This application relates to medical devices and in particular to procedures in which an undesired tissue has to be removed without harming an adjacent desired tissue, such as in atherectomy.
In many medical procedures an undesirable tissue is adherent or touching a desired tissue and the removal of the undesired tissue has to be done with extreme caution in order not to harm the desired tissue. A well known example is atherectomy, the process of removing plaque from blood vessels. The most common method of atherectomy is based on the use of a high speed rotary burr, mounted at the end of a very flexible catheter. The burr pulverizes the plaque into such fine particles that they can be left in the blood stream. A well known system is manufactured by the Boston Scientific Company (www.bostonscientific.com) under the name Rotablator™. No further data is given here about this system as it is a well known commercial system. Other potential uses of the invention are removal of tumors, such as prostate cancer, liposuction, dental work and more. Today most of these procedures are performed by a surgeon manipulating a surgical tool (directly or remotely) while observing the tool position using means such as fluoroscopy or ultrasound, or by tactile feel. In some procedures there is no need to remove tissue but there is still a need to navigate within the body, such as directing a catheter through the blood system. The present invention can save the majority of the surgeon's time and operating room expenses.
The present embodiments of the invention provide an automated way to navigate within the body and remove undesired tissue without doing any harm to desired tissue, even in situations where the undesired tissue is adherent. The same approach can be used for just navigation, without tissue removal. The preferred embodiment shown is atherectomy. In atherectomy there is a need to differentiate between plaque and blood vessel wall. It is well known that plaque has different electrical properties than blood vessel wall; however the blood vessels are full of blood which has electrical properties similar to the vessel wall. In order to automate atherectomy a discriminator between vessel wall, plaque and blood is required. Also, it is desired to sense proximity to a vessel wall, not just contact. The embodiments of the present invention provide exactly this capability. A similar situation exists in some tumor removal procedures: some tumors have different electrical properties than healthy tissue but the in-situ measurement of these properties is complicated by the fact that the voids left in the process of tissue removal are being filled with fluids which affect the measurements. Prior attempts to automate atherectomy relied on a guide wire (which cannot be used in case of complete occlusion) or on devices to help the surgical tool glide in a correct trajectory within the blood vessel. Since the plaque can be softer or harder than the vessel wall, it is very difficult to rely on such “self steering” methods. The approach described herein identifies the different materials surrounding the rotary burr at the tip of the atherectomy catheter and automatically steers the burr to remove the undesired tissue, such as plaque.
The invention uses the tip of a catheter as a sensing device, in order to measure both the electrical conductivity and permittivity of the surrounding tissue at multiple frequencies. From these parameters it is determined which tissue lies in the different directions. A servo system steers the catheter tip in the direction of the tissue to be removed. In non-atherectomy applications the rotary tip can be replaced with any desired tool and the system can be used to automatically steer the catheter to the desired position. The steering is done hydraulically, by pressurizing miniature bellows located near the catheter tip.
In general, the invention can be used for a broad range of applications as the invention does not rely on the type of procedure used. It can be used with rotary burrs, stents, guide wires, suction, electro-surgery etc.
In atherectomy there is a need to differentiate between at least three types of tissue: vessel wall, plaque and blood. Both vessel wall and blood have high conductivity and high permittivity, while plaque has low conductivity and permittivity. The key for differentiating blood from vessel wall is the change in permittivity with frequency: the permittivity of the vessel wall falls much faster as the frequency increases.
Other features and advantages of the invention will become apparent by studying the description of the preferred embodiment in conjunction with the drawings.
Referring to
Referring now to
The discrimination of tissue types is shown in
The impedance of the tissue to ground (the patient is grounded) is shown schematically as impedance 24. A current is sent from oscillator 26 via resistor 25, contact 7, cable 7 and burr 5 to the tissue impedance 24. The lower the impedance 24 the lower the voltage at contact 9 will be. Both the in-phase component I and the quadrature component Q is measured by any one of the standard methods of AC impedance measurement. By the way of example, the I component is found by multiplying output f1 of oscillator 26 with the voltage senses at contact 9 using an analog multiplier 30. The Q component is found by multiplying the same voltage with the output of f1 shifted by 90 degrees by phase shifter 29. The output of the multipliers are filtered by capacitors 31 and converted to digital by A/D converters 38. This is the standard sine and cosine separation method for finding the conductivity and permittivity components of a complex impedance. For frequencies below a few MHz, the voltage at contact 9 can be digitized and the derivation of the conductivity and permittivity can be done completely via digital signal processing. In order to generate the rotational reference pulse, the point when the voltage of sense wire 11 drops each revolution has to be found. The actual voltage can vary over a wide range, depending on the surrounding tissue, but the dip is always when the conductive strip 16 (see
Since the rate of change of the permittivity with frequency is required, at least two frequencies have to be used, three would be even more accurate. These are generated by oscillators 26, 27 and 28. For each frequency the circuit shown has to be replicated. It is also possible to use a single variable frequency source and single detection circuit and multiplex the detection process.
A typical discriminator output is shown in
1. A completely standard burr can be used, however sensing does not extend tip of burr.
2. System can be used for applications not requiring rotary burrs.
3. Only low frequency processing is required, as processing can be done at the steering bandwidth instead of the rotation speed. Steering bandwidth is below 100 Hz.
The catheter has four actuation channels 17 and four sense wires 11 terminating in four tips 21. If a burr is used, tips can protrude to partially envelope burr.
The computer 12 in
There are similar data bases available on the internet for properties of malignant tumors versus healthy tissue.
The hydraulic actuators 13 are shown in
By the way of example, burr 5 is a standard burr with an external diameter of between 1.5 to 2.5 mm. Because the system is automated a single small burr can be used for all blood vessel sizes, as the computer will steer the bar in all radial directions to clean a large vessel. Catheter 6 is slightly smaller than burr 5. Diameter of piston 45 is 1-2 mm and stroke is about 10 mm. Piston 45 and cylinder 44 are made of very hard material, such as alumina, ruby or tungsten carbide, with a lapped fit. The pressure of the fluid is fairly high, typically 50-100 Kg/cm2. Typical component values for the discriminator 10 are: frequencies in the 1 KHz to 1 GHz range, time constants of filter 31 of about 10-100 uS, time constant of capacitor 34 of 10-100 uS, time constant of capacitor 36 and resistor 35 of 10-100 mS.
An alternate way of steering is by using push-wires in channels instead of a liquid. The actuators and catheter are very similar to the ones discussed earlier.
Still another way of steering is use to catheter tips made of ferromagnetic material and have a controlled external magnetic field. A variation is a system having a fixed external field and a catheter tip carrying three orthogonal coils to generate a force in any desired direction. This is available as a commercial system under the trademark Niobe. It is sold by the Stereotaxis corporation (vwww.stereotaxis.com).
While the preferred embodiment relates to atherectomy and used electrical impedance sensing other applications and other sensing methods are part of this invention. By the way of example, different tissues can be discriminated by their mechanical properties such as stiffness, hardness and damping. This can be sensed by a vibrating tip. Tissues can also be discriminated by thermal properties. A tip similar to
Also, the word “automatically” in this disclosure and claims should be broadly interpreted, from a simple assist to the surgeon in operating surgical systems to fully unattended operation of such a system. In the minimal version the surgeon fully controls the system; the tissue discriminator just assists the surgeon in the decision and operation of the atherectomy or other system. In a fully unattended operation the catheter can also be automatically advanced into the body and can be programmed to enter the correct blood vessel when coming to a junction point where there are multiple choices of routes. In the same manner, the “tool” or “catheter tip” should be broadly interpreted to include both contact tools (burrs, rotary wires, blades, suction, electro-surgery etc) as well as non contact tools (lasers, water-jet, gas jet etc).
This application is a division of U.S. patent application Ser. No. 12/950,871 filed Nov. 19, 2010, which is a division of U.S. patent application Ser. No. 11/436,584 filed May 19, 2006, now abandoned, both of which are incorporated herein, by reference, in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4114202 | Roy et al. | Sep 1978 | A |
4164046 | Cooley | Aug 1979 | A |
4225148 | Andersson | Sep 1980 | A |
4240441 | Khalil | Dec 1980 | A |
4263680 | Reul et al. | Apr 1981 | A |
4273128 | Lary | Jun 1981 | A |
4411266 | Cosman | Oct 1983 | A |
4490859 | Black et al. | Jan 1985 | A |
4543090 | McCoy | Sep 1985 | A |
4770187 | Lash et al. | Sep 1988 | A |
4794912 | Lia | Jan 1989 | A |
4850957 | Summers | Jul 1989 | A |
4887613 | Farr et al. | Dec 1989 | A |
4890602 | Hake | Jan 1990 | A |
4890612 | Kensey | Jan 1990 | A |
4893613 | Hake | Jan 1990 | A |
4895166 | Farr et al. | Jan 1990 | A |
4921499 | Hoffman et al. | May 1990 | A |
4942788 | Farr et al. | Jul 1990 | A |
4979514 | Sekii et al. | Dec 1990 | A |
4998933 | Eggers et al. | Mar 1991 | A |
5026384 | Farr et al. | Jun 1991 | A |
5047047 | Yoon | Sep 1991 | A |
5122137 | Lennox | Jun 1992 | A |
5127902 | Fischell | Jul 1992 | A |
5156151 | Imran | Oct 1992 | A |
5174299 | Nelson | Dec 1992 | A |
5176693 | Pannek, Jr. | Jan 1993 | A |
5178620 | Eggers et al. | Jan 1993 | A |
5192291 | Pannek, Jr. | Mar 1993 | A |
5201316 | Pomeranz et al. | Apr 1993 | A |
5228442 | Imran | Jul 1993 | A |
5242386 | Holzer | Sep 1993 | A |
5279299 | Imran | Jan 1994 | A |
5293869 | Edwards et al. | Mar 1994 | A |
5312435 | Nash et al. | May 1994 | A |
5317952 | Immega | Jun 1994 | A |
5341807 | Nardella | Aug 1994 | A |
5366443 | Eggers et al. | Nov 1994 | A |
5379773 | Hornsby | Jan 1995 | A |
5419767 | Eggers et al. | May 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5496267 | Drasler et al. | Mar 1996 | A |
5531760 | Alwafaie | Jul 1996 | A |
5557967 | Renger | Sep 1996 | A |
5593424 | Northrup, III | Jan 1997 | A |
5598848 | Swanson et al. | Feb 1997 | A |
5662587 | Grundfest et al. | Sep 1997 | A |
5681308 | Edwards et al. | Oct 1997 | A |
5681336 | Clement et al. | Oct 1997 | A |
5687723 | Avitall | Nov 1997 | A |
5697285 | Nappi et al. | Dec 1997 | A |
5713896 | Nardella | Feb 1998 | A |
5716397 | Myers | Feb 1998 | A |
5720726 | Marcadis et al. | Feb 1998 | A |
5728114 | Evans et al. | Mar 1998 | A |
5730127 | Avitall | Mar 1998 | A |
5762066 | Law et al. | Jun 1998 | A |
5769846 | Edwards et al. | Jun 1998 | A |
5782239 | Webster, Jr. | Jul 1998 | A |
5782879 | Rosborough et al. | Jul 1998 | A |
5800495 | Machek et al. | Sep 1998 | A |
5824066 | Gross | Oct 1998 | A |
5836990 | Li | Nov 1998 | A |
5876343 | Teo | Mar 1999 | A |
5881727 | Edwards | Mar 1999 | A |
5891136 | McGee et al. | Apr 1999 | A |
5904711 | Flom et al. | May 1999 | A |
5919207 | Taheri | Jul 1999 | A |
5921924 | Avitall | Jul 1999 | A |
5935075 | Casscells et al. | Aug 1999 | A |
5961440 | Schweich, Jr. et al. | Oct 1999 | A |
5984950 | Cragg et al. | Nov 1999 | A |
6001069 | Tachibana et al. | Dec 1999 | A |
6104944 | Martinelli | Aug 2000 | A |
6123702 | Swanson et al. | Sep 2000 | A |
6138043 | Avitall | Oct 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6156046 | Passafaro et al. | Dec 2000 | A |
6210432 | Solem et al. | Apr 2001 | B1 |
6217573 | Webster | Apr 2001 | B1 |
6241747 | Ruff | Jun 2001 | B1 |
6248124 | Pedros et al. | Jun 2001 | B1 |
6258258 | Sartori et al. | Jul 2001 | B1 |
6266550 | Selmon et al. | Jul 2001 | B1 |
6304769 | Arenson et al. | Oct 2001 | B1 |
6306135 | Ellman et al. | Oct 2001 | B1 |
6308091 | Avitall | Oct 2001 | B1 |
6346105 | Tu et al. | Feb 2002 | B1 |
6358258 | Arcia et al. | Mar 2002 | B1 |
6383151 | Diederich et al. | May 2002 | B1 |
6389311 | Whayne et al. | May 2002 | B1 |
6391048 | Ginn et al. | May 2002 | B1 |
6391054 | Carpentier et al. | May 2002 | B2 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6436052 | Nikolic et al. | Aug 2002 | B1 |
6475223 | Werp et al. | Nov 2002 | B1 |
6485409 | Voloshin et al. | Nov 2002 | B1 |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6506210 | Kanner | Jan 2003 | B1 |
6514249 | Maguire et al. | Feb 2003 | B1 |
6529756 | Phan et al. | Mar 2003 | B1 |
6537198 | Vidlund et al. | Mar 2003 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6540670 | Hirata et al. | Apr 2003 | B1 |
6551312 | Zhang et al. | Apr 2003 | B2 |
6569160 | Goldin et al. | May 2003 | B1 |
6569198 | Wilson et al. | May 2003 | B1 |
6575971 | Hauck et al. | Jun 2003 | B2 |
6589208 | Ewers et al. | Jul 2003 | B2 |
6626930 | Allen et al. | Sep 2003 | B1 |
6632238 | Ginn et al. | Oct 2003 | B2 |
6662034 | Segner et al. | Dec 2003 | B2 |
6704590 | Haldeman | Mar 2004 | B2 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726716 | Marquez | Apr 2004 | B2 |
6760616 | Hoey et al. | Jul 2004 | B2 |
6780197 | Roe et al. | Aug 2004 | B2 |
6797001 | Mathis et al. | Sep 2004 | B2 |
6800090 | Alferness et al. | Oct 2004 | B2 |
6837886 | Collins et al. | Jan 2005 | B2 |
6852076 | Nikolic et al. | Feb 2005 | B2 |
6855143 | Davison et al. | Feb 2005 | B2 |
6890353 | Cohn et al. | May 2005 | B2 |
6892091 | Ben-Haim et al. | May 2005 | B1 |
6899674 | Viebach et al. | May 2005 | B2 |
6907297 | Wellman et al. | Jun 2005 | B2 |
6908478 | Alferness et al. | Jun 2005 | B2 |
6913576 | Bowman | Jul 2005 | B2 |
6918903 | Bass | Jul 2005 | B2 |
6926669 | Stewart et al. | Aug 2005 | B1 |
6942657 | Sinofsky et al. | Sep 2005 | B2 |
6949122 | Adams et al. | Sep 2005 | B2 |
6960229 | Mathis et al. | Nov 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
6989010 | Francischelli et al. | Jan 2006 | B2 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
6994093 | Murphy et al. | Feb 2006 | B2 |
6997951 | Solem et al. | Feb 2006 | B2 |
7001383 | Keidar | Feb 2006 | B2 |
7025776 | Houser et al. | Apr 2006 | B1 |
7050848 | Hoey et al. | May 2006 | B2 |
7052487 | Cohn et al. | May 2006 | B2 |
7068867 | Adoram et al. | Jun 2006 | B2 |
7141019 | Pearlman | Nov 2006 | B2 |
7144363 | Pai et al. | Dec 2006 | B2 |
7177677 | Kaula et al. | Feb 2007 | B2 |
7186210 | Feld et al. | Mar 2007 | B2 |
7187964 | Khoury | Mar 2007 | B2 |
7189202 | Lau et al. | Mar 2007 | B2 |
7276044 | Ferry et al. | Oct 2007 | B2 |
7279007 | Nikolic et al. | Oct 2007 | B2 |
7300435 | Wham et al. | Nov 2007 | B2 |
7303526 | Sharkey et al. | Dec 2007 | B2 |
7335196 | Swanson et al. | Feb 2008 | B2 |
7507252 | Lashinski et al. | Mar 2009 | B2 |
7738967 | Salo | Jun 2010 | B2 |
20010003158 | Kensey et al. | Jun 2001 | A1 |
20010005787 | Oz et al. | Jun 2001 | A1 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20010020126 | Swanson et al. | Sep 2001 | A1 |
20020002329 | Avitall | Jan 2002 | A1 |
20020016628 | Langberg et al. | Feb 2002 | A1 |
20020087156 | Maguire et al. | Jul 2002 | A1 |
20020087173 | Alferness et al. | Jul 2002 | A1 |
20020107478 | Wendlandt | Aug 2002 | A1 |
20020107511 | Collins et al. | Aug 2002 | A1 |
20020107530 | Sauer et al. | Aug 2002 | A1 |
20020115944 | Mendes et al. | Aug 2002 | A1 |
20020169504 | Alferness et al. | Nov 2002 | A1 |
20020177782 | Penner | Nov 2002 | A1 |
20020183836 | Liddicoat et al. | Dec 2002 | A1 |
20020183841 | Cohn et al. | Dec 2002 | A1 |
20020188170 | Santamore et al. | Dec 2002 | A1 |
20030050685 | Nikolic et al. | Mar 2003 | A1 |
20030069570 | Witzel et al. | Apr 2003 | A1 |
20030069636 | Solem et al. | Apr 2003 | A1 |
20030078465 | Pai et al. | Apr 2003 | A1 |
20030078671 | Lesniak et al. | Apr 2003 | A1 |
20030105384 | Sharkey et al. | Jun 2003 | A1 |
20030105520 | Alferness et al. | Jun 2003 | A1 |
20030109770 | Sharkey et al. | Jun 2003 | A1 |
20030181819 | Desai | Sep 2003 | A1 |
20030229395 | Cox | Dec 2003 | A1 |
20040002626 | Feld et al. | Jan 2004 | A1 |
20040054279 | Hanley | Mar 2004 | A1 |
20040133273 | Cox | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040153146 | Lashinski et al. | Aug 2004 | A1 |
20040158321 | Reuter et al. | Aug 2004 | A1 |
20040176797 | Opolski | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040215232 | Belhe et al. | Oct 2004 | A1 |
20040243170 | Suresh et al. | Dec 2004 | A1 |
20040249408 | Murphy et al. | Dec 2004 | A1 |
20040249453 | Cartledge et al. | Dec 2004 | A1 |
20040267358 | Reitan | Dec 2004 | A1 |
20050004668 | Aklog et al. | Jan 2005 | A1 |
20050015109 | Lichtenstein | Jan 2005 | A1 |
20050054938 | Wehman et al. | Mar 2005 | A1 |
20050055089 | Macoviak et al. | Mar 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050064665 | Han | Mar 2005 | A1 |
20050065420 | Collins et al. | Mar 2005 | A1 |
20050065504 | Melsky et al. | Mar 2005 | A1 |
20050080402 | Santamore et al. | Apr 2005 | A1 |
20050096647 | Steinke et al. | May 2005 | A1 |
20050107723 | Wehman et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050125030 | Forsberg et al. | Jun 2005 | A1 |
20050148892 | Desai | Jul 2005 | A1 |
20050149014 | Hauck et al. | Jul 2005 | A1 |
20050154252 | Sharkey et al. | Jul 2005 | A1 |
20050182365 | Hennemann et al. | Aug 2005 | A1 |
20050187620 | Pai et al. | Aug 2005 | A1 |
20050197692 | Pai et al. | Sep 2005 | A1 |
20050197693 | Pai et al. | Sep 2005 | A1 |
20050197694 | Pai et al. | Sep 2005 | A1 |
20050203558 | Maschke | Sep 2005 | A1 |
20050209636 | Widomski et al. | Sep 2005 | A1 |
20050216054 | Widomski et al. | Sep 2005 | A1 |
20050240249 | Tu et al. | Oct 2005 | A1 |
20050251116 | Steinke et al. | Nov 2005 | A1 |
20050251132 | Oral et al. | Nov 2005 | A1 |
20050256521 | Kozel | Nov 2005 | A1 |
20050267574 | Cohn et al. | Dec 2005 | A1 |
20060009755 | Sra | Jan 2006 | A1 |
20060009756 | Francischelli et al. | Jan 2006 | A1 |
20060014998 | Sharkey et al. | Jan 2006 | A1 |
20060015002 | Moaddeb et al. | Jan 2006 | A1 |
20060015003 | Moaddes et al. | Jan 2006 | A1 |
20060015038 | Weymarn-Scharli | Jan 2006 | A1 |
20060015096 | Hauck et al. | Jan 2006 | A1 |
20060025800 | Suresh | Feb 2006 | A1 |
20060030881 | Sharkey et al. | Feb 2006 | A1 |
20060085049 | Cory et al. | Apr 2006 | A1 |
20060135968 | Schaller | Jun 2006 | A1 |
20060135970 | Schaller | Jun 2006 | A1 |
20060184242 | Lichtenstein | Aug 2006 | A1 |
20060199995 | Vijay | Sep 2006 | A1 |
20060229491 | Sharkey et al. | Oct 2006 | A1 |
20060235286 | Stone et al. | Oct 2006 | A1 |
20060235314 | Migliuolo et al. | Oct 2006 | A1 |
20060264980 | Khairkhahan et al. | Nov 2006 | A1 |
20060281965 | Khairkhahan et al. | Dec 2006 | A1 |
20060293698 | Douk | Dec 2006 | A1 |
20060293725 | Rubinsky et al. | Dec 2006 | A1 |
20070016068 | Grunwald et al. | Jan 2007 | A1 |
20070038208 | Kefer | Feb 2007 | A1 |
20070088362 | Bonutti et al. | Apr 2007 | A1 |
20070115390 | Makara et al. | May 2007 | A1 |
20070118215 | Moaddeb | May 2007 | A1 |
20070129717 | Brown, III et al. | Jun 2007 | A1 |
20070161846 | Nikolic et al. | Jul 2007 | A1 |
20070198058 | Gelbart et al. | Aug 2007 | A1 |
20070213578 | Khairkhahan et al. | Sep 2007 | A1 |
20070213815 | Khairkhahan et al. | Sep 2007 | A1 |
20070249999 | Sklar et al. | Oct 2007 | A1 |
20070270688 | Gelbart et al. | Nov 2007 | A1 |
20070299343 | Waters | Dec 2007 | A1 |
20080004534 | Gelbart et al. | Jan 2008 | A1 |
20080004643 | To et al. | Jan 2008 | A1 |
20080004697 | Lichtenstein et al. | Jan 2008 | A1 |
20080045778 | Lichtenstein et al. | Feb 2008 | A1 |
20080071298 | Khairkhahan et al. | Mar 2008 | A1 |
20080312713 | Wilfley et al. | Dec 2008 | A1 |
20090131930 | Gelbart et al. | May 2009 | A1 |
20090157058 | Ferren et al. | Jun 2009 | A1 |
20090192441 | Gelbart et al. | Jul 2009 | A1 |
20090287304 | Dahlgren et al. | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
0723467 | Apr 2002 | EP |
9510320 | Apr 1995 | WO |
03015611 | Feb 2003 | WO |
03077800 | Sep 2003 | WO |
2004012629 | Feb 2004 | WO |
2004047679 | Jun 2004 | WO |
2004084746 | Oct 2004 | WO |
2004100803 | Nov 2004 | WO |
2005070330 | Aug 2005 | WO |
2005102181 | Nov 2005 | WO |
2006017809 | Feb 2006 | WO |
2006105121 | Oct 2006 | WO |
2006135747 | Dec 2006 | WO |
2006135749 | Dec 2006 | WO |
2007021647 | Feb 2007 | WO |
2007115390 | Oct 2007 | WO |
2008002606 | Jan 2008 | WO |
2009065042 | May 2009 | WO |
Entry |
---|
Becker, R. et al., “Ablation of Atrial Fibrillation: Energy Sources and Navigation Tools: A Review,” Journal of Electrocardiology, 37(Supplement 2004):55-62, 2004. |
Buchbinder, Maurice, MD, “Dynamic Mitral Valve Annuloplasty: A Reshapable Ring for Residual and Recurring MR,” from the Foundation for Cardiovascular Medicine, La Jolla, CA. May 24, 2007. |
Calkins, Hugh, “Radiofrequency Catheter Ablation of Supraventricular Arrhythmias,” Heart, 85:594-600, 2001. |
De Ponti et al., “Non-Fluoroscopic Mapping Systems for Electrophysiology: The ‘Tool or Toy’ Dilemma After 10 Years,” European Heart Journal 27:1134-1136, 2006. |
Konings et al., “Development of an Intravascular Impedance Catheter for Detection of Fatty Lesions in Arteries,” IEEE Transactions on Medical Imaging, 16(4):439-446, 1997. |
Lichtenstein, “Method and Apparatus for Percutaneous Reduction of Anterior-Posterior Diameter of Mitral Valve,” U.S. Appl. No. 10/690,131, filed Oct. 20, 2003, 31 pages. |
Mack, “New Techniques for Percutaneous Repair of the Mitral Valve,” Heart Failure Review, 11:259-268, 2006. |
Otasevic et al., “First-in-Man Implantation of Left Ventricular Partitioning Device in a Patient With Chronic Heart Failure: Twelve-Month Follow-up,” Journal of Cardiac Failure 13(7):517-520, 2007. |
Sharkey et al., “Left Ventricular Apex Occluder. Description of a Ventricular Partitioning Device,” EuroIntervention 2:125-127, 2006. |
Stiles, et al., “Simulated Characterization of Atherosclerotic Lesions in the Coronary Arteries by Measurement of Bioimpedance,” IEE Transactions on Biomedical Engineering, 50(7):916-921, 2003. |
Tanaka et al., “Artificial SMA Valve for Treatment of Urinary Incontinence: Upgrading of Valve and Introduction of Transcutaneous Transformer,” Bio-Medical Materials and Engineering 9:97-112, 1999. |
Timek et al., “Septal-Lateral Annular Cinching (‘SLAC’) Reduces Mitral Annular Size Without Perturbing Normal Annular Dynamics,” Journal of Heart Valve Disease 11(1):2-10, 2002. |
Timek et al., “Septal-Lateral Annular Cinching Abolishes Acute Ischemic Mitral Regurgitation,” Journal of Thoracic and Cardiovascular Surgery, 123(5):881-888, 2002. |
Valvano et al., “Thermal Conductivity and Diffusivity of Biomaterials Measured with Self-Heated Thermistors,” International Journal of Thermodynamics, 6(3):301-311, 1985. |
Gelbart et al., “Automatic Atherectomy System,” Office Action mailed Mar. 4, 2009 for U.S. Appl. No. 11/436,584, 7 pages. |
Gelbart et al., “Automatic Atherectomy System,” Amendment filed Aug. 4, 2009 for U.S. Appl. No. 11/436,584, 15 pages. |
Gelbart et al., “Automatic Atherectomy System,” Office Action mailed Dec. 1, 2009 for U.S. Appl. No. 11/436,584, 10 pages. |
Gelbart et al., “Automatic Atherectomy System,” Amendment filed Mar. 30, 2010 for U.S. Appl. No. 11/436,584, 20 pages. |
Gelbart et al., “Automatic Atherectomy System,” Amendment filed Oct. 25, 2010 for U.S. Appl. No. 11/436,584, 9 pages. |
Gelbart et al., “Automatic Atherectomy System,” Office Action mailed Dec. 14, 2010 for U.S. Appl. No. 11/436,584, 12 pages. |
Gelbart et al., “Intra-Cardiac Mapping and Ablation Method,” Preliminary Amendment filed Aug. 29, 2007 for U.S. Appl. No. 11/475,950, 42 pages. |
Gelbart et al., “Intra-Cardiac Mapping and Ablation Method,” Amendment filed Mar. 5, 2008 for U.S. Appl. No. 11/475,950, 11 pages. |
Gelbart et al., “Intra-Cardiac Mapping and Ablation Method,” Office Action mailed Jun. 23, 2010 for U.S. Appl. No. 11/475,950, 18 pages. |
Gelbart et al., “Intra-Cardiac Mapping and Ablation Method,” Amendment filed Aug. 16, 2010 for U.S. Appl. No. 11/475,950, 22 pages. |
Gelbart et al., “Intra-Cardiac Mapping and Ablation Method,” Office Action mailed Nov. 23, 2010 for U.S. Appl. No. 11/475,950, 25 pages. |
Gelbart et al., “Intra-Cardiac Mapping and Ablation Method,” Amendment filed Feb. 23, 2011 for U.S. Appl. No. 11/475,950, 28 pages. |
Gelbart et al., “Medical Device for Use in Bodily Lumens, for Example an Atrium,” Office Action mailed Jul. 25, 2011 for U.S. Appl. No. 11/941,819, 9 pages. |
International Preliminary Report on Patentability, issued Jan. 6, 2009, for PCT/US2007/014902, 8 pages. |
International Search Report, mailed Dec. 5, 2007, for PCT/US2007/014902, 5 pages. |
International Search Report, mailed Dec. 2, 2009, for PCT/US2008/083644, 5 pages. |
Written Opinion, mailed Dec. 5, 2007, for PCT/US2007/014902, 7 pages. |
Written Opinion, mailed Dec. 2, 2009, for PCT/US2008/083644, 9 pages. |
Gabriel et al., “The Dielectric Properties of Biological Tissues: I. Literature Survey,” Phys. Med. Biol. 41:2231-2249, 1996. |
Gelbart et al., “Liposuction System,” Office Action mailed Mar. 16, 2011 for U.S. Appl. No. 12/010,458, 12 pages. |
Gelbart et al., “Liposuction System,” Amendment filed Jun. 10, 2011 for U.S. Appl. No. 12/010,458, 10 pages. |
Gelbart et al., “Automatic Atherectomy System,” Office Action mailed Jun. 15, 2011 for U.S. Appl. No. 12/950,871, 16 pages. |
Gelbart et al., “Automatic Atherectomy System,” Amendment filed Sep. 15, 2011 for U.S. Appl. No. 12/950,871, 21 pages. |
Number | Date | Country | |
---|---|---|---|
20120158016 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12950871 | Nov 2010 | US |
Child | 13404834 | US | |
Parent | 11436584 | May 2006 | US |
Child | 12950871 | US |