Automatic clothes dryer

Information

  • Patent Grant
  • 7913418
  • Patent Number
    7,913,418
  • Date Filed
    Monday, October 22, 2007
    17 years ago
  • Date Issued
    Tuesday, March 29, 2011
    14 years ago
Abstract
An automatic clothes dryer comprises a cabinet defining an interior space in which is rotatably mounted a drum that defines a drying chamber, a heater assembly having a heating element for heating air, and a motor for rotating the drum. A blower is mounted within the interior space and is fluidly coupled to the drying chamber for moving heated air through the drying chamber. A first temperature sensor is mounted upstream of the heating element. A second temperature sensor is mounted downstream of the blower. Outputs from the temperature sensors are utilized with one or more methods to determine the air flow characteristics through the dryer.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates generally to automatic clothes dryers. In one aspect, the invention relates to a sensor assembly for an automatic clothes dryer which is initially operated for a preselected time prior to initiation of a drying cycle. The sensor output is evaluated to determine whether the dryer is set up and operating properly. The results are available to a consumer as a visual output or stored for later retrieval by a service technician.


2. Description of the Related Art


Automatic clothes dryers are well known, and typically comprise a cabinet enclosing a horizontally rotating drum accessible through an access door at the front of the cabinet for holding clothing items to be dried. Rotation of the drum is driven by a motor. The motor can also drive a blower or fan which delivers dry, heated or unheated air to the drum for drying the clothing items. Alternatively, the blower can be driven by a separate motor. A heater is typically positioned in an air inlet assembly upstream of the drum for heating the drying air prior to its entry into the drum. The blower exhausts humid air from the drum through an exhaust outlet assembly to a discharge location exterior of the cabinet. Typically, the exhaust outlet assembly comprises a flexible conduit fabricated of wire-reinforced plastic or segmented metal installed between the cabinet and the discharge location.


Efficient, economical operation of the dryer and drying of the clothing items requires unobstructed airflow through the drum and the exhaust outlet assembly. During installation of the dryer, particularly a consumer self-installation, the flexible conduit can become twisted, kinked, or obstructed so that the air flow therethrough is impeded. The user may also fail to clean the lint trap sufficiently, and lint may accumulate in the exhaust outlet assembly, particularly the flexible conduit. Finally, the air inlet can also become obstructed over time through the accumulation of dust and lint. These conditions can remain unrecognized or easily ignored by the user. Any of these conditions can reduce the airflow through the dryer, adversely affecting the drying of the clothing items, increasing the cost of operating the dryer, and increasing the potential for overheating and fire or premature failure of the dryer.


It would be desirable to have a dryer that can consistently and accurately evaluate the airflow conditions therethrough, alert the user that an undesirable condition exists, and provide information to a service technician relating to the condition and its correction.


SUMMARY OF THE INVENTION

A clothes dryer comprises a rotating drum defining a clothes drying chamber, an air system for supplying air to the clothes drying chamber and exhausting air from the clothes drying chamber, a motorized blower for moving air from an inlet to the drying chamber, through the clothes drying chamber, and through an exhaust inlet, and a heater for heating the air. A method of operating the clothes dryer comprises determining a supply air flow parameter representative of the flow rate of the air supplied to the clothes drying chamber, determining an exhaust air flow parameter representative of the flow rate of the air exhausted from the clothes drying chamber, and determining a condition of the air flow through the air flow system based on the supply air flow parameter and the exhaust air flow parameter.


In another embodiment, the method comprises determining a supply air flow parameter representative of the flow rate of the air supplied to the clothes drying chamber and determining a condition of the air flow through the air flow system based on the supply air flow parameter and the exhaust air flow parameter. The determining of a condition of the air flow can comprise comparing the supply air flow rate to a predetermined air flow rate and determining a blockage based on the comparison. The determining of the supply air flow parameter can be determined while the heater is energized or deenergized or both.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a perspective view of an automatic clothes dryer comprising a cabinet enclosing a rotating drum, a blower assembly, and a temperature sensor according to the invention.



FIG. 2 is a perspective view of the automatic clothes dryer illustrated in FIG. 1 with portions removed for clarity, illustrating the internal components.



FIG. 3 is a perspective view of the blower assembly, including an air heating assembly and temperature sensors, illustrated in FIG. 2.



FIG. 3A is a sectional view of the air heating assembly and temperature sensor of FIG. 3 taken along line 3A-3A.



FIG. 4 is a graphical representation of temperature change and temperature sensor output over time from a temperature sensor such as illustrated in FIG. 3.



FIG. 5 is a graphical representation of a variation in slope of the temperature sensor output curve of FIG. 4, illustrating the determination of an inflection value corresponding to the steepest slope.



FIG. 6 is a graphical representation of the relationship between starting temperature and air flow on the inflection value for the dryer of FIGS. 1-5.



FIG. 7 is a graphical representation of the relationship between starting temperature and inflection value on a calculated air flow through the dryer of FIGS. 1-5.





DESCRIPTION OF AN EMBODIMENT OF THE INVENTION

Referring to the Figures, and in particular to FIG. 1, an embodiment of an automatic clothes dryer 10 according to the invention is illustrated comprising a cabinet 12 having a control panel 14 for controlling the operation of the dryer 10, a door 16 hingedly attached to a front wall 20 of the cabinet 12, a rear wall 24, and a pair of side walls 22 supporting a top wall 18. The clothes dryer 10 described herein shares many features of a well-known automatic clothes dryer, and will not be described in detail except as necessary for a complete understanding of the invention.



FIG. 2 illustrates the dryer 10 with the cabinet 12 removed to disclose the interior of the dryer 10, which comprises a rotating drum 30 rotatably suspended in a well-known manner between a front drum panel 50 and a rear drum panel 52. The front drum panel 50 is provided with an opening for access to the interior of the drum 30 which defines a drying chamber 40. The cabinet 12 also encloses a drum motor assembly 32 adapted in a well-known manner for rotating the drum 30 via a drum belt 34, and a blower assembly 60, which is partially visible beneath the drum 30.


The blower assembly 60 is more clearly illustrated in FIG. 3, wherein the drum 30 is removed for clarity. The blower assembly 60 comprises a blower motor 62, a blower 64, and a controller 66. The blower 64 is illustrated as a centrifugal blower comprising a rotating impeller (not shown) enclosed in a housing which is configured to draw in air coaxially and exhaust the air tangentially in a direction orthogonal to the direction of air flow through the impeller. However, other blower types can be employed. Furthermore, the drum motor assembly 32 can be adapted to drive both the blower 64 and the drum 30, thereby eliminating the blower motor 62.


After passing through the drying chamber 40, air is drawn into the blower 64 through a blower inlet 68, as illustrated by the solid line flow vectors, and through the blower housing, as illustrated by the dotted line flow vectors, to exit a blower outlet 70 which is fluidly attached to a flexible dryer vent hose or similar conduit (not shown). Air entering the drying chamber 40 first passes through a dryer air inlet 72 entering into a heater assembly 74 for heating air prior to its entry into the drying chamber 40. The heater assembly 74 is fluidly connected to the drying chamber 40 through suitable inlet and outlet opening in the rear drum panel 52 and a connecting passageway. Thus, air is drawn through the inlet 72 into the heater assembly 74, and on into the drying chamber 40 by the blower assembly 60. The air then passes out of the drying chamber 40 through a passageway (not shown) in the front drum panel 50, through the blower assembly 60 to be exhausted through the dryer vent hose.


The heater assembly 74 is adapted for mounting of a conventional temperature sensor 76, such as a thermistor, for monitoring the temperature at a selected location within the heater assembly 74. In the embodiment described herein, the temperature sensor output is utilized to generate digital data that is proportional to the temperature.


Referring to both FIGS. 3 and 3A, the temperature sensor 76 is illustrated as mounted in a top wall 82 of the heater assembly 74 intermediate the inlet 72 and a heating element 80, i.e. upstream of the heating element 80. Alternatively, the temperature sensor 76 can be mounted downstream of the heating element 80, or in one of the other heater assembly walls. The mounting location of the temperature sensor 76 is selected in order to accurately sense the change in temperature during heating of the heating element 80 and the flow of air through the heater assembly 74.


A second temperature sensor 78 is similarly mounted in the blower assembly 60 intermediate the blower 64 and the blower outlet 70. Electrical leads 84, 86 from each sensor 76, 78, respectively, are connected to the controller 66. The controller 66 comprises a well-known control device, such as a microprocessor, digital memory for storing data from the temperature sensors 76, 78, and interfaces for suitable communication devices, such as displays, alarms, keypads, and the like.


The temperature sensors 76, 78 are utilized to determine air flow through the clothes dryer 10. The output from the temperature sensor 76 is utilized to determine air flow upstream of the drying chamber 40 in order to evaluate whether a blockage exists somewhere in the air flow path, such as the lint trap or exhaust hose. The output from the temperature sensor 78 in conjunction with blower motor data is utilized to determine air flow downstream of the drying chamber 40, and with the information provided from the upstream temperature sensor 76 is utilized to determine air leakage into the dryer 10, such as through seals or around the access door 16.


The airflow estimated from the temperature sensor output represents a volumetric flow rate in scfm units at the entrance to the heater assembly 74. To determine the air flow upstream of the drying chamber 40, prior to the initiation of a drying cycle, the heating element 80 is operated at maximum output, and a series of measurements of the output from the temperature sensor 76 is taken. In the embodiment described herein, measurements from the temperature sensor 76 are taken at one second intervals for a period of 30 seconds, and utilized in an method to calculate the air flow upstream of the drying chamber 40. With a typical thermistor, the output from the thermistor will be an analog voltage which varies inversely with temperature. In the embodiment described herein, the processing of the output is completed in a computer-based controller. The analog output signal from the thermistor is converted in the controller to digital data, which is stored in a conventional memory.


The stored data is processed in a buffer memory, and used, along with preselected coefficients, in an air flow method to calculate the flow value through the dryer. The following describes the methodology for determining the air flow value. The determination of an air flow value is performed electronically in the computer-based controller 66. However, for illustration purposes, the determination of the air flow value is described and illustrated with respect to graphical representations of the methodology.


The following air flow method having the general form of a polynomial equation is utilized to determine air flow from the output of the temperature sensor 76. The data for the parameters to the equation are gathered when the heater is on, which can be referred to as a heating portion of the cycle or a heating phase. Preferably, the data for the parameters is gathered at the first or initial ON cycle of the heater.

Flow=a+b1*ADstart+ . . . +bm*ADnstart+c1*Inflectionslope+ . . . +cm*Inflectionnslope+d1*ADdiff+ . . . +dm*ADndiff


where


Flow=volumetric flow rate, scfm;


Inflectionslope=the minimum AD difference from the inlet temperature sensor calculated using an overlapping scheme with 1 second sampling rate (for filtering purposes) during the heating portion, counts per second;


ADmax=the AD value of the maximum inlet temperature sensor reading sampled during the initiation of the air flow detection routine, counts;


ADstart=the AD value of the inlet temperature sensor just before the heating element is turned on, counts;


ADdiff=the difference between ADstart and ADmax=ADmax−ADstart, counts;


“AD” refers to temperature sensor output data converted from an analog voltage into digital form for purposes of the embodiment described herein. It is a dimensionless value, and is processed in terms of counts. The air flow method could be structured to utilize analog data, with appropriate modifications to the coefficients a0-a6. In either case, the methodology described herein would remain essentially the same.


The coefficients a-dm are machine specific, and dependent upon a particular combination of factors such as the blower, drying chamber, inlet and outlet air passageways, heater, and the like. The coefficients are developed from experimental characterization, and a well-known regression analysis of flow versus temperature data for a particular dryer configuration. Variations in dryer configuration, air flow capacity, heating element characteristics such as electric versus gas, and the like, will give rise to different coefficient values, which must be determined empirically for each dryer configuration. The optimum combination of parameters and coefficient values to use to derive acceptable airflow estimation can be determined on a case-by-case basis and include an assessment of the tradeoffs between accuracy and practical considerations of implementation in the controller.



FIG. 4 illustrates the temperature rise experienced by the temperature sensor 76 as a result of operating the heating element 80 at full power. The temperature sensor 76 in this illustration is a conventional thermistor providing a voltage output which varies inversely with the change in temperature. The temperature curve 100 illustrates that the temperature rises from an initial value of 82° F. to a value after 39 seconds of 254° F. The temperature sensor output curve 102 indicates corresponding AD values for the temperature sensor 76 as 862 and 161, respectively. The initial AD value of 862 is equal to ADstart. The temperature sensor output curve 102 is initially concave downwardly, but transitions to a concave upwardly portion through an inflection point. In FIG. 4, this inflection point occurs at 19 seconds. A tangent line 104 passing through the inflection point has a slope which can be readily determined graphically in a well-known manner, and is equal to −33.5 counts per second.



FIG. 5 illustrates the determination of Inflectionslope from the temperature sensor data. The determination of Inflectionslope can be done using a microprocessor and appropriate software. For purposes of illustration, FIG. 5 illustrates the process graphically.


The output from the temperature sensor 76 is determined at one second intervals, with the start time, t=0 sec corresponding to the heating element being switched on. The temperature sensor output value at the start time is measured, which is identified in FIG. 5 as s0. Temperature sensor output values 106 are determined every second thereafter.


A review of FIGS. 4 and 5 will reveal a slight increase in the output value from the temperature sensor relatively early in the process. This reflects a slight decrease in the temperature of the temperature sensor from the starting temperature value, which is termed ADstart. In FIGS. 4 and 5, this is illustrated as occurring at about one second. This value is ADmax, and is a result of air flow over the temperature sensor prior to heating of the heating element 80. The temperature then begins to rise, which is reflected in a decrease in the output value from the temperature sensor.


Beginning with ADmax, a slope calculation is performed using the output values 106 from the temperature sensor. Digitized data from three consecutive output values from the temperature sensor is stored in a buffer, i.e. first, second, and third values, and the first value is subtracted from the third value. This difference is stored, and the next three consecutive output values from the temperature sensor are stored in the buffer; i.e. the second, third, and fourth values. The second value is subtracted from the fourth value and the difference is again stored. The differences are then compared. This process is repeated until the current difference value is less than the immediately prior difference value, which indicates that the rate of temperature increase is dropping. This is illustrated graphically in FIG. 5.


As illustrated in FIG. 5, slope values 108 are calculated based upon pairs of output values at two-second intervals, rather than one-second intervals, since it has been found that using the two-second intervals has a “filtering” effect which “smooths out” variations in the output values which can occur due to noise, voltage instability fluctuations, and other anomalies. For example, the first slope value, S3-S1, is calculated from the AD values at three seconds and one second; the second slope value, S4-S2, is calculated from the AD values at four seconds and two seconds. The process is repeated until a minimum slope value 110 is calculated. This is illustrated as the slope value S18-S16, which is equal to −67. Referring again to FIG. 4, this corresponds to the slope of the tangent line 104, which occurs at the inflection point and can be recognized as reflecting a minimum slope for the temperature sensor output curve 102.


The inflection point reflects the point at which the time rate of temperature change in the heater assembly 74 is greatest. If a blockage occurs in the air flow path, the time rate of temperature change would be expected to increase, the time rate of temperature sensor output change would be expected to increase, and the value of Inflectionslope would be expected to decrease.


With the values of ADstart and ADmax determined, ADdiff can be calculated. The value of Inflectionslope will have been determined from the procedure described above. The air flow method can then be utilized to calculate an air flow value. This calculated air flow value is then compared to a preselected threshold value. Based upon the results of this comparison, a decision is made whether to take corrective action, such as alerting the user, increasing the blower speed, shutting down the dryer, and the like.


The starting temperature, reflected in the temperature sensor output value ADstart, is significant for its effect on the rate of temperature change. The ADstart value is reflective in part of the ambient temperature conditions of the dryer and in part of the temperature state of the dryer components. If the air flow determination described above is initiated immediately after a drying cycle, when the temperature of the dryer components are still elevated, the air flow method must accommodate this difference in temperature conditions from the dryer in an unheated condition. This is accomplished through the utilization of ADstart.


Additional accuracy in the air flow estimation can be gained, if desired, by using temperature data when the heater element 80 is OFF. For example, air temperatures during the cooling of the heating element 80 after it is turned off can be used alone or in combination with the air temperature data when the heating element 80 is ON. In such a situation, the below equation is used in place of the prior equation. The below equation uses data from both a heating and cooling portion of the cycle:

Flow=a+b1*ADstart+ . . . +bm*ADnstart+c1*Inflectionslope+ . . . +cm*Inflectionnslope+d1*ADdiff+ . . . +dm*ADndiff+e1*ADstart2+ . . . +em*ADnstart2+f2*Inflectionslope2+ . . . +fm*Inflectionslope2


Where:


ADambient=the AD value of a temperature sensor stored while the dryer is in a stand-by mode;


ADstart2=the AD value of the inlet temperature sensor, at the beginning of the cooling portion, just as the heating element is turned off, counts;


Inflectionslope2=the maximum AD difference from the inlet temperature sensor calculated using an overlapping scheme with 1 second sampling rate (for filtering purposes) during the cooling portion, counts per second.


As for the heating portion equation, the coefficients e-fm are machine specific and can be anecdotally determined in the same manner.


Similarly, the determination of Inflectionslope2 is accomplished in substantially the same way as description for Inflectionslope except the temperatures will be decreasing and the AD output will be increasing.


It is contemplated that the use of the combined heating and cooling portion data will be obtained from one ON/OFF cycle of the heating element 80, preferably the first on/off cycle of the heating element 80. One approach is to follow an initial 30 second heating portion with a cooling portion where the heating element 80 is cycled off and the sampling process is repeated in the same manner as for the heating portion for a period of 20-30 seconds.


The airflow estimate can further be improved in situations of a wide range of ambient temperatures by utilizing a stored value of the temperature sensor AD (ADambient) representative of the temperature sensed while the dryer is in stand-by mode. As implemented, the parameter is not updated while running the drying cycle, and for some period of time past the end of the cycle, to allow the parameter to converge towards the temperature of the dryer's environment.


The decision whether to use the temperature data when the heating element 80 is off can be made based on parameters from when the heating element 80 is on. Use of the temperature data when the heating element 80 is off will be referred to as the cooling phase data.



FIGS. 6 and 7 illustrate the effect of an initial elevated temperature on inflection. FIG. 6 illustrates the change in inflection for starting temperatures, Ts, ranging from 80° F. to 180° F. and airflow rates ranging from 16.16 to 67.96 cfm. At starting temperatures of 140° F. and 180° F., for an airflow rate of 16.16 cfm, the inflection value 120 changes from −25 to an inflection value 122 of −19. At a starting temperature of 140° F., a change in flow rate from 16.16 cfm to 42.53 cfm will result in a change in inflection value 120 from −25 to an inflection value 124 of −17.



FIG. 7 illustrates that at a starting temperature of 80° F., an inflection value of −15.5 will result in an air flow value 126 of 54 cfm, and an inflection value of −10.5 will result in an air flow value 128 of 69 cfm. At a starting temperature of 120° F., an inflection value 130 of −14.5 will also result in an air flow value of 54 cfm. Thus, the same air flow value will be calculated for differing inflection values based upon a difference in starting temperature, which can mask the existence of a blockage if the air flow method does not account for starting temperature.


The difference between the starting temperature and the minimum temperature observed during the routine, as reflected in the calculated value ADdiff, is also significant for its effect on the rate of temperature change, as it represents additional information as to the thermal state of the dryer. If the air flow determination described above is initiated immediately after a drying cycle, when the temperature of the dryer components are still elevated, the air flow method must accommodate this difference in temperature conditions from the dryer in an unheated condition. A decrease in temperature (increase in AD values) can be observed for some period of time in these conditions which indicates the temperature device and the ambient air temperature are not at equilibrium. This adjustment can be accomplished through the utilization of ADdiff, ADmax, or ADambient.


Detection of air leakage into the dryer requires an estimation of the airflow at the exhaust end of the airflow path, downstream of the blower. The airflow estimated represents a volumetric flow rate in scfm units at the exhaust end of the dryer.


The value of the volumetric flow rate downstream of the blower, Flow exhaust, is determined from the blower motor operational characteristics and the output from the temperature sensor 78 according to the methodology described and illustrated in U.S. patent application Ser. No. 11/033,658, filed Jan. 12, 2005, entitled “Automatic Clothes Dryer,” which is fully incorporated by reference herein. The mass flow rate through the blower is first estimated. The mass flow rate can be determined directly from an air flow sensor, or indirectly from the blower motor speed, and the current delivered to or torque developed by the blower motor.


The mass flow rate is machine specific, and dependent upon a particular combination of factors such as the blower, drying chamber, inlet and outlet air passageways, heater, and the like. The mass flow rate can be developed from experimental characterization, including a well-known regression analysis for a particular dryer configuration. Design and/or software changes to the dryer mechanical and electrical systems will require validation and/or re-characterization of the coefficients. Variations in dryer configuration, air flow capacity, heating element characteristics such as electric versus gas, and the like, will give rise to different coefficient values, which must be determined empirically for each dryer configuration.


The volume flow rate is then calculated from the following relationship:







Flow
exhaust

=

m
ρ





where the exhaust air density ρ (lbm/ft3) is estimated by a polynomial curve developed from a regression analysis of the relationship between exhaust air density and temperature (expressed as ADexhaust) for a particular dryer configuration. ADexhaust is the value of the AD output from an exhaust thermistor voltage divider.


The leakage volumetric flow rate mixing into the drum and/or blower can be calculated from the following relationship:

Leakinitial=Flowexhaust−Flowinlet


where


Leakinitial=the leakage volume flow rate mixing into the drum and/or blower at the start of a dryer cycle, scfm;


Flowexhaust=the exhaust volume flow rate estimated from the above outlet thermistor airflow method, scfm;


Flowinlet=the inlet volume flow rate estimated from the above inlet thermistor airflow method, scfm.


Subsequent flow changes made by changing blower motor speeds during the drying cycle effect the Flowinlet estimate obtained by the inlet thermistor airflow method at the beginning of the drying cycle. The Flow inlet estimate can be adjusted by estimating the system leakage after each speed change and calculating a new inlet flow after each re-estimation of exhaust flow in accordance with the following relationship:






Leak
=


Leak
initial






Speed
current


Speed
initial








where


Leak=the leakage volume flow rate mixing into the drum and/or blower at any time during the drying cycle, scfm;


Speedcurrent=the blower motor speed returned by the machine control unit;


Speedinitial=the blower motor speed set point at the beginning of the cycle.


The blower motor speed, the motor torque or current data, and the temperature data can be processed and stored by an on-board computer system, which can perform the methods and evaluate the results for purposes of determining the existence of a blockage or leak. The results can be stored for later recovery and use by a service technician, and conveyed through audio and/or visual devices to the user.


The methods described herein enable the evaluation of air flow conditions through an automatic clothes dryer, such as blockages and leakage, with data developed from a simple temperature sensor. This eliminates the need for expensive and complex direct airflow measurement devices, which are costly to install and replace, and can themselves become ineffective if exposed to lint and other suspended particles in the dryer airflow.


While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation. Reasonable variation and modification are possible within the scope of the forgoing disclosure and drawings without departing from the spirit of the invention which is defined in the appended claims.

Claims
  • 1. A method of operating a clothes dryer comprising a rotating drum defining a clothes drying chamber, an air flow system for supplying air to the clothes drying chamber and exhausting air from the clothes drying chamber, a motorized blower for moving air from an inlet to the drying chamber, through the clothes drying chamber, and through an exhaust inlet, and a heater for heating the air, the method comprising: supplying air through the air flow system to define a supply air flow;determining at least one parameter of the supply air flow;calculating from the at least one parameter a supply air flow value indicative of a volumetric flow rate of air supplied to the clothes drying chamber;calculating an exhaust air flow value indicative of a volumetric flow rate of air exhausted from the clothes drying chamber; anddetermining a volumetric flow rate of the air flow through the air flow system based on the supply air flow value and the exhaust air flow value.
  • 2. The method according to claim 1, wherein the determining a volumetric flow rate of the air flow comprises determining a blockage in the air flow system.
  • 3. The method according to claim 1, wherein the determining a volumetric flow rate of the air flow comprises determining a leakage volumetric flow rate for the air flow system.
  • 4. The method according to claim 1, wherein the at least one parameter of the supply air flow is a temperature value of the air supplied to the clothes drying chamber.
  • 5. The method according to claim 4, wherein the temperature value of the air supplied to the clothes drying chamber is determined from a maximum time rate of increase in the temperature value of the air.
  • 6. The method according to claim 1, wherein the exhaust air flow value is a temperature value of the air exhausted from the clothes drying chamber.
  • 7. The method according to claim 6, wherein the volumetric flow rate of the air exhausted from the clothes drying chamber is determined from at least one of a speed, torque or current of the motorized blower, and the temperature value of the air exhausted from the clothes drying chamber.
  • 8. The method according to claim 1, and further determining an inflection value from a time rate of change of a supply air temperature over a preselected time period.
  • 9. The method according to claim 8, wherein the preselected time period occurs at an initiation of a drying cycle.
  • 10. The method according to claim 8, and further determining the supply air temperature at regular time intervals.
  • 11. The method according to claim 8 and further determining an initial supply air temperature value for determining with the inflection value a condition of the volumetric flow rate of the air flow through the air flow system.
  • 12. The method according to claim 8, and further determining a minimum supply air temperature value for determining with the inflection value a condition of the volumetric flow rate of the air flow through the air flow system.
  • 13. The method according to claim 1, wherein the determining of the supply air flow value is determined while the heater is one of energized or deenergized.
  • 14. The method according to claim 13, wherein the determining of the supply air flow value is determined while the heater is both energized or and deenergized.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of prior pending U.S. patent application Ser. No. 11/163,592, filed Oct. 24, 2005, which is herein incorporated by reference in its entirety, which application is a continuation-in-part of U.S. patent application Ser. No. 11/160,433, filed Jun. 23, 2005, now abandoned.

US Referenced Citations (233)
Number Name Date Kind
2370285 Beede et al. Feb 1945 A
2534267 Kahn Dec 1950 A
2534269 Ellner et al. Dec 1950 A
2619428 Kerr Nov 1952 A
2654160 Peterson Oct 1953 A
2852241 Jackson Sep 1958 A
2878579 Fuchs Mar 1959 A
2970383 Hughes Feb 1961 A
3028680 Conlee et al. Apr 1962 A
3069785 Mitter et al. Dec 1962 A
3071864 Menk Jan 1963 A
3073161 Crabtree Jan 1963 A
3088221 Pansing et al. May 1963 A
3122426 Horecky Feb 1964 A
3132005 McMillan May 1964 A
3159465 Morey Dec 1964 A
3161481 Edwards Dec 1964 A
3167734 Brucken et al. Jan 1965 A
3169838 Kripke Feb 1965 A
3216126 Brucken et al. Nov 1965 A
3223395 Genbauffe Dec 1965 A
3230921 Spiegel Jan 1966 A
3243891 Smith Apr 1966 A
3253347 Kripke May 1966 A
3260104 King, Jr. Jul 1966 A
3270530 Czech Sep 1966 A
3273256 Behrens Sep 1966 A
3286508 Spiegel Nov 1966 A
3318016 Chafee, Jr. May 1967 A
3327403 Hood Jun 1967 A
3359401 Pappas Dec 1967 A
3411219 Bartholomew Nov 1968 A
3432938 Miller Mar 1969 A
3478596 Farrell, Jr. Nov 1969 A
3526968 Triplett Sep 1970 A
3540278 Badertscher et al. Nov 1970 A
3571941 Garfield et al. Mar 1971 A
3575562 Remke Apr 1971 A
3593571 Wiechert Jul 1971 A
3621202 Gemert Nov 1971 A
3765100 Heidtmann Oct 1973 A
3782001 Cotton Jan 1974 A
3802091 Offutt Apr 1974 A
3809924 Grunow et al. May 1974 A
3822482 Cotton Jul 1974 A
3944841 Janke Mar 1976 A
3974573 Daily et al. Aug 1976 A
3978592 Schuurink Sep 1976 A
4081997 Losert Apr 1978 A
4088017 Olges May 1978 A
4106213 Witte Aug 1978 A
4213250 Hawkins Jul 1980 A
4214038 McCarty et al. Jul 1980 A
4214380 Meyer Jul 1980 A
4231166 McMillan Nov 1980 A
4287753 Grantham Sep 1981 A
4370816 Zambelli Feb 1983 A
4385452 Deschaaf et al. May 1983 A
4397101 Rickard Aug 1983 A
4481786 Bashark Nov 1984 A
4498247 Benevento Feb 1985 A
4525937 Strandberg et al. Jul 1985 A
4546554 Bullock et al. Oct 1985 A
4656455 Tanino et al. Apr 1987 A
4689896 Narang Sep 1987 A
4700492 Werner et al. Oct 1987 A
4710266 Hayashi et al. Dec 1987 A
4725383 Hayashi et al. Feb 1988 A
4738034 Muramatsu et al. Apr 1988 A
4763425 Grennan Aug 1988 A
4854054 Johnson Aug 1989 A
4887473 Proni et al. Dec 1989 A
4891892 Narang Jan 1990 A
4927988 Nolte May 1990 A
5042172 Foco et al. Aug 1991 A
5097606 Harmelink et al. Mar 1992 A
5107605 Yamada et al. Apr 1992 A
5107606 Tsubaki et al. Apr 1992 A
5123176 Yamada et al. Jun 1992 A
5193292 Hart et al. Mar 1993 A
5195252 Yamada et al. Mar 1993 A
5212969 Tsubaki et al. May 1993 A
5267897 Drees Dec 1993 A
5291667 Joslin et al. Mar 1994 A
5355718 Mookherjee et al. Oct 1994 A
5367899 Mookherjee et al. Nov 1994 A
5369978 Mookherjee et al. Dec 1994 A
5370854 Henley et al. Dec 1994 A
5443541 St. Louis Aug 1995 A
5444924 Joslin et al. Aug 1995 A
5452045 Koboshi et al. Sep 1995 A
5532023 Vogel et al. Jul 1996 A
5547422 Seboldt Aug 1996 A
5560124 Hart et al. Oct 1996 A
5578753 Weiss et al. Nov 1996 A
5590477 Carfagno, Sr. Jan 1997 A
5607297 Henley et al. Mar 1997 A
5661227 Smith et al. Aug 1997 A
5673497 St. Louis Oct 1997 A
5722181 Meyer Mar 1998 A
5768730 Matsumoto et al. Jun 1998 A
5809828 Gardell et al. Sep 1998 A
5836201 Drew et al. Nov 1998 A
5860224 Larson Jan 1999 A
5992335 Nakamura et al. Nov 1999 A
6058623 Brooks et al. May 2000 A
6067845 Meerpohl et al. May 2000 A
6085672 Nakamura et al. Jul 2000 A
6170514 Esmailzadeh Jan 2001 B1
6220092 Catbagan Apr 2001 B1
6230418 Gomulinski May 2001 B1
6230634 Okochi et al. May 2001 B1
6328647 Traudt Dec 2001 B1
6349257 Liu et al. Feb 2002 B1
6401524 Incavo et al. Jun 2002 B1
6467498 Esmailzadeh Oct 2002 B1
6505418 Confoey et al. Jan 2003 B1
6540798 Asanuma et al. Apr 2003 B2
6564591 Noyes et al. May 2003 B2
6637127 Reede et al. Oct 2003 B2
6655047 Miller, II Dec 2003 B2
6660052 Nakamura et al. Dec 2003 B1
6671977 Beaumont Jan 2004 B2
6682578 Sower Jan 2004 B2
6691536 Severns et al. Feb 2004 B2
6725570 Confoey et al. Apr 2004 B2
6725732 Stein Apr 2004 B1
6739069 Hunt et al. May 2004 B2
6785981 Harpenau Sep 2004 B1
6792694 Lapierre Sep 2004 B2
6793685 Noyes et al. Sep 2004 B2
6845290 Wunderlin et al. Jan 2005 B1
6846343 Sower Jan 2005 B2
6863826 Sheets Mar 2005 B2
6898951 Severns et al. May 2005 B2
6960330 Cox, Jr. Nov 2005 B1
6973819 Ruhland et al. Dec 2005 B2
7013578 Wunderlin et al. Mar 2006 B2
7055262 Goldberg et al. Jun 2006 B2
7160949 Ota et al. Jan 2007 B2
7191546 Maruca Mar 2007 B2
7213464 Traudt May 2007 B1
7220365 Qu et al. May 2007 B2
7275400 Severns et al. Oct 2007 B2
7313946 Matsuo Jan 2008 B2
7322126 Beaulac Jan 2008 B2
7345491 Pezier Mar 2008 B2
7422680 Sheets, Sr. Sep 2008 B2
7426791 Martin Sep 2008 B2
7448258 Saunders et al. Nov 2008 B2
7475495 Chiles et al. Jan 2009 B2
7481924 Takahashi et al. Jan 2009 B2
7526956 Muzzolini May 2009 B2
7552545 Crawford et al. Jun 2009 B2
7622693 Foret Nov 2009 B2
7665225 Goldberg et al. Feb 2010 B2
7742951 Ebrom et al. Jun 2010 B2
7771699 Adams et al. Aug 2010 B2
20020020027 Noyes et al. Feb 2002 A1
20020023368 Beaumont Feb 2002 A1
20020033124 Asanuma et al. Mar 2002 A1
20020133886 Severns et al. Sep 2002 A1
20030024806 Foret Feb 2003 A1
20030055179 Ota et al. Mar 2003 A1
20030061728 Reede et al. Apr 2003 A1
20030066638 Qu et al. Apr 2003 A1
20030084693 Sower May 2003 A1
20030101617 Prajescu et al. Jun 2003 A1
20030150130 Confoey et al. Aug 2003 A1
20030167576 Noyes et al. Sep 2003 A1
20030172697 Sower Sep 2003 A1
20030230005 Lapierre Dec 2003 A1
20040123488 Han Jul 2004 A1
20040129032 Severns et al. Jul 2004 A1
20040154988 Sheets, Sr. Aug 2004 A1
20040159008 Harpenau Aug 2004 A1
20040187343 Beaumont Sep 2004 A1
20050050644 Severns et al. Mar 2005 A1
20050066538 Goldberg et al. Mar 2005 A1
20050084415 McVey et al. Apr 2005 A1
20050092066 Ruhland et al. May 2005 A1
20050145552 Sheets Jul 2005 A1
20050147784 Chang et al. Jul 2005 A1
20050183208 Scheper et al. Aug 2005 A1
20060005581 Banba Jan 2006 A1
20060010967 Matsuo Jan 2006 A1
20060179676 Goldberg et al. Aug 2006 A1
20060218812 Brown Oct 2006 A1
20060242858 Beaulac Nov 2006 A1
20060260394 Muzzolini Nov 2006 A1
20060288605 Carow et al. Dec 2006 A1
20060288608 Carow et al. Dec 2006 A1
20070020109 Takahashi et al. Jan 2007 A1
20070089317 Crawford et al. Apr 2007 A1
20070098625 Adams et al. May 2007 A1
20070101603 Beaumont May 2007 A1
20070124955 Crnkovich Jun 2007 A1
20070124956 Crnkovich Jun 2007 A1
20070227036 Powers Oct 2007 A1
20070288251 Ebrom et al. Dec 2007 A1
20070288331 Ebrom et al. Dec 2007 A1
20070298405 Ebrom et al. Dec 2007 A1
20080034611 Carow et al. Feb 2008 A1
20080041115 Kanazawa et al. Feb 2008 A1
20080052951 Beaulac Mar 2008 A1
20080052954 Beaulac Mar 2008 A1
20080100695 Ebrom et al. May 2008 A1
20080109243 Ebrom et al. May 2008 A1
20080109310 Ebrom et al. May 2008 A1
20080109311 Ebrom et al. May 2008 A1
20080109312 Ebrom et al. May 2008 A1
20080110044 Ehlers May 2008 A1
20080124668 Schultz et al. May 2008 A1
20080134538 McFarland Jun 2008 A1
20080141550 Bae et al. Jun 2008 A1
20080156094 Holmes et al. Jul 2008 A1
20090006970 Jeffery et al. Jan 2009 A1
20090038178 Ahn et al. Feb 2009 A1
20090100702 Fair Apr 2009 A1
20090126220 Nawrot et al. May 2009 A1
20090151804 Takahashi et al. Jun 2009 A1
20090226308 Vandor Sep 2009 A1
20100000112 Carow et al. Jan 2010 A1
20100000114 Dalton et al. Jan 2010 A1
20100044477 Foret Feb 2010 A1
20100044483 Foret Feb 2010 A1
20100058611 Neumann Mar 2010 A1
20100115785 Ben-Shmuel et al. May 2010 A1
20100205819 Ashrafzadeh et al. Aug 2010 A1
20100205820 Ashrafzadeh et al. Aug 2010 A1
20100205823 Ashrafzadeh et al. Aug 2010 A1
20100205825 Ashrafzadeh et al. Aug 2010 A1
20100205826 Ashrafzadeh et al. Aug 2010 A1
Foreign Referenced Citations (72)
Number Date Country
19633505 Feb 1997 DE
73898 Mar 1983 EP
761863 Mar 1997 EP
915199 May 1999 EP
1026305 Aug 2000 EP
1736592 Dec 2006 EP
1813705 Aug 2007 EP
59151997 Aug 1984 JP
59214497 Dec 1984 JP
61160474 Jul 1986 JP
61203998 Sep 1986 JP
62037688 Feb 1987 JP
62060598 Mar 1987 JP
01166799 Jun 1989 JP
01265999 Oct 1989 JP
01284298 Nov 1989 JP
01297066 Nov 1989 JP
02127561 May 1990 JP
02209197 Aug 1990 JP
02295596 Dec 1990 JP
03000098 Jan 1991 JP
03251297 Nov 1991 JP
03254797 Nov 1991 JP
04126196 Apr 1992 JP
04126199 Apr 1992 JP
04193198 Jul 1992 JP
04367697 Dec 1992 JP
05049799 Mar 1993 JP
05146593 Jun 1993 JP
06000292 Jan 1994 JP
06000295 Jan 1994 JP
06134188 May 1994 JP
06190196 Jul 1994 JP
07000689 Jan 1995 JP
07059995 Mar 1995 JP
07068094 Mar 1995 JP
07275584 Oct 1995 JP
08215471 Aug 1996 JP
08229298 Sep 1996 JP
09000790 Jan 1997 JP
09000791 Jan 1997 JP
09094386 Apr 1997 JP
09108497 Apr 1997 JP
09173680 Jul 1997 JP
11179096 Jul 1999 JP
11244587 Sep 1999 JP
11244589 Sep 1999 JP
11262599 Sep 1999 JP
2000107494 Apr 2000 JP
2000225298 Aug 2000 JP
2000288293 Oct 2000 JP
2000317200 Nov 2000 JP
2001038099 Feb 2001 JP
2001239096 Sep 2001 JP
2001340699 Dec 2001 JP
2003225500 Aug 2003 JP
2005130956 May 2005 JP
2005168547 Jun 2005 JP
2005323697 Nov 2005 JP
2006141579 Jun 2006 JP
2007105373 Apr 2007 JP
2007143712 Jun 2007 JP
2007175528 Jul 2007 JP
2008079855 Apr 2008 JP
2008079856 Apr 2008 JP
2008079857 Apr 2008 JP
2008245927 Oct 2008 JP
2008253394 Oct 2008 JP
2008253395 Oct 2008 JP
2008301940 Dec 2008 JP
2009240838 Oct 2009 JP
WO 2006054423 May 2006 WO
Related Publications (1)
Number Date Country
20080034611 A1 Feb 2008 US
Continuations (1)
Number Date Country
Parent 11163592 Oct 2005 US
Child 11876217 US
Continuation in Parts (1)
Number Date Country
Parent 11160433 Jun 2005 US
Child 11163592 US