The present embodiments relate to audio/video (A/V) recording and communication devices, including A/V recording and communication doorbell systems. In particular, the present embodiments relate to improvements in the functionality of A/V recording and communication devices that enhance the motion detection capabilities of such devices to address variable light conditions throughout the day and night in order to reduce false positives and reduce failures to record video when a person is within the field of view of the camera of such devices.
Home safety is a concern for many homeowners and renters. Those seeking to protect or monitor their homes often wish to have video and audio communications with visitors, for example, those visiting an external door or entryway. Audio/Video (A/V) recording and communication doorbell systems provide this functionality, and can also aid in crime detection and prevention. For example, audio and/or video captured by an A/V recording and communication doorbell can be uploaded to the cloud and recorded on a remote server. Subsequent review of the A/V footage can aid law enforcement in capturing perpetrators of home burglaries and other crimes. Further, the presence of an A/V recording and communication doorbell at the entrance to a home acts as a powerful deterrent against would-be burglars.
The various embodiments of the present automatic adjusting of day-night sensitivity for motion detection in audio/video recording and communication devices have several features, no single one of which is solely responsible for their desirable attributes. Without limiting the scope of the present embodiments as expressed by the claims that follow, their more prominent features now will be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description,” one will understand how the features of the present embodiments provide the advantages described herein.
One aspect of the present embodiments includes the realization that current audio/video (A/V) recording and communication devices (e.g., doorbells), other than the present embodiments, when sensing motion and activating a camera based upon that sensed motion, sometimes generate false positives from motion that may be considered unimportant. For example, these devices may sense motion of animals, swaying tree branches, and other motion that is not related to a person coming into the field of view of the camera, and may record image data of these unimportant events. Likewise, prior art efforts to prevent such false positives can sometimes result in failures to record motion caused by a person, which motion is more likely to be important and should therefore be recorded by the camera of the A/V recording and communication device. Further, sometimes direct sunlight on the motion sensor of the A/V recording and communication device can cause such false positives and/or failures to record. Moreover, glare from a car window, a building window, a glass door that regularly opens and closes, etc., can cause false positives and/or failures to record depending upon the particular design and configuration of the various prior art A/V recording and communication devices. These false positives and failures to record are often exacerbated by varying light conditions, ranging from full daylight, to dawn/dusk, to full night. These false positives and failures to record are often the result of reliance upon a single type of motion detection technology, such as a passive infrared (PIR) sensor, and the limits of that single technology. Accordingly, there is a need for a method and apparatus for adjusting day-night sensitivity for motion detection in A/V recording and communication devices that avoids these failures and the limitations of reliance upon only a PIR sensor. These various failures and problems are addressed by the improvements and embodiments presented in the current disclosure of adjusting day-night sensitivity for motion detection in A/V recording and communication devices.
In a first aspect, a method for an audio/video (A/V) recording and communication device is provided, the device including a camera, a passive infrared (PIR) sensor, and a light sensor, the method comprising receiving a PIR sensor output signal from the PIR sensor, receiving image data from the camera, receiving a light sensor output signal from the light sensor, determining, using the light sensor output signal and at least one of the PIR sensor output signal and the image data whether to activate recording of the image data, upon determining to activate recording of the image data, generating an alert, and transmitting the alert to a client device associated with the A/V recording and communication device.
In an embodiment of the first aspect, determining whether to activate recording comprises determining whether the light sensor output signal is below a daylight threshold value and upon determining that the light sensor output signal is below the daylight threshold value, determining whether to activate recording based exclusively upon whether the PIR sensor output signal exceeds a PIR sensor output signal threshold value.
In another embodiment of the first aspect, the PIR sensor output signal threshold value depends upon the light sensor output signal.
In another embodiment of the first aspect, the PIR sensor output signal threshold value increases as the light sensor output signal increases, and the PIR sensor output signal threshold value decreases as the light sensor output signal decreases.
In another embodiment of the first aspect, determining whether to activate recording comprises determining whether the light sensor output signal is below a daylight threshold value and upon determining that the light sensor output signal is not below the daylight threshold value, determining whether to activate recording based exclusively upon whether the image data indicates movement.
In another embodiment of the first aspect, determining whether to activate recording comprises determining whether the light sensor output signal is below a daylight threshold value, determining whether the light sensor output signal is above a nighttime threshold value, and upon determining that the light sensor output signal is below the daylight threshold value and above the nighttime threshold value, determining whether to activate recording based upon a weighted combination value comprising the PIR sensor output signal threshold value and an image data movement value.
In another embodiment of the first aspect, the image data movement value is calculated by determining a number of changed pixels between a first frame of the image data and a second frame of the image data, wherein the first frame and the second frame are spaced apart in time.
In a second aspect, a method for an audio/video (A/V) recording and communication device is provided, the device including a camera, a passive infrared (PIR) sensor, and a light sensor, the method comprising receiving a PIR sensor output signal from the PIR sensor, receiving a light sensor output signal from the light sensor, determining, using the PIR sensor output signal and the light sensor output signal, whether to activate the camera for recording of image data, upon determining to activate the camera for recording of image data, activating the camera for recording of image data and generating an alert, and transmitting the alert to a client device associated with the A/V recording and communication device.
In an embodiment of the second aspect, determining whether to activate the camera for recording of image data comprises using the light sensor output signal to adjust a sensitivity of the PIR sensor, such that in bright light conditions the sensitivity of the PIR sensor is decreased and in low light conditions the sensitivity of the PIR sensor is increased.
In another embodiment of the second aspect, the sensitivity of the PIR sensor is adjusted by adjusting a threshold for a peak magnitude of the PIR sensor output signal that will cause a determination to activate the camera for recording of image data.
In another embodiment of the second aspect, the sensitivity of the PIR sensor is adjusted by adjusting a minimum magnitude of the PIR sensor output signal that will cause a determination to activate the camera for recording of image data.
In a third aspect, an audio/video (A/V) recording and communication device is provided, the device comprising a camera configured to capture image data of an object within a field of view of the camera, a passive infrared (PIR) sensor, a light sensor, a communication module and a processing module operatively connected to the camera and to the communication module, the processing module comprising a processor and a camera application, wherein the processing module is configured to receive a PIR sensor output signal from the PIR sensor, receive image data from the camera, receive a light sensor output signal from the light sensor, determine, using the light sensor output signal and at least one of the PIR sensor output signal and the image data, whether to activate recording of the image data, and upon determining to activate recording of the image data, generating an alert, and transmitting the alert to a client device associated with the A/V recording and communication device.
In an embodiment of the third aspect, determining whether to activate recording comprises determining whether the light sensor output signal is below a daylight threshold value and upon determining that the light sensor output signal is below the daylight threshold value, determining whether to activate recording based exclusively upon whether the PIR sensor output signal exceeds a PIR sensor output signal threshold value.
In another embodiment of the third aspect, the PIR sensor output signal threshold value depends upon the light sensor output signal.
In another embodiment of the third aspect, the PIR sensor output signal threshold value increases as the light sensor output signal increases, and the PIR sensor output signal threshold value decreases as the light sensor output signal decreases.
In another embodiment of the third aspect, determining whether to activate recording comprises determining whether the light sensor output signal is below a daylight threshold value and upon determining that the light sensor output signal is not below the daylight threshold value, determining whether to activate recording based exclusively upon whether the image data indicates movement.
In another embodiment of the third aspect, determining whether to activate recording comprises determining whether the light sensor output signal is below a daylight threshold value, determining whether the light sensor output signal is above a nighttime threshold value, and upon determining that the light sensor output signal is below the daylight threshold value and above the nighttime threshold value, determining whether to activate recording based upon a weighted combination value comprising the PIR sensor output signal threshold value and an image data movement value.
In another embodiment of the third aspect, the image data movement value is calculated by determining a number of changed pixels between a first frame of the image data and a second frame of the image data, wherein the first frame and the second frame are spaced apart in time.
The various embodiments of the present automatic adjusting of day-night sensitivity for motion detection in audio/video recording and communication devices now will be discussed in detail with an emphasis on highlighting the advantageous features. These embodiments depict the novel and non-obvious automatic adjusting of day-night sensitivity for motion detection in audio/video recording and communication devices shown in the accompanying drawings, which are for illustrative purposes only. These drawings include the following figures, in which like numerals indicate like parts:
The following detailed description describes the present embodiments with reference to the drawings. In the drawings, reference numbers label elements of the present embodiments. These reference numbers are reproduced below in connection with the discussion of the corresponding drawing features.
The embodiments of the present automatic adjusting of day-night sensitivity for motion detection in audio/video recording and communication devices are described below with reference to the figures. These figures, and their written descriptions, indicate that certain components of the apparatus are formed integrally, and certain other components are formed as separate pieces. Those of ordinary skill in the art will appreciate that components shown and described herein as being formed integrally may in alternative embodiments be formed as separate pieces. Those of ordinary skill in the art will further appreciate that components shown and described herein as being formed as separate pieces may in alternative embodiments be formed integrally. Further, as used herein the term integral describes a single unitary piece.
With reference to
With further reference to
The network 112 may be any wireless network or any wired network, or a combination thereof, configured to operatively couple the above mentioned modules, devices, and systems as shown in
According to one or more aspects of the present embodiments, when a person (may be referred to interchangeably as “visitor”) arrives at the A/V recording and communication device 100, the A/V recording and communication device 100 detects the visitor's presence and begins capturing video images within a field of view of the camera 102. The A/V recording and communication device 100 may also capture audio through the microphone 104. The A/V recording and communication device 100 may detect the visitor's presence by detecting motion using the camera 102 and/or a motion sensor, and/or by detecting that the visitor has depressed the front button on the A/V recording and communication device 100 (in embodiments in which the A/V recording and communication device 100 comprises a doorbell).
In response to the detection of the visitor, the A/V recording and communication device 100 sends an alert to the user's client device 114 (
The video images captured by the camera 102 of the A/V recording and communication device 100 (and the audio captured by the microphone 104) may be uploaded to the cloud and recorded on the remote storage device 116 (
With further reference to
The backend API 120 illustrated
The backend API 120 illustrated in
At block B202, a communication module of the A/V recording and communication device 100 sends a connection request, via the user's network 110 and the network 112, to a device in the network 112. For example, the network device to which the request is sent may be a server such as the server 118. The server 118 may comprise a computer program and/or a machine that waits for requests from other machines or software (clients) and responds to them. A server typically processes data. One purpose of a server is to share data and/or hardware and/or software resources among clients. This architecture is called the client-server model. The clients may run on the same computer or may connect to the server over a network. Examples of computing servers include database servers, file servers, mail servers, print servers, web servers, game servers, and application servers. The term server may be construed broadly to include any computerized process that shares a resource to one or more client processes.
In response to the request, at block B204 the network device may connect the A/V recording and communication device 100 to the user's client device 114 through the user's network 110 and the network 112. At block B206, the A/V recording and communication device 100 may record available audio and/or video data using the camera 102, the microphone 104, and/or any other sensor available. At block B208, the audio and/or video data is transmitted (streamed) from the A/V recording and communication device 100 to the user's client device 114 via the user's network 110 and the network 112. At block B210, the user may receive a notification on his or her client device 114 with a prompt to either accept or deny the call.
At block B212, the process determines whether the user has accepted or denied the call. If the user denies the notification, then the process advances to block B214, where the audio and/or video data is recorded and stored at a cloud server. The session then ends at block B216 and the connection between the A/V recording and communication device 100 and the user's client device 114 is terminated. If, however, the user accepts the notification, then at block B218 the user communicates with the visitor through the user's client device 114 while audio and/or video data captured by the camera 102, the microphone 104, and/or other sensors is streamed to the user's client device 114. At the end of the call, the user may terminate the connection between the user's client device 114 and the A/V recording and communication device 100 and the session ends at block B216. In some embodiments, the audio and/or video data may be recorded and stored at a cloud server (block B214) even if the user accepts the notification and communicates with the visitor through the user's client device 114.
Many of today's homes include a wired doorbell system that does not have A/V communication capabilities. Instead, standard wired doorbell systems include a button outside the home next to the front door. The button activates a signaling device (such as a bell or a buzzer) inside the building. Pressing the doorbell button momentarily closes the doorbell circuit, which may be, for example, a single-pole, single-throw (SPST) push button switch. One terminal of the button is wired to a terminal on a transformer. The transformer steps down the 120-volt or 240-volt household AC electrical power to a lower voltage, typically 16 to 24 volts. Another terminal on the transformer is wired to a terminal on the signaling device. Another terminal on the signaling device is wired to the other terminal on the button. A common signaling device includes two flat metal bar resonators, which are struck by plungers operated by two solenoids. The flat bars are tuned to different notes. When the doorbell button is pressed, the first solenoid's plunger strikes one of the bars, and when the button is released, a spring on the plunger pushes the plunger up, causing it to strike the other bar, creating a two-tone sound (“ding-dong”).
Many current A/V recording and communication doorbell systems (other than the present embodiments) are incompatible with existing wired doorbell systems of the type described in the preceding paragraph. One reason for this incompatibility is that the A/V recording and communication doorbell draws an amount of power from the household AC electrical power supply that is above the threshold necessary for causing the signaling device to sound. The A/V recording and communication doorbell thus causes frequent inadvertent sounding of the signaling device, which is not only bothersome to the home's occupant(s), but also undermines the usefulness of the doorbell. The present embodiments solve this problem by limiting the power consumption of the A/V recording and communication doorbell to an amount that is below the threshold necessary for causing the signaling device to sound. Embodiments of the present A/V recording and communication doorbell can thus be connected to the existing household AC power supply and the existing signaling device without causing inadvertent sounding of the signaling device.
Several advantages flow from the ability of the present embodiments to be connected to the existing household AC power supply. For example, the camera of the present A/V recording and communication doorbell can be powered on continuously. In a typical battery-powered A/V recording and communication doorbell, the camera is powered on only part of the time so that the battery does not drain too rapidly. The present embodiments, by contrast, do not rely on a battery as a primary (or sole) power supply, and are thus able to keep the camera powered on continuously. Because the camera is able to be powered on continuously, it can always be recording, and recorded footage can be continuously stored in a rolling buffer or sliding window. In some embodiments, about 10-15 seconds of recorded footage can be continuously stored in the rolling buffer or sliding window. Also because the camera is able to be powered on continuously, it can be used for motion detection, thus eliminating any need for a separate motion detection device, such as a passive infrared sensor (PIR). Eliminating the PIR simplifies the design of the A/V recording and communication doorbell and enables the doorbell to be made more compact. Also because the camera is able to be powered on continuously, it can be used as a light detector for use in controlling the current state of the IR cut filter and turning the IR LED on and off. Using the camera as a light detector eliminates any need for a separate light detector, thereby further simplifying the design of the A/V recording and communication doorbell and enabling the doorbell to be made even more compact.
With further reference to
With further reference to
With further reference to
The transfer of digital audio between the user and a visitor may be compressed and decompressed using the audio CODEC 153, which is operatively coupled to the processor 160. When the visitor speaks, audio from the visitor is compressed by the audio CODEC 153, digital audio data is sent through the communication module 146 to the network 112 via the user's network 110, routed by the server 118 and delivered to the user's client device 114. When the user speaks, after being transferred through the network 112, the user's network 110, and the communication module 146, the digital audio data is decompressed by the audio CODEC 153 and emitted to the visitor through the speaker 152, which is driven by the speaker driver 151.
With further reference to
With reference to
With reference to
With reference to
With further reference to
With further reference to
The lower portion 216 of the shield 192 may comprise a material that is substantially transparent to infrared (IR) light, but partially or mostly opaque with respect to light in the visible spectrum. For example, in certain embodiments the lower portion 216 of the shield 192 may comprise a plastic, such as polycarbonate. The lower portion 216 of the shield 192, therefore, does not interfere with transmission of IR light from the IR light source 156, which is located behind the lower portion 216. As described in detail below, the IR light source 156 and the IR cut filter 158, which are both operatively connected to the processor 160, facilitate “night vision” functionality of the camera 154.
The upper portion 214 and/or the lower portion 216 of the shield 192 may abut an underlying cover 220 (
With reference to
With reference to
The LEDs 162 and the light pipe 232 may function as visual indicators for a visitor and/or a user. For example, the LEDs 162 may illuminate upon activation or stay illuminated continuously. In one aspect, the LEDs 162 may change color to indicate that the front button 148 has been pressed. The LEDs 162 may also indicate that the battery 142 needs recharging, or that the battery 142 is currently being charged, or that charging of the battery 142 has been completed. The LEDs 162 may indicate that a connection to the user's wireless network is good, limited, poor, or not connected. The LEDs 162 may be used to guide the user through setup or installation steps using visual cues, potentially coupled with audio cues emitted from the speaker 152.
With further reference to
With further reference to
With further reference to
With reference to
The IR LED 242 may be triggered to activate when a low level of ambient light is detected. When activated, IR light emitted from the IR LED 242 illuminates the camera 154's field of view. The camera 154, which may be configured to detect IR light, may then capture the IR light emitted by the IR LED 242 as it reflects off objects within the camera 154's field of view, so that the A/V recording and communication doorbell 130 can clearly capture images at night (may be referred to as “night vision”).
With reference to
With reference back to
With reference to
With reference to
As described above, the present embodiments advantageously limit the power consumption of the A/V recording and communication doorbell to an amount that is below the threshold necessary for causing the signaling device to sound (except when the front button of the doorbell is pressed). The present A/V recording and communication doorbell can thus be connected to the existing household AC power supply and the existing signaling device without causing inadvertent sounding of the signaling device.
Several advantages flow from the ability of the present embodiments to be connected to the existing household AC power supply. For example, the camera of the present A/V recording and communication doorbell can be powered on continuously. In a typical battery-powered A/V recording and communication doorbell, the camera is powered on only part of the time so that the battery does not drain too rapidly. The present embodiments, by contrast, do not rely on a battery as a primary (or sole) power supply, and are thus able to keep the camera powered on continuously. Because the camera is able to be powered on continuously, it can always be recording, and recorded footage can be continuously stored in a rolling buffer or sliding window. In some embodiments, about 10-15 seconds of recorded footage can be continuously stored in the rolling buffer or sliding window. Also because the camera is able to be powered on continuously, it can be used for motion detection, thus eliminating any need for a separate motion detection device, such as a passive infrared sensor (PIR). Eliminating the PIR simplifies the design of the A/V recording and communication doorbell and enables the doorbell to be made more compact, although in some alternative embodiments the doorbell may include one or more PIRs and/or other motion detectors, heat source detectors, etc. Also because the camera is able to be powered on continuously, it can be used as a light detector for use in controlling the current state of the IR cut filter and turning the IR LED on and off. Using the camera as a light detector eliminates any need for a separate light detector, thereby further simplifying the design of the A/V recording and communication doorbell and enabling the doorbell to be made even more compact, although in some alternative embodiments the doorbell may include a separate light detector.
The doorbell 330 includes a faceplate 335 mounted to a back plate 339 (
With reference to
With reference to
With further reference to
The camera PCB 347 may be secured within the doorbell with any suitable fasteners, such as screws, or interference connections, adhesives, etc. The camera PCB 347 comprises various components that enable the functionality of the camera 334 of the doorbell 330, as described below. Infrared light-emitting components, such as infrared LED's 368, are coupled to the camera PCB 347 and may be triggered to activate when a light sensor detects a low level of ambient light. When activated, the infrared LED's 368 may emit infrared light through the enclosure 331 and/or the camera 334 out into the ambient environment. The camera 334, which may be configured to detect infrared light, may then capture the light emitted by the infrared LED's 368 as it reflects off objects within the camera's 334 field of view, so that the doorbell 330 can clearly capture images at night (may be referred to as “night vision”).
With continued reference to
With continued reference to
With continued reference to
With continued reference to
With continued reference to
With continued reference to
With reference to
With further reference to
With further reference to
The speakers 357 and the microphone 358 may be coupled to the camera processor 370 through an audio CODEC 361. For example, the transfer of digital audio from the user's client device 114 and the speakers 357 and the microphone 358 may be compressed and decompressed using the audio CODEC 361, coupled to the camera processor 370. Once compressed by audio CODEC 361, digital audio data may be sent through the communication module 364 to the network 112, routed by one or more servers 118, and delivered to the user's client device 114. When the user speaks, after being transferred through the network 112, digital audio data is decompressed by audio CODEC 361 and emitted to the visitor via the speakers 357.
With further reference to
With further reference to
With further reference to
With further reference to
As described above, one aspect of the present embodiments includes the realization that current audio/video (A/V) recording and communication devices (e.g., doorbells), other than the present embodiments, when sensing motion and activating a camera based upon that sensed motion, sometimes generate false positives from motion that may be considered unimportant. For example, these devices may sense motion of animals, swaying tree branches, and other motion that is not related to a person coming into the field of view of the camera, and may record image data of these unimportant events. Likewise, prior art efforts to prevent such false positives can sometimes result in failures to record motion caused by a person, which motion is more likely to be important and should therefore be recorded by the camera of the A/V recording and communication device. Further, sometimes direct sunlight on the motion sensor of the A/V recording and communication device can cause such false positives and/or failures to record. Moreover, glare from a car window, a building window, a glass door that regularly opens and closes, etc., can cause false positives and/or failures to record depending upon the particular design and configuration of the various prior art A/V recording and communication devices. These false positives and failures to record are often exacerbated by varying light conditions, ranging from full daylight, to dawn/dusk, to full night. These false positives and failures to record are often the result of reliance upon a single type of motion detection technology, such as a passive infrared (PIR) sensor, and the limits of that single technology. Accordingly, there is a need for a method and apparatus for adjusting day-night sensitivity for motion detection in A/V recording and communication devices that avoids these failures and the limitations of reliance upon only a PIR sensor. These various failures and problems are addressed by the improvements and embodiments presented in the current disclosure of adjusting day-night sensitivity for motion detection in A/V recording and communication devices.
With reference to
In some embodiments, the PIR sensor 344 may be an array of PIR sensors, as illustrated in
In accordance with the present disclosure, the light sensor 355 described herein may comprise any of a wide variety of different devices. For example, the light sensor 355 may be any one of, or a combination of, any known type of device for sensing light, such as, but not limited to, light sensors based on the properties and/or techniques described in the paragraphs immediately below.
Photoemission:
Photons cause electrons to transition from the conduction band of a material to free electrons in a vacuum or gas. Types of photoemission detectors include, but are not limited to, gaseous ionization detectors, photomultiplier tubes, phototubes, and microchannel plate detectors.
Photoelectric:
Photons cause electrons to transition from the valence band to the conduction band of a semiconductor. Types of photoelectric detectors include, but are not limited to, active-pixel sensors (APSs), Cadmium zinc telluride radiation detectors, charge-coupled devices (CCD), HgCdTe infrared detectors, LEDs, photoresistors or Light Dependent Resistors (LDR's), photodiodes, phototransistors, quantum dot photoconductors, semiconductor detectors, and Silicon Drift Detectors (SSD's).
Photovoltaic:
Photons cause a voltage to develop across a depletion region of a photovoltaic cell. Photovoltaic sensors, or solar cells, produce a voltage and supply an electric current when illuminated.
Thermal:
Photons cause electrons to transition to mid-gap states then decay back to lower bands, inducing phonon generation and thus heat. Types of thermal light sensors include, but are not limited to, bolometers, cryogenic detectors, pyroelectric detectors and Golay cells.
Polarization:
Photons induce changes in polarization states of suitable materials, which may lead to a change in index of refraction or other polarization effects.
Weak Interaction Effects:
photons induce secondary effects such as in photon drag detectors or gas pressure changes in Golay cells.
Further, a graphene/n-type silicon heterojunction has been demonstrated to exhibit strong rectifying behavior and high photoresponsivity. Graphene may be coupled with silicon quantum dots (Si QDs) on top of bulk Si to form a hybrid photodetector. Si QDs cause an increase of the built-in potential of the graphene/Si Schottky junction while reducing the optical reflection of the photodetector. Both the electrical and optical contributions of Si QDs enable a superior performance of the photodetector.
In some embodiments, the light sensor 355 may be a miniature ambient light photo sensor with digital I2C output, such as the APDS-9301-020 from Broadcom Limited (formerly Avago Technologies) of Irvine, Calif.
In some embodiments, motion detection may be accomplished through the use of computer vision to detect movement, and/or to detect movement of a person or an object of interest, such as a car, that may warrant video recording and/or streaming, and/or generation of an alert, as opposed to movement by vegetation, small animals, pets, etc. that may not warrant video recording and/or streaming, and/or generation of an alert. Computer vision includes methods for acquiring, processing, analyzing, and understanding images and, in general, high-dimensional data from the real world in order to produce numerical or symbolic information, e.g. in the form of decisions. Computer vision seeks to duplicate the abilities of human vision by electronically perceiving and understanding an image. Understanding in this context means the transformation of visual images (the input of the retina) into descriptions of the world that can interface with other thought processes and elicit appropriate action. This image understanding can be seen as the disentangling of symbolic information from image data using models constructed with the aid of geometry, physics, statistics, and learning theory. Computer vision has also been described as the enterprise of automating and integrating a wide range of processes and representations for vision perception. As a scientific discipline, computer vision is concerned with the theory behind artificial systems that extract information from images. The image data can take many forms, such as video sequences, views from multiple cameras, or multi-dimensional data from a scanner. As a technological discipline, computer vision seeks to apply its theories and models for the construction of computer vision systems.
One aspect of computer vision comprises determining whether or not the image data contains some specific object, feature, or activity. Different varieties of computer vision recognition include: Object Recognition (also called object classification)—One or several pre-specified or learned objects or object classes can be recognized, usually together with their 2D positions in the image or 3D poses in the scene. Identification—An individual instance of an object is recognized. Examples include identification of a specific person's face or fingerprint, identification of handwritten digits, or identification of a specific vehicle. Detection—The image data are scanned for a specific condition. Examples include detection of possible abnormal cells or tissues in medical images or detection of a vehicle in an automatic road toll system. Detection based on relatively simple and fast computations is sometimes used for finding smaller regions of interesting image data that can be further analyzed by more computationally demanding techniques to produce a correct interpretation.
The present embodiments may include at least some aspects of computer vision. For example, with reference to
One or more of the present embodiments may include a vision processing unit (not shown separately, but may be a component of the computer vision module 163). A vision processing unit is an emerging class of microprocessor; it is a specific type of AI (artificial intelligence) accelerator designed to accelerate machine vision tasks. Vision processing units are distinct from video processing units (which are specialized for video encoding and decoding) in their suitability for running machine vision algorithms such as convolutional neural networks, SIFT, etc. Vision processing units may include direct interfaces to take data from cameras (bypassing any off-chip buffers), and may have a greater emphasis on on-chip dataflow between many parallel execution units with scratchpad memory, like a manycore DSP (digital signal processor). But, like video processing units, vision processing units may have a focus on low precision fixed point arithmetic for image processing.
In some embodiments, determining whether to activate recording and/or streaming may comprise determining whether the light sensor output signal is below a daylight threshold value and, upon determining that the light sensor output signal is below the daylight threshold value, determining whether to activate recording and/or streaming based exclusively upon whether the PIR sensor output signal exceeds a PIR sensor output signal threshold value. This configuration and algorithm is beneficial for determining that the A/V recording and communication device 130 is in a low ambient light condition, such as may occur at nighttime. Because PIR sensors tend to perform well in darkness, but can become saturated and unresponsive, or overresponsive, in high ambient light conditions, such as when direct sunlight impinges upon the PIR, or when the glare of reflected or concentrated sunlight impinges upon the PIR, it is beneficial to determine that low ambient light conditions exist and that the PIR sensors can be expected to perform well. If such low ambient light conditions exist, the processing module 363 of the A/V recording and communication device 330 may safely configure the device 330 so that only the one or more PIR sensors 344 is relied upon to trigger activation of the camera 334, to begin recording and/or streaming of video, and/or to generate and transmit notifications to the client device 800.
In some other embodiments, the PIR sensor output signal threshold value may depend upon the light sensor output signal. This configuration and algorithm enables a near constant adjustability of the threshold value that causes the activation of the camera 154, and can be useful either for setting defaults and configuring the A/V recording and communication device 130, or for making nearly continuous adjustments during periods when light conditions are variable or changing, such as at dawn, at dusk, or during periods of storms or other moving cloud cover. In one example, the PIR sensor output signal threshold value may increase as the light sensor output signal increases, and the PIR sensor output signal threshold value may decrease as the light sensor output signal decreases. Thus, as the daylight grows stronger, such as at dawn, the threshold value for the PIR to trigger recording and/or streaming is increased, to avoid false positives. Likewise, as the daylight grows weaker, such as at dusk, the threshold value for the PIR is decreased, to avoid failures to record and/or stream motion for persons moving within the field of view of the camera.
In another embodiment, determining whether to activate recording and/or streaming may comprise determining whether the light sensor output signal is below a daylight threshold value and, upon determining that the light sensor output signal is not below the daylight threshold value, determining whether to activate recording and/or streaming based exclusively upon whether the image data indicates movement. This configuration and algorithm is beneficial for determining that the A/V recording and communication device 330 is in a bright ambient light condition, such as may occur during daytime. Because computer vision-based methods of determining movement using a camera (e.g., the camera 154 or the camera 334) tend to perform well in full sunlight, but are generally not as effective in low light conditions, it is beneficial to determine that bright ambient light conditions exist and that the computer vision-based methods of determining movement using a camera can be expected to perform well. If such bright ambient light conditions exist, the processing module 363 of the A/V recording and communication device 330 may safely configure the device s330o that the camera 334 may be on continuously to collect image data, or may take intermittent images to collect image data, and these forms of image data may be used exclusively, in combination with computer vision algorithms, to determine whether motion has been detected, and thus whether to begin video recording and/or streaming, and/or to generate and transmit notifications to the client device 800.
In another embodiment, determining whether to activate recording and/or streaming may comprise determining whether the light sensor output signal is below a daylight threshold value, determining whether the light sensor output signal is above a nighttime threshold value, and, upon determining that the light sensor output signal is both below the daylight threshold value and above the nighttime threshold value, determining whether to activate recording and/or streaming based upon a weighted combination value comprising the PIR sensor output signal value and an image data movement value (which is based in image data obtained with the camera). This embodiment is beneficial for use in low light conditions that are neither full daylight nor full nighttime, such as at dawn and/or dusk. The weighted combination of the PIR sensor output signal value and the image data movement value may be set to certain defaults, may be set by the user, or may be continuously adjusted pursuant to one or more algorithms. In one example embodiment, the weighted combination value may comprise about seventy percent of the PIR sensor output signal value and about thirty percent of the image data movement value. In another example embodiment, the weighted combination value may comprise about thirty percent of the PIR sensor output signal value and about seventy percent of the image data movement value. In another example embodiment, the weighted combination value may comprise about fifty percent of the PIR sensor output signal value and about fifty percent of the image data movement value. In another example embodiment, the weighted combination value may comprise about ninety percent of the PIR sensor output signal value and about ten percent of the image data movement value. In another example embodiment, the weighted combination value may comprise about ten percent of the PIR sensor output signal value and about ninety percent of the image data movement value. In another example embodiment, the weighted combination value may comprise about seventy percent of the PIR sensor output signal value and about thirty percent of the image data movement value.
In some embodiments, the image data movement value may be calculated by determining a number of changed pixels between a first frame of the image data and a second frame of the image data, wherein the first frame and the second frame are spaced apart in time. If the number of changed pixels between the first and second frames of the image data is above a threshold value (and, in some embodiments, equal to the threshold value), then the present algorithms may determine that motion is indicated in the image data.
In certain embodiments, determining whether to activate the camera 334 for recording and/or streaming of image data may comprise using the light sensor output signal to cause the microprocessor 363 to adjust a sensitivity of the PIR sensor 344, such that in bright light conditions the sensitivity of the PIR sensor 344 is decreased and in low light conditions the sensitivity of the PIR sensor 344 is increased. One such adjustment may comprise adjusting a threshold value for a peak magnitude of the PIR sensor output signal that will cause a determination to activate the camera 334 for recording and/or streaming of image data. In one example embodiment, the threshold value for the peak magnitude of the PIR sensor output signal may be adjusted to less than about 300, such as less than between about 200 and about 400, for low, or very low, ambient light conditions, such as at night. In another example embodiment, the threshold for the peak magnitude of the PIR sensor output signal may be adjusted to less than about 500, such as less than between about 400 and about 600, for medium ambient light conditions, such as at dusk or dawn (twilight). In another example embodiment, the threshold for the peak magnitude of the PIR sensor output signal may be adjusted to less than about 1000, such as less than between about 900 and about 1100, for bright, or very bright, ambient light conditions, such as between dawn and dusk. In another example embodiment, the threshold for the peak magnitude of the PIR sensor output signal may be set to between about 100 and about 1200.
In another example embodiment, the sensitivity of the PIR sensor 344 may be adjusted by adjusting a minimum magnitude of the PIR sensor output signal that will cause a determination to activate the camera 154 for recording and/or streaming of image data. For example, the minimum magnitude of the PIR sensor output signal that will cause a determination to activate the camera 154 for recording and/or streaming image data may be adjusted to greater than about 10, such as greater than between about 5 and about 15, for low, or very low, ambient light conditions, such as at night. In another example embodiment, the minimum magnitude of the PIR sensor output signal that will cause a determination to activate the camera for recording and/or streaming image data may be adjusted to greater than about 50, such as greater than between about 40 and about 60, for medium ambient light conditions, such as at dusk or dawn (twilight). In another example embodiment, the minimum magnitude of the PIR sensor output signal that will cause a determination to activate the camera for recording and/or streaming image data may be adjusted to greater than about 100, such as greater than between about 90 and about 110, for bright, or very bright, ambient light conditions, such as between dawn and dusk. In another example embodiment, the minimum magnitude of the PIR sensor output signal that will cause a determination to activate the camera for recording and/or streaming image data may be between about 3 and about 120.
As discussed above, the present disclosure provides numerous examples of methods and systems including A/V recording and communication doorbells, but the present embodiments are equally applicable for A/V recording and communication devices other than doorbells. For example, the present embodiments may include one or more A/V recording and communication security cameras instead of, or in addition to, one or more A/V recording and communication doorbells. An example A/V recording and communication security camera may include substantially all of the structure and functionality of the doorbell 130, but without the front button 148, the button actuator 228, and/or the light pipe 232.
With reference to
The memory 804 may include both operating memory, such as random access memory (RAM), as well as data storage, such as read-only memory (ROM), hard drives, flash memory, or any other suitable memory/storage element. The memory 804 may include removable memory elements, such as a CompactFlash card, a MultiMediaCard (MMC), and/or a Secure Digital (SD) card. In some embodiments, the memory 804 may comprise a combination of magnetic, optical, and/or semiconductor memory, and may include, for example, RAM, ROM, flash drive, and/or a hard disk or drive. The processor 802 and the memory 804 each may be, for example, located entirely within a single device, or may be connected to each other by a communication medium, such as a USB port, a serial port cable, a coaxial cable, an Ethernet-type cable, a telephone line, a radio frequency transceiver, or other similar wireless or wired medium or combination of the foregoing. For example, the processor 802 may be connected to the memory 804 via the dataport 810.
The user interface 806 may include any user interface or presentation elements suitable for a smartphone and/or a portable computing device, such as a keypad, a display screen, a touchscreen, a microphone, and a speaker. The communication module 808 is configured to handle communication links between the client device 800 and other, external devices or receivers, and to route incoming/outgoing data appropriately. For example, inbound data from the dataport 810 may be routed through the communication module 808 before being directed to the processor 802, and outbound data from the processor 802 may be routed through the communication module 808 before being directed to the dataport 810. The communication module 808 may include one or more transceiver modules capable of transmitting and receiving data, and using, for example, one or more protocols and/or technologies, such as GSM, UMTS (3GSM), IS-95 (CDMA one), IS-2000 (CDMA 2000), LTE, FDMA, TDMA, W-CDMA, CDMA, OFDMA, Wi-Fi, WiMAX, or any other protocol and/or technology.
The dataport 810 may be any type of connector used for physically interfacing with a smartphone and/or a portable computing device, such as a mini-USB port or an IPHONE®/IPOD® 30-pin connector or LIGHTNING® connector. In other embodiments, the dataport 810 may include multiple communication channels for simultaneous communication with, for example, other processors, servers, and/or client terminals.
The memory 804 may store instructions for communicating with other systems, such as a computer. The memory 804 may store, for example, a program (e.g., computer program code) adapted to direct the processor 802 in accordance with the present embodiments. The instructions also may include program elements, such as an operating system. While execution of sequences of instructions in the program causes the processor 802 to perform the process steps described herein, hard-wired circuitry may be used in place of, or in combination with, software/firmware instructions for implementation of the processes of the present embodiments. Thus, the present embodiments are not limited to any specific combination of hardware and software.
The computer system 900 may include at least one processor 910, memory 920, at least one storage device 930, and input/output (I/O) devices 940. Some or all of the components 910, 920, 930, 940 may be interconnected via a system bus 950. The processor 910 may be single- or multi-threaded and may have one or more cores. The processor 910 may execute instructions, such as those stored in the memory 920 and/or in the storage device 930. Information may be received and output using one or more I/O devices 940.
The memory 920 may store information, and may be a computer-readable medium, such as volatile or non-volatile memory. The storage device(s) 930 may provide storage for the system 900, and may be a computer-readable medium. In various aspects, the storage device(s) 930 may be a flash memory device, a hard disk device, an optical disk device, a tape device, or any other type of storage device.
The I/O devices 940 may provide input/output operations for the system 900. The I/O devices 940 may include a keyboard, a pointing device, and/or a microphone. The I/O devices 940 may further include a display unit for displaying graphical user interfaces, a speaker, and/or a printer. External data may be stored in one or more accessible external databases 960.
The features of the present embodiments described herein may be implemented in digital electronic circuitry, and/or in computer hardware, firmware, software, and/or in combinations thereof. Features of the present embodiments may be implemented in a computer program product tangibly embodied in an information carrier, such as a machine-readable storage device, and/or in a propagated signal, for execution by a programmable processor. Embodiments of the present method steps may be performed by a programmable processor executing a program of instructions to perform functions of the described implementations by operating on input data and generating output.
The features of the present embodiments described herein may be implemented in one or more computer programs that are executable on a programmable system including at least one programmable processor coupled to receive data and/or instructions from, and to transmit data and/or instructions to, a data storage system, at least one input device, and at least one output device. A computer program may include a set of instructions that may be used, directly or indirectly, in a computer to perform a certain activity or bring about a certain result. A computer program may be written in any form of programming language, including compiled or interpreted languages, and it may be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
Suitable processors for the execution of a program of instructions may include, for example, both general and special purpose processors, and/or the sole processor or one of multiple processors of any kind of computer. Generally, a processor may receive instructions and/or data from a read only memory (ROM), or a random access memory (RAM), or both. Such a computer may include a processor for executing instructions and one or more memories for storing instructions and/or data.
Generally, a computer may also include, or be operatively coupled to communicate with, one or more mass storage devices for storing data files. Such devices include magnetic disks, such as internal hard disks and/or removable disks, magneto-optical disks, and/or optical disks. Storage devices suitable for tangibly embodying computer program instructions and/or data may include all forms of non-volatile memory, including for example semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices, magnetic disks such as internal hard disks and removable disks, magneto-optical disks, and CD-ROM and DVD-ROM disks. The processor and the memory may be supplemented by, or incorporated in, one or more ASICs (application-specific integrated circuits).
To provide for interaction with a user, the features of the present embodiments may be implemented on a computer having a display device, such as an LCD (liquid crystal display) monitor, for displaying information to the user. The computer may further include a keyboard, a pointing device, such as a mouse or a trackball, and/or a touchscreen by which the user may provide input to the computer.
The features of the present embodiments may be implemented in a computer system that includes a back-end component, such as a data server, and/or that includes a middleware component, such as an application server or an Internet server, and/or that includes a front-end component, such as a client computer having a graphical user interface (GUI) and/or an Internet browser, or any combination of these. The components of the system may be connected by any form or medium of digital data communication, such as a communication network. Examples of communication networks may include, for example, a LAN (local area network), a WAN (wide area network), and/or the computers and networks forming the Internet.
The computer system may include clients and servers. A client and server may be remote from each other and interact through a network, such as those described herein. The relationship of client and server may arise by virtue of computer programs running on the respective computers and having a client-server relationship to each other.
The above description presents the best mode contemplated for carrying out the present embodiments, and of the manner and process of practicing them, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which they pertain to practice these embodiments. The present embodiments are, however, susceptible to modifications and alternate constructions from those discussed above that are fully equivalent. Consequently, the present invention is not limited to the particular embodiments disclosed. On the contrary, the present invention covers all modifications and alternate constructions coming within the spirit and scope of the present disclosure. For example, the steps in the processes described herein need not be performed in the same order as they have been presented, and may be performed in any order(s). Further, steps that have been presented as being performed separately may in alternative embodiments be performed concurrently. Likewise, steps that have been presented as being performed concurrently may in alternative embodiments be performed separately.
This application claims priority to provisional application Ser. No. 62/488,032, filed on Apr. 20, 2017. The entire contents of the priority application are hereby incorporated by reference in its entirety as if fully set forth.
Number | Name | Date | Kind |
---|---|---|---|
4764953 | Chern | Aug 1988 | A |
5428388 | von Bauer et al. | Jun 1995 | A |
5760848 | Cho | Jun 1998 | A |
6072402 | Kniffin et al. | Jun 2000 | A |
6192257 | Ray | Feb 2001 | B1 |
6271752 | Vaios | Aug 2001 | B1 |
6429893 | Xin | Aug 2002 | B1 |
6456322 | Marinacci | Sep 2002 | B1 |
6476858 | Ramirez Diaz et al. | Nov 2002 | B1 |
6633231 | Okamoto et al. | Oct 2003 | B1 |
6658091 | Naidoo et al. | Dec 2003 | B1 |
6753774 | Pan | Jun 2004 | B2 |
6970183 | Monroe | Nov 2005 | B1 |
7062291 | Ryley et al. | Jun 2006 | B2 |
7065196 | Lee | Jun 2006 | B2 |
7085361 | Thomas | Aug 2006 | B2 |
7109860 | Wang | Sep 2006 | B2 |
7193644 | Carter | Mar 2007 | B2 |
7304572 | Sheynman et al. | Dec 2007 | B2 |
7382249 | Fancella | Jun 2008 | B2 |
7450638 | Iwamura | Nov 2008 | B2 |
7643056 | Silsby | Jan 2010 | B2 |
7683924 | Oh et al. | Mar 2010 | B2 |
7683929 | Elazar et al. | Mar 2010 | B2 |
7738917 | Ryley et al. | Jun 2010 | B2 |
8139098 | Carter | Mar 2012 | B2 |
8144183 | Carter | Mar 2012 | B2 |
8154581 | Carter | Apr 2012 | B2 |
8368758 | Fujimoto | Feb 2013 | B2 |
8619136 | Howarter et al. | Dec 2013 | B2 |
8780201 | Scalisi et al. | Jul 2014 | B1 |
8823795 | Scalisi et al. | Sep 2014 | B1 |
8842180 | Kasmir et al. | Sep 2014 | B1 |
8872915 | Scalisi et al. | Oct 2014 | B1 |
8937659 | Scalisi et al. | Jan 2015 | B1 |
8941736 | Scalisi | Jan 2015 | B1 |
8947530 | Scalisi | Feb 2015 | B1 |
8953040 | Scalisi et al. | Feb 2015 | B1 |
9013575 | Scalisi | Apr 2015 | B2 |
9049352 | Scalisi et al. | Jun 2015 | B2 |
9053622 | Scalisi | Jun 2015 | B2 |
9058738 | Scalisi | Jun 2015 | B1 |
9060103 | Scalisi | Jun 2015 | B2 |
9060104 | Scalisi | Jun 2015 | B2 |
9065987 | Kasmir et al. | Jun 2015 | B2 |
9094584 | Scalisi et al. | Jul 2015 | B2 |
9113051 | Scalisi | Aug 2015 | B1 |
9113052 | Scalisi et al. | Aug 2015 | B1 |
9118819 | Scalisi et al. | Aug 2015 | B1 |
9142214 | Scalisi | Sep 2015 | B2 |
9160987 | Kasmir et al. | Oct 2015 | B1 |
9165444 | Scalisi | Oct 2015 | B2 |
9172920 | Kasmir et al. | Oct 2015 | B1 |
9172921 | Scalisi et al. | Oct 2015 | B1 |
9172922 | Kasmir et al. | Oct 2015 | B1 |
9179107 | Scalisi et al. | Nov 2015 | B1 |
9179108 | Scalisi et al. | Nov 2015 | B1 |
9179109 | Kasmir et al. | Nov 2015 | B1 |
9196133 | Scalisi et al. | Nov 2015 | B2 |
9197867 | Scalisi et al. | Nov 2015 | B1 |
9230424 | Scalisi et al. | Jan 2016 | B1 |
9237318 | Kasmir et al. | Jan 2016 | B2 |
9247219 | Kasmir et al. | Jan 2016 | B2 |
9253455 | Harrison et al. | Feb 2016 | B1 |
9342936 | Scalisi | May 2016 | B2 |
9508239 | Harrison | Nov 2016 | B1 |
9736284 | Scalisi et al. | Aug 2017 | B2 |
9743049 | Scalisi et al. | Aug 2017 | B2 |
9769435 | Scalisi et al. | Sep 2017 | B2 |
9786133 | Harrison et al. | Oct 2017 | B2 |
9799183 | Harrison et al. | Oct 2017 | B2 |
9871959 | Hlatky | Jan 2018 | B1 |
10139281 | Jeong | Nov 2018 | B2 |
20020094111 | Puchek et al. | Jul 2002 | A1 |
20020101166 | Weindorf | Aug 2002 | A1 |
20020135474 | Sylliassen | Sep 2002 | A1 |
20020147982 | Naidoo et al. | Oct 2002 | A1 |
20030043047 | Braun | Mar 2003 | A1 |
20030164772 | Hall | Sep 2003 | A1 |
20040085205 | Yeh | May 2004 | A1 |
20040085450 | Stuart | May 2004 | A1 |
20040086093 | Schranz | May 2004 | A1 |
20040095254 | Maruszczak | May 2004 | A1 |
20040135686 | Parker | Jul 2004 | A1 |
20050007451 | Chiang | Jan 2005 | A1 |
20050111660 | Hosoda | May 2005 | A1 |
20060010199 | Brailean et al. | Jan 2006 | A1 |
20060022816 | Yukawa | Feb 2006 | A1 |
20060139449 | Cheng et al. | Jun 2006 | A1 |
20060156361 | Wang et al. | Jul 2006 | A1 |
20060227862 | Campbell | Oct 2006 | A1 |
20070008081 | Tylicki et al. | Jan 2007 | A1 |
20070273624 | Geelen | Nov 2007 | A1 |
20080118163 | Chang | May 2008 | A1 |
20080252730 | Hong | Oct 2008 | A1 |
20090179988 | Reibel | Jul 2009 | A1 |
20090297135 | Willner | Dec 2009 | A1 |
20100118143 | Amir | May 2010 | A1 |
20100194692 | Orr | Aug 2010 | A1 |
20100225455 | Claiborne et al. | Sep 2010 | A1 |
20100225617 | Yoshimoto | Sep 2010 | A1 |
20110012746 | Fish, Jr. | Jan 2011 | A1 |
20110150483 | Eber | Jun 2011 | A1 |
20110157366 | Padmanabh | Jun 2011 | A1 |
20110210084 | Hardy | Sep 2011 | A1 |
20110250928 | Schlub | Oct 2011 | A1 |
20120079018 | Rottler | Mar 2012 | A1 |
20120146172 | Carey | Jun 2012 | A1 |
20120147243 | Townsend | Jun 2012 | A1 |
20120176218 | Ahn | Jul 2012 | A1 |
20120268274 | Wieser | Oct 2012 | A1 |
20130056637 | Miyashita | Mar 2013 | A1 |
20130057695 | Huisking | Mar 2013 | A1 |
20130120152 | Narasimhan | May 2013 | A1 |
20130215266 | Trundle | Aug 2013 | A1 |
20130222611 | Hsu | Aug 2013 | A1 |
20130229519 | Kavuru | Sep 2013 | A1 |
20130342687 | Leinen | Dec 2013 | A1 |
20140027613 | Smith | Jan 2014 | A1 |
20140192084 | Latta | Jul 2014 | A1 |
20140267716 | Child et al. | Sep 2014 | A1 |
20140313032 | Sager | Oct 2014 | A1 |
20150022620 | Siminoff | Jan 2015 | A1 |
20150035987 | Fernandez | Feb 2015 | A1 |
20150042795 | Tsuria | Feb 2015 | A1 |
20150097680 | Fadell | Apr 2015 | A1 |
20150097686 | Fadell | Apr 2015 | A1 |
20150116341 | Kenmochi | Apr 2015 | A1 |
20150155736 | Sun | Jun 2015 | A1 |
20150156031 | Fadell | Jun 2015 | A1 |
20150163463 | Hwang et al. | Jun 2015 | A1 |
20150212575 | Song | Jul 2015 | A1 |
20150287174 | St. Romain, II | Oct 2015 | A1 |
20150288877 | Glazer | Oct 2015 | A1 |
20150289771 | Narimatsu | Oct 2015 | A1 |
20150319411 | Kasmir | Nov 2015 | A1 |
20150370320 | Connor | Dec 2015 | A1 |
20160027262 | Skotty | Jan 2016 | A1 |
20160105847 | Smith | Apr 2016 | A1 |
20160116343 | Dixon et al. | Apr 2016 | A1 |
20160187127 | Purohit | Jun 2016 | A1 |
20160189531 | Modi | Jun 2016 | A1 |
20160191864 | Siminoff | Jun 2016 | A1 |
20160202071 | Sham | Jul 2016 | A1 |
20160267676 | Setomoto | Sep 2016 | A1 |
20160277688 | Gaskamp | Sep 2016 | A1 |
20160286607 | Mishra | Sep 2016 | A1 |
20160330403 | Siminoff | Nov 2016 | A1 |
20170004700 | Kim | Jan 2017 | A1 |
20170017214 | O'Keeffe | Jan 2017 | A1 |
20170076588 | Naylor | Mar 2017 | A1 |
20170078620 | Glazer | Mar 2017 | A1 |
20170105176 | Finnegan | Apr 2017 | A1 |
20170109984 | Child | Apr 2017 | A1 |
20170111567 | Pila | Apr 2017 | A1 |
20170124921 | Anelevitz | May 2017 | A1 |
20170163944 | Jeong | Jun 2017 | A1 |
20170186291 | Wenus | Jun 2017 | A1 |
20170187995 | Scalisi | Jun 2017 | A1 |
20170223337 | Sung | Aug 2017 | A1 |
20170251182 | Siminoff et al. | Aug 2017 | A1 |
20170261426 | Hirata | Sep 2017 | A1 |
20170277888 | Robinson | Sep 2017 | A1 |
20170294097 | Webb | Oct 2017 | A1 |
20170302892 | Ellerhold | Oct 2017 | A1 |
20170324908 | Gharabegian | Nov 2017 | A1 |
20180020643 | Duan | Jan 2018 | A1 |
20180176450 | Jeon | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
2585521 | Nov 2003 | CN |
2792061 | Jun 2006 | CN |
0944883 | Sep 1999 | EP |
1480462 | Nov 2004 | EP |
2286283 | Aug 1995 | GB |
2354394 | Mar 2001 | GB |
2357387 | Jun 2001 | GB |
2400958 | Oct 2004 | GB |
2001103463 | Apr 2001 | JP |
2002033839 | Jan 2002 | JP |
2002125059 | Apr 2002 | JP |
2002342863 | Nov 2002 | JP |
2002344640 | Nov 2002 | JP |
2002354137 | Dec 2002 | JP |
2002368890 | Dec 2002 | JP |
2003283696 | Oct 2003 | JP |
2004128835 | Apr 2004 | JP |
2005341040 | Dec 2005 | JP |
2006147650 | Jun 2006 | JP |
2006262342 | Sep 2006 | JP |
2009008925 | Jan 2009 | JP |
WO9839894 | Sep 1998 | WO |
WO0113638 | Feb 2001 | WO |
WO0193220 | Dec 2001 | WO |
WO02085019 | Oct 2002 | WO |
WO03028375 | Apr 2003 | WO |
WO03096696 | Nov 2003 | WO |
WO2006038760 | Apr 2006 | WO |
WO2006067782 | Jun 2006 | WO |
WO2007125143 | Nov 2007 | WO |
Entry |
---|
PCT Search Report dated Jul. 31, 2018 for PCT application No. PCT/US2018/028373, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20180308328 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
62488032 | Apr 2017 | US |