The present invention relates generally to automatic analyzers for clinical laboratory tests used for qualitative/quantitative analysis on such biological samples as of blood and urine, more particularly to an automatic analyzer having a function that creates a calibration curve for computing concentrations.
Automatic analyzers for clinical laboratory tests are used to measure specific constituents contained in such biological samples as of blood and urine. The operation of a general automatic analyzer is to dispense a sample and reagent into a reaction vessel via respective special nozzles. After stirring the sample and reagent and causing reactions between these substances for a fixed time, the automatic analyzer computes a concentration of a desired item from the information obtained from a resulting reaction solution such as absorbance and the amount of light generated by the analyte. The computation of such a concentration uses a calibration curve, in which an approximate amount of light absorbed or generated per unit concentration is adopted as an index. A way to compute concentration using absorbance in order to create a calibration curve is discussed below by way of example. First, a plurality of absorbance values per unit concentration are measured using several standard solutions of a predetermined concentration, and a relationship between the measured concentration and absorbance values is plotted. Then, the plotted data points are connected using regression equations/formulas for linearity or nonlinearity, thereby creating a calibration curve.
The number of standard solutions measured prior to the creation of the calibration curve differs depending on the item. These standard solutions may have a plurality of items in common with a solution, which makes it difficult for a user of the apparatus to accurately understand how long it will take till the measurement for a desired item becomes measurable.
Since a plurality of standard solutions need to be used, failure to request the measurement of even one of the standard solutions, or failure to set even one standard solution in the apparatus would result in failing to create a calibration curve, which would then make it necessary to request the measurement once again. This is greatly inconvenient.
Patent Document 1 as JP-2010-151707-A below discloses an example of an analyzer having a function that makes a GUI screen of a residual waiting time required until the analyzer can start measuring each of a plurality of standard solutions (hereinafter, this time may be referred to simply as the residual time). The creation of a calibration curve requires prior acquisition of measurement results on all the standard solutions necessary for a particular item. A plurality of standard solutions, however, might have a different number of items allocated to each of the standard solutions or might not be adjacent to each other. This makes it less beneficial to display the residual time up to the start of the measurement for each of the standard solutions since a total residual time for all the standard solutions needs to be confirmed and calculated before the time up to the acquisition of all desired items. Additionally, whether the necessary standard solutions have been measured needs to be confirmed for each of the standard solutions via a GUI, which will increase a workload upon the user of the apparatus.
The number of clinical laboratory technicians and other persons who work in clinical practice is confined to a minimum in the stream of medical cost reduction, and every technician who is assigned a plurality of jobs is working under extreme pressure. For this reason, if the technicians can know when they can be away from the apparatus they are in charge of, they could concentrate more on other jobs. As discussed earlier herein, present analyzers can output the time up to the completion of sample-by-sample measurement. For at least patient samples, output of residual time for each sample is a convenient function since displaying the residual time for each sample enables an operator to know scheduled time of reporting to doctors.
The creation of a calibration curve is a job basically during the very busy time of the day immediately before a large quantity of samples is carried to the laboratory. In addition, a plurality of standard solutions (samples) are measured for one item prior to the creation of the calibration curve, and as discussed earlier herein, the standard solutions need to be measured for one item, and a plurality of items may need to be used for one standard solution. With conditions thus changing as needed, it tends to be difficult for the user of the apparatus, for example to know how many more minutes left till the measurement for the item can be started, or to check for failure to set the necessary number of standard solutions in the apparatus or to request the measurement of the standard solutions.
The present invention is intended to enable a user of an analyzer, by minimum operations such as screen operations, to reliably recognize failure to set a reagent used for a desired measurement item or to request the measurement of the item, and accurately understand the time at which the item to be measured can be started. The invention is also intended to enable the user to confirm measurement status information on standard solutions via one GUI screen and thus to efficiently perform assigned jobs.
A configuration of the present invention for solving the foregoing problems is outlined below.
The invention is an automatic analyzer provided with a function which, before standard solutions are used to create a calibration curve for measuring a concentration of a constituent contained in a biologically-derived sample such as blood (blood corpuscles or liquid component), urine, and cerebrospinal fluid, outputs measurement status information for each of measurement items (i.e., identification information identifying a measurement status of completed, under process, and prior to process, residual time up to the completion of measurement, and measurement status information on the standard solutions).
More specifically, the automatic analyzer according to the invention includes: a reaction disk with a reaction vessel mounted thereupon for causing a reaction between a first sample and a reagent; a light source that illuminates the reaction vessel with light; a photometer that detects the light passed through the reaction vessel; storage means that receives and then retains calibration curve data used to calculate a concentration of a constituent contained in the first sample; and a control unit that measures the calibration curve data by use of standard solution samples of a known concentration and stores the measured data into the storage means, the control unit further calculating the concentration of the constituent corresponding to a measurement item of the first sample based on information detected by the photometer and the calibration curve data stored in the storage means, wherein when the control unit measures the calibration curve data, the unit outputs measurement status information on the calibration curve data for each measurement item to an information apparatus.
The present invention enables a user of the analyzer by minimum operations such as screen operations to reliably recognize failure to set a reagent used for a desired measurement item or to request the measurement of the item, and accurately understand the time at which the item to be measured becomes measurable. The invention also enables the user to confirm measurement status information on standard solutions via one GUI screen and thus to efficiently perform assigned jobs.
Hereunder, an automatic analyzer for clinical laboratory tests according to an embodiment of the present invention, and examples of screen composition and functions of the analyzer will be described using
First, an example of an automatic analyzer the present invention is applied to is described below with
The automatic analyzer 1 includes a samples disk 2, sample containers 3 arranged concentrically thereupon, a reaction disk 4, reaction vessels 5 arranged concentrically on the reaction disk, a sample-dispensing mechanism 6, a reagent disk 7, reagent containers 8 arranged concentrically on the reaction disk and containing various reagents, a reagent-dispensing mechanism 9, a stirring mechanism 10, a light source 11, a photometer (multiwavelength photometer) 12, an A/D converter 13, a reaction vessel cleaning mechanism 14, and a dispenser nozzle cleaning mechanism 15.
The automatic analyzer 1 analyzes a sample in the following sequence. First, the sample-dispensing mechanism 6 dispenses the sample to be analyzed, from a sample container 6 into a reaction vessel 5. Next, the reagent-dispensing mechanism 9 dispenses a reagent to be used for the analysis, from a reagent container 8 into the reaction vessel 5. After this, the stirring mechanism 10 stirs the dispensed sample and reagent to generate a mixture of both liquids. Light that has been emitted from the light source 11 and has passed through the reaction vessel 5 containing the liquid mixture is detected and measured by the photometer (multiwavelength photometer) 12 and then transmitted to an interface 17 via the A/D converter 13. A computer 18 includes a control unit. After measurement results have been computed by the control unit, the obtained measurement results are saved in storage means 19. In addition, the measurement results are output to an information apparatus and, for example, displayed at a display unit 20. The dispenser nozzle cleaning mechanism 15 cleans a tip of a dispenser nozzle whenever the sample-dispensing mechanism 6 and the reagent-dispensing mechanism 9 dispense a sample or reagent. After a reaction between the liquids, the reaction vessel 5 is cleaned by the reaction vessel cleaning mechanism 14 and then used repeatedly for following reactions. These operating mechanisms of the analyzer are all controlled via communication means 16 and the interface 17 by the control unit included in the computer 18.
A calibration curve is used for the computation of the measurement results. The calibration curve data is measured before a sample of an unknown concentration corresponding to a predetermined item is measured. The calibration curve data can be created by using standard solutions of a known concentration which corresponds to the predetermined item and deriving a relationship between the known concentration and the information detected by the photometer. The unknown concentration of the sample that corresponds to the predetermined item is calculated from the photometer-detected information obtained from the above-derived relationship.
More specific examples in which measurement status information on the calibration curve data by the automatic analyzer in the present invention is output to an information apparatus are described below using
The GUI screen is classified into two major screens. One is a main screen 21 showing each device operation category, and the other is a sub screen 22 showing a detailed status of the main screen. When measurement status information on the standard solutions is displayed in the sub screen 22, a standard solution measurement status for each item display area 24 and a standard solution measurement status of specified item display area 25 for a specific item are displayed in the sub screen 22. The specific item here is an item that has been selected in the area 24.
A present measurement status, item names, locations of reagents, usage conditions of the reagents, execution methods of calibration, and residual time up to the completion of measurement of all standard solutions needed for the item for which the calibration is currently in progress are displayed in the standard solution measurement status for each item display area 24. Either symbol P denoting “Under process,” symbol S denoting “Calibration succeeded,” or symbol F denoting “Calibration failed” is optionally displayed under “Status” in the measurement status display area 24. This measurement status information, however, needs only to be identification information that enables the operator to discriminate whether the measurement is completed, under process, or has not begun, and the identification information is not limited to S, P, and F. The operator only needs to be able to discriminate the measurement status, for example, by color, hatching, or any other appropriate forms. In the example of
In the standard solution measurement status of specified item display area 25, a present measurement status, names of standard solutions, locations of the standard solutions, analysis start time for each of the standard solutions, and residual time up to the completion of measurement of each standard solution are displayed as standard-solution measurement status information on the item selected in the standard solution measurement status for each item display area 24. In the measurement status display area 25, symbol P, S, or F is optionally displayed under “Status,” as in the standard solution measurement status for each item display area 24. This measurement status information, as with what is described above, needs only to be identification information that enables the operator to discriminate whether the measurement is completed, under process, or has not begun.
The example where the standard solution measurement status for each item display area 24 and the standard solution measurement status of specified item display area 25 are displayed on a same screen is described in
That is to say, even in the same item, the standard solution to be needed will be different when the calibration executing method changes. In order that the standard solution corresponding to the calibration executing method will be displayed in the standard solution measurement status of specified item display area 25, the control unit outputs the measurement status information to the display unit and causes the display unit to display the information.
The embodiments of the present invention have been described above. The invention enables measurement status information on calibration curve data to be easily confirmed for each measurement item. The invention also enables the user of the apparatus by minimum operations such as screen operations to reliably recognize failure to set a reagent used for a desired measurement item or to request the measurement of the item, and accurately understand the time at which the item to be measured becomes measurable.
In addition, the invention enables the user to confirm the scheduled time for creating a calibration curve for each item, accurately recognize the time to be away from the apparatus, and concentrate on other jobs in spare time, thereby improving job efficiency.
Number | Date | Country | Kind |
---|---|---|---|
2011-205496 | Sep 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/067418 | 7/9/2012 | WO | 00 | 2/3/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/042431 | 3/28/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5316726 | Babson | May 1994 | A |
5741461 | Takahashi | Apr 1998 | A |
6080364 | Mimura | Jun 2000 | A |
20020116132 | Rhett | Aug 2002 | A1 |
20020147515 | Fava | Oct 2002 | A1 |
20040181343 | Wigstrom | Sep 2004 | A1 |
20040202577 | McNeil | Oct 2004 | A1 |
20050227360 | Devlin, Sr. | Oct 2005 | A1 |
20060027490 | DeMarco | Feb 2006 | A1 |
20060046298 | Key | Mar 2006 | A1 |
20060178776 | Feingold | Aug 2006 | A1 |
20070077643 | Nakamura | Apr 2007 | A1 |
20070154970 | Buechler | Jul 2007 | A1 |
20080020469 | Barnes | Jan 2008 | A1 |
20080056939 | Awata | Mar 2008 | A1 |
20080230697 | Tanimoto | Sep 2008 | A1 |
20080240988 | Wakamiya | Oct 2008 | A1 |
20090004057 | Sato | Jan 2009 | A1 |
20090081794 | Wakamiya | Mar 2009 | A1 |
20090142231 | Shibuya | Jun 2009 | A1 |
20090214385 | Mori | Aug 2009 | A1 |
20090269242 | Nozawa | Oct 2009 | A1 |
20100209298 | Kalra | Aug 2010 | A1 |
20100250174 | Tokunaga | Sep 2010 | A1 |
20110169836 | Orihashi | Jul 2011 | A1 |
20110259129 | Murata | Oct 2011 | A1 |
20110301917 | Kamihara | Dec 2011 | A1 |
20120000268 | Li | Jan 2012 | A1 |
20120004857 | Yamato | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
2007-292525 | Nov 2007 | JP |
2008-064680 | Mar 2008 | JP |
2009-008611 | Jan 2009 | JP |
2010-151707 | Jul 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20140170027 A1 | Jun 2014 | US |