiments, the carriage assembly may comprise at least one automatic brake structured to engage the stop block on the guide rail assembly until a desired operation is performed by the work piece processing equipment. The controller may be further programmed to receive data associated with at least one dimension or attribute of a work piece to be processed by the work piece processing equipment and to adjust actuation or movement of the carriage assembly in response to the received data. In certain embodiments, the work piece processing equipment comprises a controller programmed for wireless communication with the controller of the carriage assembly, the mobile computing device, and at least one electronic measuring device. In other embodiments, at least one of the controller of the work piece processing equipment or the controller of the carriage assembly can be programmed for resisting actuation of the work piece processing equipment when an error condition is detected.
In various embodiments of the invention, a work piece positioning system comprises: a guide rail assembly having a series of guide rail segments modularly connectable together within the guide rail assembly, wherein at least one of the connectable guide rail segments has a measurement pattern positioned on a portion thereof; and a carriage assembly structured for slidable engagement with at least a portion of the guide rail of the guide rail assembly. The carriage assembly may include a controller configured for wireless data communication with at least one mobile computing device, and a stop block. In certain embodiments, the series of guide rail segments may be foldable to a length less than an overall length of the series of guide segments when extended. In other embodiments, at least one of the series of guide rail segments is detachable or attachable to at least one of the other guide rail segments. In various embodiments, work stands of different types and configurations can be structured for mounting at least a portion of the guide rail assembly thereon.
In various embodiments, a work piece positioning system can be provided which comprises a guide rail assembly having at least one guide rail, a measurement pattern positioned on at least a portion of at least one guide rail; and a carriage assembly structured for slidable engagement with at least a portion of the guide rail of the guide rail assembly. The carriage assembly may include a controller configured for wireless data communication with at least one mobile computing device, and a stop block. In different embodiments, the controller can be programmed to receive data communicated from an electronic measurement device; to receive a cut-list including a list of cuts to be made on the work piece processing equipment; to receive data derived from at least one information source associated with at least one dimension of a work piece or at least one attribute of a work piece environment; and/or to receive data associated with captured image data.
In certain embodiments, the carriage assembly may comprise at least one automatic brake structured to engage the stop block on the guide rail assembly until a desired operation is performed by the work piece processing equipment. The controller may be further programmed to receive data associated with at least one dimension or attribute of a work piece to be processed by the work piece processing equipment and to adjust actuation or movement of the carriage assembly in response to the received data. In certain embodiments, the work piece processing equipment comprises a controller programmed for wireless communication with the controller of the carriage assembly, the mobile computing device, and at least one electronic measuring device. Also, at least one of the controller of the work piece processing equipment or the controller of the carriage assembly may be programmed for resisting actuation of the work piece processing equipment when an error condition is detected.
In various embodiments, the present invention may be embodied as a system of components, including both hardware and software, and a set of methods and processes employed by a user to cut work pieces with processing equipment (e.g., table saw or miter saw) to a desired size within a determined precision and accuracy. As applied at times herein, the term “AutoSet” may refer to the whole system and/or different components or processes associated with the system, such as components that are mechanically fixed to a cutting device or saw.
Wireless data communication may be facilitated by connection through a cloud computing platform 112, for example, or another suitable data communication medium. In operation, the mobile computing device 104 may be programmed with a work piece processing application 104A (e.g., software application) configured to receive and process data communicated from an electronic measurement device (e.g., tape measure 114 or laser distance meter 118) used to measure one or more physical dimensions or other attributes of a work piece environment 116. Such dimensions may include aspects of a work piece itself (e.g., length or width of stock material) and/or aspects of the environment 116 (e.g., a distance between a door and a wall of a house) in which the work piece will be employed. The measurement device may comprise a linear or volumetric distance measuring device with a wireless radio transmitter; including, for example, tape measures, laser distance meters, two-dimensional or three -dimensional LiDAR devices, stereo or monocular computer vision-based measuring devices or methods, or ultrasonic distance meters, among others. In certain embodiments, the mobile computing device 106 may be programmed to communicate with one or more other types of data storage media or data modules to store or retrieve work piece related data, for example, or other data.
In operation, the processing application 104A can be configured to create a cut -list of materials to be processed in connection with the work piece environment 116 data collected by the measurement device 114. The mobile computing device 104 may also receive or derive data from a design, plan, schematic, specification, or other document or information source associated with dimensions or attributes of one or more work pieces to be processed by the processing equipment 110. In certain embodiments, the computing device 104 may be in communication with the controller 106 to relay information that can be used to control actuation and movement of the carriage assembly 108 during operation of the work piece processing equipment 110 (as described herein).
In certain embodiments, the processing application 104A may include or be operatively associated with one or more image data processors 120. The image data processors 120 may include software, hardware, firmware, and/or a combination of components programmed to receive and process captured image data. The captured image data may be derived from the optics or other sensor of a camera, for example, such as a camera typically installed on different kinds of mobile devices 104. In one embodiment, the captured image data may include an image of a measurement portion of a non-electronic tape measure, for example, or other visual representations of measurement data obtained from the work piece processing environment 116. Processing the captured image data may include deriving a numerical value or other quantity which can be used by the processing application 104A, for example, in performing its various tasks and functions.
With reference to
In various embodiments, if a cut-list is not already present, the worker may use any of a suite of connected measurement tools or may manually enter the desired length or other dimension(s) of the cut. In addition to cut length, the cut-list can also provide other cut data such as part numbers, quantity, miter/compound angles, stock type, tolerances, blade speed/type, etc. This allows for optimal use of the work piece processing equipment 110, for example, by the worker. It can be seen that the computing device 104 and the processing application 104A are able to keep track of cuts, thus allowing the worker to create a reproducible cut-list. This can prove useful in preserving and/or sharing fabrication designs with a larger community. Similarly, a worker can also download a design and start fabricating it without the need to take measurements. The ability to interact with cloud computing resources provides access to a whole suite of design tools and software to keep track of stock/inventory and to estimate the cost of a project before starting fabrication. The cut-list need not be limited to simple stock lumber. The ability to download and fabricate designs means that manufacturers can ship partially finished, yet highly customizable furniture to a customer that is keen on building their own personalized pieces but does not have the full suite of expensive tools to build complex pieces from scratch.
With reference to
Various embodiments of the present invention provide an actuation mechanism that does not need a dedicated motor to move a carriage assembly 108 having a stop block 2604, 2704 along the guide rail 2606, 2706 of the saw 2602, 2702. Instead, the user can manually slide the stop block 2604, 2704 into its approximate position. An automatic brake (see discussion below) on the carriage assembly 108 engages, such that the stop blocks 2604, 2704 are rigidly held in the precise position until the desired cut is completed. In this manner, the worker 2708 can move the saw 2602, 2702 at a quick and comfortable speed until the brake engages. The carriage assembly 108 can also include a fine-positioning mechanism (see discussion below) that resists the possibility of under or over travel of the stop block 2604, 2704 from a desired distance from the blade of the saw 2602, 2702 (e.g., this distance is typically the cut length). In certain embodiments, the guide rail 2606, 2706 is designed to have teeth similar to a gear rack that mesh with a brake pad portion of the carriage assembly 108. This allows for an interlocking surface, as well as a rigid connection of the stop block 2604, 2704 to the guide rail 2606, 2706. This positioning and braking mechanism also reduces or eliminates the need for periodic service such as belt or chain tensioning (which are unnecessary components in this system), and the positioning system helps to avoid errors caused by backlash.
With regard to
In the examples shown, the carriage assembly 3002 includes an enclosure 3002A and stop block 3002B. In various embodiments, it can be seen that it is optimal to know the position of the stop block 3002B as precisely and quickly as possible to properly engage a brake 3302 of the carriage assembly 3002 at the correct moment. In order to position the stop block 3002B, an optical detection system may be operatively associated with the stop block 3002B and configured to interact with an optical measurement pattern 3202 positioned on the guide rail 3004. In certain embodiments, the optical detection system may employ two or more photodiodes that track the pattern 3202, which can be embodied as a coded high contrast pattern printed along the length of the guide rail 3004. The photodiodes allow the carriage assembly 3002 to track changes in the pattern 3202 as the stop block 3002B moves along the guide rail 3004. The unique sequence of changes in the pattern 3202 can be used to instantaneously compute the position of the stop block 3002B along the guide rail 3004. Thus, the automatic brake 3302 can be engaged when the stop block 3002B is at or near the desired distance from the saw blade (wherein the distance represents a cut length, for example, of a work piece). The optical measurement pattern 3202 may be printed, painted, etched, powder coated, or adhesively affixed onto the guide rail 3004.
In certain embodiments, error correcting codes may be employed in the pattern 3202, to promote robustness of the positioning system in view of the guide rail 3004 potentially being scuffed, scratched, or impacted by dust accumulation. The error correction also guards against electrical noise thus reducing the cost and complexity of the power supply. In operation and use, the positioning mechanism can provide an absolute position of the stop block 3002B on the rail 3004. In one embodiment, the positioning mechanism may be configured with a coarse position resolution no coarser than 1/64th of an inch, and an absolute or fine positioning accuracy no worse than ± 1/32nd of an inch.
In this example,
Alternatively, actuation can be performed by a coarse-adjust mechanism. In this variation, the coarse-adjust mechanism moves the stop block 3002B in the appropriate direction with enough energy to reach the final location. The brake 3302 then engages as the stop block 3002B arrives to within a predetermined reach of the fine-positioning mechanism, which functions to move the stop block 3002B to the precise location. The coarse-adjust mechanism's actuator may be engaged during the full time it takes to travel to the reach of the fine-adjust mechanism, or it may only be engaged for part of the time. The coarse-adjust mechanism's actuator may be, for example, an electric motor, a solenoid, or another rotational or linear actuation device.
In another variation, the actuation mechanism includes a belt-driven carriage assembly 3002. The belt drives the assembly 3002 either entirely by itself to the desired location, or it drives the carriage assembly 3002 to within reach of a fine-adjustment mechanism built into the carriage assembly 3002. The fine adjustment mechanism may include a brake, a drive motor, and a lead screw or some similar means of fine-adjustment actuation.
In various embodiments, power may be supplied to different components of the AutoSet system externally via 110/220 VAC electricity, for example, or internally via battery. The AutoSet system may include a means of charging the battery, and power can be converted to low voltage DC (5V to 36V) as needed. The voltage conversion and conditioning may be designed to take place within the electronics enclosure of the carriage assembly, for example.
To manage potential variation in the different saws or other processing equipment to which AutoSet system components can be connected, as well as deviations in mounting from use-to-use, the system can be calibrated each time it is set up. To calibrate, the user enables calibration mode on the computing device, and the positioning mechanism moves to a pre -determined length. The user can be prompted to make a measurement between the blade of the cutting device and the stop block with a distance measurement device connected wirelessly to the processing application 104A. When the measurement data is communicated from the distance measurement device to the processing application 104, the system associates that distance with the current distance as read by the positioning mechanism, completing the calibration process.
In this example, the adapter sleeve 4002 includes a wireless communication button 4006 for pairing or connecting the sleeve wirelessly to a computer system or an electronic device such as a mobile device 104 programmed with a work piece processing application 104A, for example. The sleeve 4002 may also include first and second measurement capture buttons 4008, 4010 which can be activated to cause a camera 4012 to capture an image of at least a portion of a measurement portion 4014 of the tape measure 4004. The camera 4012 may be embodied as a camera or sensor typically employed in connection with a smart phone or similar mobile device 104, for example.
In certain embodiments, the first measurement capture button 4008 may be programmed to activate the camera 4012 in connection with capturing an image associated with an outside measurement of a work piece, for example. Similarly, the second measurement capture button 4010 may be programmed to activate the camera 4012 in connection with capturing an image associated with an inside measurement of a work piece, for example. One or more of the buttons 4006, 4008, 4010 may be sized or dimensioned sufficiently (e.g., made thicker or larger) to accommodate the fingers of a user wearing work gloves, for example.
In various embodiments, the adapter sleeve 4002 may include various software, firmware, and/or hardware components, such as for facilitating wireless communications, storing measurement data, operating the camera 4012, powering different functions of the sleeve 4002, and/or for performing other tasks or functions. In certain embodiments, the sleeve 4002 may include a screen display 4022 for displaying information to a user. For example, the sleeve 4002 may be programmed to process and display cut lists on the screen display 4002, or measurements which have been derived from the tape measure 4004. In such embodiments, it can be seen that the adapter sleeve 4002 can function in lieu of or in addition to embodiments of the processing application 104A described herein.
In other embodiments,
In other embodiments,
In another embodiment,
In a further embodiment,
With regard to
In this embodiment, it can be seen that the modular nature of the system 5001 can be embodied as multiple segments of the guide rail assembly 5006. For example, the multiple guide rail segments 5008, 5010 may each possess multiple channels (e.g., channels 5010A -5010C) structured to receive shims 5014, 5016, 5018 therein (respectively). The shims 5014, 5016, 5108 may comprise a material such as plastic or metal, for example, among other types of suitable materials. The shims 5014, 5016, 5018 can be structured for connectably engaging in a tongue and groove manner, for example, the different segments 5008, 5010 of the guide rail assembly 5006 to each other.
With regard to
With regard to
It can be appreciated that the examples described herein are intended primarily for purposes of illustration of the invention for those skilled in the art. No particular aspect or aspects of the examples are necessarily intended to limit the scope of the present invention. For example, no particular aspect or aspects of the examples of system architectures, device configurations, material processing equipment (e.g., table saw), or process flows described herein are necessarily intended to limit the scope of the invention.
It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating, for purposes of clarity, other elements. Those of ordinary skill in the art will recognize, however, that a sufficient understanding of the present invention can be gained by the present disclosure, and therefore, a more detailed description of such elements is not provided herein.
Any element expressed herein as a means for performing a specified function is intended to encompass any way of performing that function including, for example, a combination of elements that performs that function. Furthermore, the invention, as may be defined by such means-plus-function claims, resides in the fact that the functionalities provided by the various recited means are combined and brought together in a manner as defined by the appended claims. Therefore, any means that can provide such functionalities may be considered equivalents to the means shown herein.
In various embodiments, various models or platforms can be used to practice certain aspects of the invention. For example, software-as-a-service (SaaS) models or application service provider (ASP) models may be employed as software application delivery models to communicate software applications to clients or other users. Such software applications can be downloaded through an Internet connection, for example, and operated either independently (e.g., downloaded to a laptop or desktop computer system) or through a third -party service provider (e.g., accessed through a third-party web site). In addition, cloud computing techniques may be employed in connection with various embodiments of the invention. Moreover, the processes associated with the present embodiments may be executed by programmable equipment, such as computers. Software or other sets of instructions that may be employed to cause programmable equipment to execute the processes may be stored in any storage device, such as a computer system (non-volatile) memory. Furthermore, some of the processes may be programmed when the computer system is manufactured or via a computer -readable memory storage medium.
It can also be appreciated that certain process aspects described herein may be performed using instructions stored on a computer-readable memory medium or media that direct a computer or computer system to perform process steps. A computer-readable medium may include, for example, memory devices such as diskettes, compact discs of both read-only and read/write varieties, optical disk drives, and hard disk drives. A computer-readable medium may also include memory storage that may be physical, virtual, permanent, temporary, semi -permanent and/or semi-temporary. Memory and/or storage components may be implemented using any computer-readable media capable of storing data such as volatile or non-volatile memory, removable or non-removable memory, erasable or non-erasable memory, writeable or re-writeable memory, and so forth. Examples of computer-readable storage media may include, without limitation, RAM, dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM), read-only memory (ROM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory (e.g., NOR or NAND flash memory), content addressable memory (CAM), polymer memory (e.g., ferroelectric polymer memory), phase -change memory, ovonic memory, ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, or any other type of media suitable for storing information.
A “computer,” “computer system,” “computing device,” “component,” or “computer processor” may be, for example and without limitation, a processor, microcomputer, minicomputer, server, mainframe, laptop, personal data assistant (PDA), wireless e-mail device, smart phone, mobile phone, electronic tablet, cellular phone, pager, fax machine, scanner, or any other programmable device or computer apparatus configured to transmit, process, and/or receive data. Computer systems and computer-based devices disclosed herein may include memory and/or storage components for storing certain software applications used in obtaining, processing, and communicating information. It can be appreciated that such memory may be internal or external with respect to operation of the disclosed embodiments. In various embodiments, a “host,” “engine,” “loader,” “filter,” “platform,” or “component” may include various computers or computer systems, or may include a reasonable combination of software, firmware, and/or hardware. In certain embodiments, a “module” may include software, firmware, hardware, or any reasonable combination thereof.
In various embodiments of the present invention, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. Except where such substitution would not be operative to practice embodiments of the present invention, such substitution is within the scope of the present invention.
Although some embodiments may be illustrated and described as comprising functional components, software, engines, and/or modules performing various operations, it can be appreciated that such components or modules may be implemented by one or more hardware components, software components, and/or combination thereof. The functional components, software, engines, and/or modules may be implemented, for example, by logic (e.g., instructions, data, and/or code) to be executed by a logic device (e.g., processor). Such logic may be stored internally or externally to a logic device on one or more types of computer-readable storage media. In other embodiments, the functional components such as software, engines, and/or modules may be implemented by hardware elements that may include processors, microprocessors, circuits, circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate array (FPGA), logic gates, registers, semiconductor device, chips, microchips, chip sets, and so forth.
Examples of software, engines, and/or modules may include software components, programs, applications, computer programs, application programs, system programs, machine programs, operating system software, middleware, firmware, software modules, routines, subroutines, functions, methods, procedures, software interfaces, application program interfaces (API), instruction sets, computing code, computer code, code segments, computer code segments, words, values, symbols, or any combination thereof. Determining whether an embodiment is implemented using hardware elements and/or software elements may vary in accordance with any number of factors, such as desired computational rate, power levels, heat tolerances, processing cycle budget, input data rates, output data rates, memory resources, data bus speeds and other design or performance constraints.
In some cases, various embodiments may be implemented as an article of manufacture. The article of manufacture may include a computer readable storage medium arranged to store logic, instructions and/or data for performing various operations of one or more embodiments. In various embodiments, for example, the article of manufacture may comprise a magnetic disk, optical disk, flash memory or firmware containing computer program instructions suitable for execution by a general-purpose processor or application specific processor. The embodiments, however, are not limited in this context.
Additionally, it is to be appreciated that the embodiments described herein illustrate example implementations, and that the functional elements, logical blocks, modules, and circuits elements may be implemented in various other ways which are consistent with the described embodiments. Furthermore, the operations performed by such functional elements, logical blocks, modules, and circuits elements may be combined and/or separated for a given implementation and may be performed by a greater number or fewer number of components or modules. As will be apparent to those of skill in the art upon reading the present disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several aspects without departing from the scope of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
Certain embodiments may be described using the expression “coupled” and “connected” along with their derivatives. These terms are not necessarily intended as synonyms for each other. For example, some embodiments may be described using the terms “connected” and/or “coupled” to indicate that two or more elements are in direct physical or electrical contact with each other. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. With respect to software elements, for example, the term “coupled” may refer to interfaces, message interfaces, application program interface (API), exchanging messages, and so forth.
It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the present disclosure and are comprised within the scope thereof. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles described in the present disclosure and the concepts contributed to furthering the art and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents comprise both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present disclosure, therefore, is not intended to be limited to the exemplary aspects and aspects shown and described herein.
Although various systems described herein may be embodied in software or code executed by general purpose hardware as discussed above, as an alternative the same may also be embodied in dedicated hardware or a combination of software/general purpose hardware and dedicated hardware. If embodied in dedicated hardware, each can be implemented as a circuit or state machine that employs any one of or a combination of a number of technologies. These technologies may include, but are not limited to, discrete logic circuits having logic gates for implementing various logic functions upon an application of one or more data signals, application specific integrated circuits having appropriate logic gates, or other components, etc. Such technologies are generally well known by those of ordinary skill in the art and, consequently, are not described in detail herein.
The flow charts and methods described herein show the functionality and operation of various implementations. If embodied in software, each block, step, or action may represent a module, segment, or portion of code that comprises program instructions to implement the specified logical function(s). The program instructions may be embodied in the form of source code that comprises human-readable statements written in a programming language or machine code that comprises numerical instructions recognizable by a suitable execution system such as a processing component in a computer system. If embodied in hardware, each block may represent a circuit or a number of interconnected circuits to implement the specified logical function(s).
Although the flow charts and methods described herein may describe a specific order of execution, it is understood that the order of execution may differ from that which is described. For example, the order of execution of two or more blocks or steps may be scrambled relative to the order described. Also, two or more blocks or steps may be executed concurrently or with partial concurrence. Further, in some embodiments, one or more of the blocks or steps may be skipped or omitted. It is understood that all such variations are within the scope of the present disclosure.
Reference to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is comprised in at least one embodiment. The appearances of the phrase “in one embodiment” or “in one aspect” in the specification are not necessarily all referring to the same embodiment. The terms “a” and “an” and “the” and similar referents used in the context of the present disclosure (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as,” “in the case,” “by way of example”) provided herein is intended merely to better illuminate the disclosed embodiments and does not pose a limitation on the scope otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the claimed subject matter. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as solely, only and the like in connection with the recitation of claim elements or use of a negative limitation.
Groupings of alternative elements or embodiments disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be comprised in, or deleted from, a group for reasons of convenience and/or patentability.
While various embodiments of the invention have been described herein, it should be apparent, however, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the present invention. The disclosed embodiments are therefore intended to include all such modifications, alterations and adaptations without departing from the scope and spirit of the present invention as claimed herein.
The present application is a continuation-in-part of International Patent Application No. PCT/US2017/045767, filed Aug. 7, 2017, which claims the benefit of both U.S. Provisional Patent Application No. 62/371,450, filed on Aug. 5, 2016, and U.S. Provisional Patent Application No. 62/394,257, filed on Sep. 14, 2016.
Number | Date | Country | |
---|---|---|---|
62371450 | Aug 2016 | US | |
62394257 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2017/045767 | Aug 2017 | US |
Child | 16268103 | US |