This disclosure relates to systems and methods for automatically monitoring at least one aircraft and rerouting the at least one aircraft with a goal of providing fuel, cost, time and environment benefits per the at least one aircraft operator's preferences.
Advances in the operational capabilities provided by avionics and Air Traffic Control ground systems have resulted in significant reductions in minimum separation standards in oceanic and remote airspace. These reductions have enabled more flexible and thus more efficient operations in this airspace, including the continuing reduction in the use of organized track structures. In many such tracts of airspace, airlines are able to specify, prior to flight, the route on which their aircraft operate and, provided aircraft and Air Traffic Control ground facilities are suitably equipped, dynamic airborne reroute procedures can be executed. However, very little advantage has been taken of the dynamic airborne reroute procedures capability.
In order to provide the flight crew with a dynamic airborne reroute procedure flight plan, the airline's dispatcher or flight planner must satisfy a wide range of regulatory, operational, and safety requirements. Although many airlines' ground systems are capable of satisfying the requirements, the planners' associated workload per re-route per flight is very high, and additional personnel resources are required to take any degree of benefit from dynamic airborne reroute procedures. Very few airlines have been able to make the business case for provision of the additional resources based on the level of benefit available.
At present, there are few solutions available to assist airlines in making informed requests of the air traffic service provider to reduce the operational inefficiencies resulting from preparation of dynamic airborne reroutes. In dynamic airborne reroute procedures, airlines' flight planners and dispatchers utilize flight planning systems iteratively to refine an optimal route in ways that satisfy all regulatory, operational, and safety requirements. This process is time-consuming and, even if additional planners are hired to absorb the additional workload, the time taken to deliver each reroute to the at least one aircraft in flight is long, and some of the benefit is thus lost. In addition, airlines have little or no knowledge of other traffic in the airspace, and are thus unable to provide conflict-free reroutes.
Where a reroute that the aircraft crew sends to Air Traffic Control as a request for clearance results in a traffic conflict, the controller either rejects the clearance or may offer an alternative. These alternatives are inevitably less beneficial and may require the crew to send the reroute flight plan back to the airline's flight planner to validate that all requirements are still met. This triggers an iteration of the reroute planning process with additional loss of benefit.
A system and method is needed to resolve one or more of the issues associated with the current practices employed to monitor and reroute aircraft.
In one embodiment, an automatic aircraft monitoring and proposed rerouting system is provided. The automatic aircraft monitoring and proposed rerouting system includes at least one processor and at least one memory. The at least one memory is in electronic communication with the at least one processor. The at least one memory includes programming code configured to be executed by the at least one processor. The programming code is configured to automatically monitor at least one aircraft and to automatically provide a proposed flight reroute for the at least one aircraft.
In another embodiment, a non-transitory computer-readable medium is provided. The non-transitory computer-readable medium includes programming code. The programming code is configured to command at least one processor to automatically monitor at least one aircraft and to automatically provide a proposed flight reroute for the at least one aircraft.
In still another embodiment, a method of automatically monitoring and proposing a reroute for at least one aircraft is provided. In one step, at least one aircraft is automatically monitored. In another step, a proposed flight reroute for the at least one aircraft is automatically provided.
The scope of the present disclosure is defined solely by the appended claims, and is not affected by the statements within this summary.
The disclosure can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosure.
The disclosure provides an automated system and method that proactively and dynamically optimizes airborne trans-oceanic, remote, polar, and domestic flight trajectories, subject to airspace and operational constraints (including traffic conflict avoidance, regulations, and airline policy), and using dynamic information including but not limited to environmental (weather), other traffic, and own aircraft state, thus enabling at least one airline to make better informed requests of the air traffic service provider for post-departure (either on ground or en route) re-routing. The disclosure receives triggers such as changes to winds and air temperatures, to significant environmental conditions like severe convective weather, to airline preferences, to airspace constraints, and to aircraft state information, and re-optimizes the aircraft's planned 4-dimensional trajectory in a way that takes account of the constraints and of known surrounding air traffic. The re-optimized plan is communicated to the at least one airline (or to the at least one aircraft) for use in dynamic airborne reroute procedures, providing environmental, operational, and economic benefits to the at least one airline. The re-optimized plan is computed based on aircraft operators' optimization preferences which may include one or more of: a cost optimal reroute; a fuel optimal reroute; a time optimal reroute; an environmentally beneficial reroute; an airspace constrained reroute; or an airport constrained reroute. The disclosure also allows for the pro-active and continual searching for optimum re-route opportunities for the at least one aircraft being monitored without requiring a manual optimization trigger by the at least one airline. For purposes of this disclosure, the term ‘reroute’ comprises a change in a flight's lateral path, a change in a flight's altitude, or a change in flight's speed, or any combination thereof.
The programming code 26 is configured to automatically provide the proposed flight route for the at least one aircraft 16 by automatically gathering and automatically considering airline information 32 provided by the at least one airline device 14, aircraft information 34 provided by the at least one aircraft 16, traffic information 36 provided by the at least one traffic device 18, and airspace information 38 provided by the at least one airspace device 20. In other embodiments, the programming code 26 may be configured to gather automatically and consider automatically any number or combination of the airline information 32 provided by the at least one airline device 14, the aircraft information 34 provided by the at least one aircraft 16, the traffic information 36 provided by the at least one traffic device 18, or the airspace information 38 provided by the at least one airspace device 20. In still other embodiments, the programming code 26 may be configured to automatically gather and automatically consider varying types of information from varying types of devices in order to automatically provide the proposed flight route for the at least one aircraft 16.
The airline information 32 provided by the at least one airline device 14 (which may comprise the airline of the at least one aircraft 16) comprises an aircraft flight to optimize, flight information, an airline preference, a customer request, a customer report, or an optimization trigger. In other embodiments, the airline information 32 provided by the at least one airline device 14 may vary in the number and types of information considered. The aircraft information 34 provided by the at least one aircraft 16 comprises a flight state, a flight intent, a reroute request, or a flight-crew preference. The at least one airline device 14 may collection and utilize one or both of statically available flight schedules and dynamically provided airline schedules. In other embodiments, the aircraft information 34 provided by the at least one aircraft 16 may vary in the number and types of information considered.
The traffic information 36 provided by the at least one traffic device 18 comprises a flight state of at least one other aircraft 40, and a flight intent of the at least one other aircraft 40. In other embodiments, the traffic information 36 provided by the at least one traffic device 18 may vary in the number and types of information considered. The airspace information 38 provided by the at least one airspace device 20 comprises an atmospheric condition, an airspace constraint, an airport adaptation, or an airspace adaptation. In other embodiments, the airspace information 38 provided by the at least one airspace device 20 may vary in the number and types of information considered.
The at least one operator device 28 is configured to receive information 50 from the at least one device 12 and to provide operator information 42 to the at least one device 12. The operator information 42 provided by the at least one operator device 28 comprises a system status, an optimization status, or a customer configuration. In other embodiments, the information 50 provided by the at least one device 12 to the at least one operator device 28 and the operator information 42 provided by the at least one operator device 28 to the at least one device 12 may vary in the number and types of information.
The at least one flight planning device 30 is configured to receive information 52 from the at least one device 12 and to provide flight plan information 44 to the at least one device 12. The at least one flight planning device 30 is configured to collect airline, aircraft, and airspace information needed to update current route and to compute new candidate reroutes. This function is designed to utilize either a built-in flight planning engine or an airline-specified flight planning engine. The flight plan information 44 provided by the at least one flight planning device 30 to the at least one device 12 comprises a computed flight plan, a conflict report, or a flight schedule. In other embodiments, the information 52 provided by the at least one device 12 to the at least one flight planning device 30 and the flight plan information 44 provided by the at least one flight planning device 30 to the at least one device 12 may vary in the number and types of information.
The at least one conflict detection device 31 is configured to receive information 53 from the at least one device 12 and to provide conflict detection information 45 to the at least one device 12. The at least one conflict detection device 31 is configured to collect airline, aircraft, and airspace information needed to probe a candidate reroute against traffic trajectories subject to airspace constraints. This function is designed to utilize either a built-in conflict detection algorithm or an airline or airline navigation service provider specified conflict detection algorithm. Additionally, the function can be configured to receive traffic data from one or more external sources. In other embodiments, the information 53 provided by the at least one device 12 to the at least one conflict detection device 31 and the conflict detection information 45 provided by the at least one conflict detection device 31 to the at least one device 12 may vary in the number and types of information.
The at least one conflict resolution device 33 is configured to receive information 55 from the at least one device and to provide conflict resolution information 47 to the at least one device 12. The at least one conflict resolution device 33 compiles a list of conflicts needed to propose resolution of these subject to airline and flight crew preferences. This function is designed to utilize either a built-in conflict resolution algorithm or an airline or airline navigation service provider specified conflict resolution algorithm. In other embodiments, the information 55 provided by the at least one device 12 to the at least one conflict resolution device 33 and the conflict resolution information 47 provided by the at least one conflict resolution device 33 to the at least one device 12 may vary in the number and types of information.
The at least one device 12 is configured to provide information 46 to the at least one airline device 14. The information 46 provided by the at least one device 12 to the at least one airline device 14 comprises a re-route advisory, an information request, an optimization status, or a custom message. In other embodiments, the information 46 provided by the at least one device 12 to the at least one airline device 14 may vary in the number and types of information.
The at least one device 12 is configured to provide information 48 to the at least one aircraft 16. The information 48 provided by the at least one device 12 to the at least one aircraft 16 comprises a re-route advisory. In other embodiments, the information 48 provided by the at least one device 12 to the at least one aircraft 16 may vary in the number and types of information.
The at least one device 12 is configured to provide information 50 to the at least one operator device 28. The information 50 provided by the at least one device 12 to the at least one operator device 28 comprises a system status, an optimization status, or a customer configuration. In other embodiments, the information 50 provided by the at least one device 12 to the at least one operator device 28 may vary in the number and types of information.
The at least one device 12 is configured to provide information 52 to the at least one flight planning device 30. The information 52 provided by the at least one device 12 to the at least one flight planning device 30 comprises a flight plan request, a conflict detection request, or a flight schedule request. In other embodiments, the information 52 provided by the at least one device 12 to the at least one flight planning device 30 may vary in the number and types of information.
The airline function 54 manages each airline's preferences and the required sets of flights and their attributes. In other embodiments, the airline function 54 may vary. The flight planning function 56 provides flight planning and other functions needed for system operations. In other embodiments, the flight planning function 56 may vary. The conflict detection function 58 automatically probes the computed reroutes against traffic trajectories and airspace constraints. In other embodiments, the conflict detection function 58 may vary. The airspace function 60 manages airspace information, and maintains a current picture of that environment. In other embodiments, the airspace function 60 may vary. The configuration function 62 allows the system operator/at least one operator device to configure the system for different airlines. In other embodiments, the configuration function 62 may vary.
The route optimization function 64 enables an internal or external optimization function to compute and re-compute routes automatically and proactively after a flight has departed to take into account cost benefit, environmental benefit, or other types of benefits. In other embodiments, the route optimization function 64 may vary. The traffic function 66 computes traffic trajectories and determines the set of traffic relevant to flights being optimized. In other embodiments, the traffic function 66 may vary. The conflict resolution function 68 resolves potential conflicts per airline, flight crew, and air navigation service provider preferences. In other embodiments, the conflict resolution function 68 may vary. The communication function 70 notifies the at least one airline or the at least one aircraft of reroute opportunities and associated environment and cost benefits. In other embodiments, the communication function 70 may vary. The operator function 72 performs system performance and operational analysis per system operator needs. In other embodiments, the operator function 72 may vary.
The airline information comprises at least one aircraft flight to optimize, flight information, an airline preference, a customer request, a customer report, or an optimization trigger. In other embodiments, the airline information may vary. The aircraft information comprises a flight state, a flight intent, a reroute request, or a flight-crew preference of the at least one aircraft. In other embodiments, the aircraft information may vary. The airspace information comprises an atmospheric condition, an airspace constraint, an airport adaptation, or an airspace adaptation. In other embodiments, the airspace information may vary. The traffic information comprises a flight state of at least one other aircraft, and a flight intent of the at least one other aircraft. In other embodiments, the traffic information may vary.
In step 98, a proposed flight reroute for the at least one aircraft is automatically provided. In one embodiment, step 98 comprises automatically providing the flight reroute for the at least one aircraft directly to the at least one airline of the at least one aircraft. In another embodiment, step 98 comprises automatically providing the flight reroute for the at least one aircraft directly to the at least one aircraft. In other embodiments, the method 94 may vary in the order of the steps, the substance of the steps, the number of the steps, may not follow one or more of the steps, or may follow one or more additional steps.
One or more embodiments of the disclosure may have the following advantages. The system/method automatically monitors and automatically provides a proposed flight reroute for at least one aircraft. The system/method provides at least one airline or the at least one aircraft with not only the proposed flight reroute for the at least one aircraft but also with the benefit of the proposed flight reroute such as the fuel saved, the time saved, the environmental impact advantages, or other types of benefits of the proposed flight reroute over the current route of the at least one aircraft. The system/method provides a strategic route optimization which can change the currently filed flight plan by more than the tactical “cutting-corners” in the currently filed flight plan.
The system/method provides reroute data in a form suitable for immediate and automatic ingestion into an airline's flight planning system and avionics system. The system/method considers multiple flights optimization for a single airline as well as for multiple airlines, with each getting a commensurate/fair level of benefits using a rules-based equity algorithm. The system/method may specialize flight optimization ideas to oceanic, polar, and remote airspace where communications and surveillance are of lower quality and where separation standards are therefore greater. The system/method may not depend on the availability of real-time traffic surveillance data at some levels of service. The system/method may account for traffic of aircraft on fixed tracks, on flexible tracks, and on airline preferred routes.
The system/method may provide the optimal 4D entry point (fixed or flexible as appropriate to the airspace boundary) based on subsequent routing and other constraints, optimal routing from the entry point through the oceanic, polar and remote airspace transit, and an optimal exit point (fixed or flexible as appropriate to the airspace boundary) based on predicted traffic issues in subsequent continental airspace. The system/method may generate re-routes through multiple flight information regions and, where necessary, the route may be tailored based on the available ground infrastructure. The system/method provides a collaborative solution architecture that incorporates information available to the at least one flight crew, the at least one airline, and the at least one controller. The system/method may manipulate the 4-dimensional aircraft trajectory to search for an optimal re-route in terms of lateral path, vertical profile, and speed variations.
The system/method may present advisories which are free of conflict, within the constraints of the traffic data available, based on the state and intent of other aircraft, while respecting dynamic special use airspace restrictions, applicable flow constraints, and own aircraft performance capabilities and limitations (for instance, flight envelopes with current weight). The system/method may tailor advisories to account for the communication, navigation, surveillance, and automation capabilities (that can affect separation standards in use in the airspace) of the aircraft being monitored as well as of the relevant traffic aircraft. The system/method may tailor advisories to account for the communication, navigation, surveillance, and automation capabilities of an airline. The system/method may tailor advisories to account for the communication, navigation, surveillance, and automation capabilities of an air navigation service provider.
The system/method may provide guidance on when not to request an in-flight re-route. The system/method may provide guidance on how long to wait and which maneuver to perform before requesting an in-flight reroute, including In-Trail Procedure opportunity assessment. The system/method may propose a direct coupling of the airline trajectory optimization system, which in turn may be coupled to operational control systems (i.e. reservations, airframe usage and movement, crew movement, high-value passenger connection, etc.) so the business rules and preferences can be segregated from the air navigation service provider or other central planning agency, but will be taken into account with high fidelity.
The system/method automatically, proactively, and continually searches for optimum rerouting opportunities for the at least one aircraft (for flights such as trans-oceanic or other types of flights subject to airspace and operational constraints including traffic avoidance, regulations, and airline policy, and using dynamic information including but not limited to weather, other traffic, and own aircraft state) without requiring the at least one airline to manually do this upon a trigger such as an environmental condition, and thus enabling the at least one airline or the at least one aircraft to make better informed requests of the air traffic service provider for in-flight (or pre-flight) re-routing. This may provide beneficial reroutes independent of triggers such as changes in the weather. This may also identify changes in airspace constraints and provide reroutes that optimally avoid newly activated airspace or take beneficial advantage of unexpected deactivation of restrictions. This further reduces or eliminates the need for personnel, reduces costs associated with fuel, flight-time, and required personnel, increases customer preference, reduces the emission of greenhouse gases, allows more flights to take advantage of already reduced separation distances, and is more resource-efficient than current systems and methods. The system/method may further provide one or more additional types of advantages.
The Abstract is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed element of subject matter.
While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true scope of the subject matter described herein. Furthermore, it is to be understood that the disclosure is defined by the appended claims. Accordingly, the disclosure is not to be restricted except in light of the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5631640 | Deis | May 1997 | A |
5999882 | Simpson | Dec 1999 | A |
6097996 | Deker | Aug 2000 | A |
6160497 | Clark | Dec 2000 | A |
6289277 | Feyereisen | Sep 2001 | B1 |
6389355 | Gibbs | May 2002 | B1 |
6571166 | Johnson | May 2003 | B1 |
6604044 | Kirk | Aug 2003 | B1 |
6744382 | Lapis | Jun 2004 | B1 |
6828921 | Brown | Dec 2004 | B2 |
7483790 | Brent | Jan 2009 | B2 |
7813845 | Doose | Oct 2010 | B2 |
7835825 | Coulmeau | Nov 2010 | B2 |
7925394 | Deker | Apr 2011 | B2 |
7979199 | Judd | Jul 2011 | B2 |
8014907 | Coulmeau | Sep 2011 | B2 |
8065043 | Gremmert | Nov 2011 | B2 |
8082102 | Ravenscroft | Dec 2011 | B2 |
8165790 | Bailey | Apr 2012 | B2 |
8280626 | Klooster | Oct 2012 | B2 |
8285427 | Rogers et al. | Oct 2012 | B2 |
8416099 | Bailey | Apr 2013 | B2 |
8417396 | Goodman | Apr 2013 | B2 |
8467918 | Lieu | Jun 2013 | B2 |
8467919 | Klooster | Jun 2013 | B2 |
8594863 | Coulmeau | Nov 2013 | B2 |
8600588 | Del Amo Blanco | Dec 2013 | B2 |
8606491 | Subbu | Dec 2013 | B2 |
8781651 | Tino | Jul 2014 | B2 |
8818696 | Klooster | Aug 2014 | B2 |
8843303 | Young | Sep 2014 | B1 |
8849476 | Coulmeau | Sep 2014 | B2 |
8868345 | Lax | Oct 2014 | B2 |
8942914 | Subbu | Jan 2015 | B2 |
9043043 | Gribble | May 2015 | B1 |
9076326 | Maji | Jul 2015 | B2 |
9098997 | Stewart | Aug 2015 | B2 |
9255808 | Andersson | Feb 2016 | B2 |
9520066 | Spinelli | Dec 2016 | B2 |
9536435 | Shay | Jan 2017 | B1 |
9558670 | Sheth | Jan 2017 | B1 |
20030122701 | Tran | Jul 2003 | A1 |
20030146853 | Bolduc | Aug 2003 | A1 |
20050049762 | Dwyer | Mar 2005 | A1 |
20050156777 | King | Jul 2005 | A1 |
20050203675 | Griffin, III | Sep 2005 | A1 |
20050261808 | Artini | Nov 2005 | A1 |
20060089760 | Love | Apr 2006 | A1 |
20060267748 | Knoop | Nov 2006 | A1 |
20070043482 | Aimar | Feb 2007 | A1 |
20070129854 | Sandell | Jun 2007 | A1 |
20070129855 | Coulmeau | Jun 2007 | A1 |
20080059058 | Caillaud | Mar 2008 | A1 |
20080065312 | Coulmeau | Mar 2008 | A1 |
20080288164 | Lewis | Nov 2008 | A1 |
20090125221 | Estkowski | May 2009 | A1 |
20090157237 | Bitar | Jun 2009 | A1 |
20090179114 | Conner | Jul 2009 | A1 |
20100030401 | Rogers | Feb 2010 | A1 |
20100100308 | Coulmeau | Apr 2010 | A1 |
20100114922 | Gayraud | May 2010 | A1 |
20100152931 | Lacombe | Jun 2010 | A1 |
20100292871 | Schultz | Nov 2010 | A1 |
20100324812 | Sacle | Dec 2010 | A1 |
20100332056 | Kirk | Dec 2010 | A1 |
20110172914 | Coulmeau | Jul 2011 | A1 |
20110208415 | Mere | Aug 2011 | A1 |
20110313598 | Coulmeau | Dec 2011 | A1 |
20120075124 | Whitlow | Mar 2012 | A1 |
20120158219 | Durling | Jun 2012 | A1 |
20120158278 | Peinecke | Jun 2012 | A1 |
20120215384 | Fritz | Aug 2012 | A1 |
20130080043 | Ballin | Mar 2013 | A1 |
20130238170 | Klinger | Sep 2013 | A1 |
20130345956 | Struzik | Dec 2013 | A1 |
20140012500 | Savarit | Jan 2014 | A1 |
20140142785 | Fuentes | May 2014 | A1 |
20140156109 | Estkowski | Jun 2014 | A1 |
20140343761 | Pastor | Nov 2014 | A1 |
20140343765 | Suiter | Nov 2014 | A1 |
20150269846 | De Prins | Sep 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20150379875 A1 | Dec 2015 | US |