The present Application is a national stage of International Patent Application No. PCT/CN2011/077360, titled “Automatic Compensation Mechanism for Hinge Seal Gap in Spherical Compressor,” filed Jul. 20, 2011, which claims priority from Chinese Patent Application No. 201010264211.8, filed Aug. 26, 2010, the contents of which are incorporated in this disclosure by reference in their entirety.
The present disclosure relates to a hinge seal structure, and more particularly to seal for a hinge structure where a piston is connected with a rotating disk in a spherical compressor.
The Chinese patent ZL03114505.1, entitled “a displacement mechanism for a compressor”, discloses a new type of displacement compressor with the advantages such as the absence of inlet valve and exhaust valve, a small number of moving parts, small vibration, high mechanical efficiency and reliable seal.
However, in the aforementioned patent, there exist implementation defects in design of the hinge structure where the piston is connected with the rotating disk. In the Chinese patent ZL03114505.1, there is a structure in which a piston pin seat is matched with a rotating disk pin seat and is connected therewith by a central pin to form cylindrical hinge joint. In such a structure, the piston pin seat has a convex structure lower at both sides and higher in a center thereof, with concave semi-cylindrical grooves at both sides and a convex semi-cylinder in the center; the rotating disk pin seat has a concave structure higher at both sides and lower in a center thereof, with convex semi-cylinders at both sides and a concave semi-cylindrical groove in the center; the convex piston pin seat and the concave rotating disk pin seat are embedded, and then connected with each other by the central pin being inserted into corresponding pin holes on the convex semi-cylinders thereof, thereby forming a cylindrical hinge with sealability penetrating a diameter of a spherical inner chamber of a cylinder (that is, a complete semi-cylindrical contact surface is formed between the facing semi-cylindrical groove and the semi-cylinder). However, for the aforementioned concave pin seat, it is difficult to process the concave semi-cylindrical groove in the center to be a complete semi-cylindrical surface capable of forming seal fit with the corresponding semi-cylinder due to its special structure. Such a structure is not suitable for mass production and cannot ensure accuracy, thereby influencing seal efficiency and overall performance. In another structure, there does not exist any center pin, a “C”-shaped hinge column sleeve with an opening formed on the rotating disk less than 180 degrees and a “Ω”-shaped cylindrical rotating shaft formed on the piston form cylindrical hinge joint, which has the function of hinge joint to some extent, but this kind of structure is poor in load carrying, is apt to be deformed when there is high pressure gas in the cylinder, causes sealing failure and will increase mechanical friction at other parts.
As such, with years of related experience in design and manufacture, the inventor proposes an automatic compensation mechanism for hinge seal gap in spherical compressor to overcome the defects in the prior art.
The object of the present invention is to design a new type of hinge seal structure for a spherical compressor on the basis of the Chinese patent ZL03114505.1 so as to overcome the defects in the Chinese patent ZL03114505.1, improve the reliability of the seal, and adapt to mass production, thereby enhancing overall performance.
The object of the present invention is achieved as follows. In an automatic compensation mechanism for a hinge seal gap in a spherical compressor, a cylindrical hinge is formed around a central pin, a rotating disk pin seat, and a piston pin seat of the spherical compressor; a fan-shaped insert thicker at both sides and thinner in a center thereof is disposed at a bottom of a groove on the pin seat forming the cylindrical hinge, and the insert has a shape which matches that of the groove and of an external cylindrical surface of a semi-cylindrical protrusion corresponding to the groove, respectively forming a dynamic seal fit.
In a preferable embodiment of the present invention, one of the pin seats is a convex pin seat lower at both sides and higher in a center thereof, and the other of the pin seats is a concave pin seat higher at both sides and lower in a center thereof; for the convex pin seat, concave semi-cylindrical grooves are at both sides and a convex semi-cylinder is in the center; for the concave pin seat, convex semi-cylinders are at both sides and a sump with a smooth bottom surface is in the center; the convex pin seat and the concave pin seat are embedded, and then connected with each other by the central pin being inserted into corresponding pin holes on the convex semi-cylinders thereof; the insert is disposed between a bottom of the sump in the center of the concave pin seat and a top of the semi-cylinder in the center of the convex pin seat, the insert has a top surface which is fitted with the bottom surface of the sump in shape, the insert has a bottom surface which is fitted with an external cylindrical surface of the semi-cylinder of the convex pin seat correspondingly embedded in the sump in shape, and the insert is in dynamic seal fit with the concave pin seat and the convex pin seat, thereby forming a cylindrical hinge with sealability.
In a preferable embodiment of the present invention, semi-cylindrical contact surfaces in dynamic seal fit are formed between the semi-cylindrical grooves at both sides of the convex pin seat and the semi-cylinders at both sides of the concave pin seat.
In a preferable embodiment of the present invention, two end surfaces of the insert are planes and form dynamic seal fit with two side walls of the sump; two side surfaces of the insert are planes, the two side surfaces of the insert after loaded in the sump are aligned with the top surfaces at two end-sides of the sump; when one of working chambers which perform compression alternatively and are formed at two sides of the cylindrical hinge is in a high pressure state, the side surface of the insert located at the working chamber is pressurized, and the insert relatively moves slightly towards the other low pressure side, thereby reducing a gap between the insert and the bottom surface of the sump as well as the cylindrical surface of the semi-cylinder close to the high pressure side. Moreover, the greater the pressure is, the smaller the gap becomes.
In a preferable embodiment of the present invention, the top surface of the insert is a convex arc surface, and the bottom surface of the sump matched therewith is also an arc surface.
In a preferable embodiment of the present invention, the top surface of the insert is a plane, and the bottom surface of the sump matched therewith is also a plane.
In a preferable embodiment of the present invention, the piston pin seat is a concave pin seat and the rotating disk pin seat is a convex pin seat.
In a preferable embodiment of the present invention, the piston pin seat is a convex pin seat and the rotating disk pin seat is a concave pin seat.
The present invention has the advantages in that:
(1) the in-cylinder pressure changing alternatively is taken as a power source, the radial gap of the cylindrical hinge close to the high pressure side becomes small by the displacement of the insert, and the greater the pressure difference is, the more reliable the seal becomes, which can be called as an automatic compensation mechanism for gap;
(2) in the view of the structure design, the present invention ensures the feasibility of mass production; the double dot dash line in
(3) due to the design of the automatic compensation mechanism for gap, the manufacturing accuracy for radial fit of the middle portion of the hinge structure is significantly reduced, thereby reducing the manufacturing difficulty and lowering the manufacturing cost;
(4) since the swing speed of the piston relative to the rotating disk will not exceed 20% of the rotating speed of the spindle in practical operation, and the two working chambers perform compression alternatively, the lubricating condition can ensure that each part has oil films, so high energy consumption and damage caused by surface friction will not occur at the insert; and
(5) since the amount of displacement of the insert is very small and the inserts move alternatively, with oil film among each of the gaps, there will not cause impact 30 noise or damage.
The following drawings are only intended to schematically explain the present invention and do not define the scope of the present invention, wherein:
In the drawings: 1-piston; 2-cylinder cover; 3-air passage; 4-V1 working chamber; 5-coupling screw; 6-spindle; 7-spindle bracket; 8-rotating disk; 9-cylinder body; 10-central pin; 11-V2 working chamber; 12-exhaust passage; 13-inlet passage; 14-insert; 15-side surface of the piston; 16-piston pin seat; 161-sump; 1611-two side walls of the sump; 162-pin hole; 81-rotating disk pin seat; 811-semi-cylinder; 812-semi-cylindrical groove; 813-pin hole; 141-top surface of the insert; 142-bottom surface of the insert; 143-two side surfaces of the insert; 144-two end surfaces of the insert.
In order to understand the technical features, objects and effects of the present invention more clearly, the embodiments of the present invention will be now explained with reference to the drawings.
As shown in
The central pin 10 is inserted into the piston pin seat 16 and the rotating disk pin seat 81, the spindle bracket 7 and the cylinder body 9 are connected by the coupling screw 5 to provide supporting for the rotation of the spindle 6, one end of the spindle 6 has an eccentric inclined hole which is located in the cylinder body 9 and is connected with the rotating disk shaft, the other end of the spindle 6 is connected with an actuating mechanism for supplying power to the displacement of the compressor; the axes of the above piston shaft and the rotating shaft as well as the spindle 6 all pass through the center of sphere of the spherical inner chamber, and the axes of the piston shaft and the rotating shaft form the same included angle α with the axis of the spindle 6.
After the piston pin seat 16 and the rotating disk pin seat 81 are embedded, the central pin 10 is inserted into the corresponding pin holes on the convex semi-cylinders of the convex pin seat and the concave pin seat to form the cylindrical hinge joint, a semi-cylindrical contact surface in perfect dynamic seal fit is formed between the semi-cylindrical grooves 812 at both sides of the convex pin seat and the semi-cylinders at both sides of the concave pin seat; a receiving space is formed between the bottom of the sump 161 in the center of the piston pin seat 16 and the top of the semi-cylinders 811 in the center of the rotating disk pin seat 81, the insert 14 is disposed in the receiving space, located at the bottom of the sump 161, with a fan-shaped structure thicker at both sides and thinner in the center thereof (as shown in
In the present embodiment, as shown in
The spindle 6 drives the rotating disk 8 when rotating, the rotating disk 8 drives the piston 1 to move (the rotating direction of the spindle 6 in the drawing is clockwise as seen from the cylinder cover 2); the movement of the piston 1 is the unique rotation around the self axis, the movement of the rotating disk 8 is the combination of two movements: one is the rotation around the self axis, and the other is to move with its axis always passing through the center of sphere of the spherical cylinder in a circumferential direction on a virtual cone surface with the center of sphere of the cylindrical cylinder as a peak, the taper angle being 2α, and the axis overlapping with that of the spindle 6 (that is, the axis of the rotating disk 8 sweeping the conical surface of the above cone), the movement period is synchronous with the period of the rotation of the spindle 6; the movements of the above spatial mechanisms are all rotational movements, so there is no any high vibration movement part. The composite result of such spatial movements is that: the piston 1 and the rotating disk 8 relatively swing periodically, the swing period is once the rotation period of the spindle, the amplitude of swing is 4α; taking the relative swing as the basic movement element for variable displacement, forming the V1 working chamber 4 and the V2 working chamber 11 with the pressure changing alternatively, the air passage 3 is provided on the piston 1, the inlet passage 12 and the exhaust passage 13 are provided on the inner spherical surface of the cylinder cover 2, with the structure as shown in
In the present embodiment, the piston pin seat 16 is a concave pin seat, the 10 rotating disk pin seat 81 is a convex pin seat; the insert 14 is provided at the bottom of the sump 161 in the center of the piston pin seat 16 as the insert of the piston 1.
As another example of the present embodiment, the piston pin seat 16 may be a convex pin seat, and the rotating disk pin seat 81 is a concave pin seat. That is, it is also possible to provide a sump in the center of the rotating disk pin seat 81, and provide an insert in the sump according to the structures of the pin seats of the piston 1 and the rotating disk 8 in practice. In other words, according to the specific structure of the cylindrical hinge formed by the central pin, the piston pin seat and the rotating disk pin seat, the insert may be positioned in the sump of the piston pin seat or in the sump of the rotating disk pin seat.
In practice, it is also possible to design an insert with another structure. As shown in
In some cases, the insert may also be fixed in the sump, and the seal effect is achieved by the accuracy fit of the insert and the fitting surface contacting the insert. The above is only the schematic embodiments of the present invention and is not used for defining the scope of the present invention. Any equivalent variations and modifications made by persons skilled in the art without departing the thought and 30 principle of the present invention fall within the protection scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2010 1 0264211 | Aug 2010 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2011/077360 | 7/20/2011 | WO | 00 | 5/29/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/024991 | 3/1/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1678049 | Kearney | May 1926 | A |
1612287 | Holmes | Dec 1926 | A |
2489041 | Manseau | Nov 1949 | A |
2674952 | Jacobsen | Apr 1954 | A |
3877850 | Berry | Apr 1975 | A |
4318675 | Clarke et al. | Mar 1982 | A |
4631011 | Whitfield | Dec 1986 | A |
5053655 | Benschop et al. | Oct 1991 | A |
5171142 | Proglyada | Dec 1992 | A |
5309716 | Kolbinger | May 1994 | A |
8424505 | Nagy | Apr 2013 | B2 |
20020094293 | Klassen | Jul 2002 | A1 |
20100034680 | Arnold | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
231548 | Mar 1944 | CH |
86100534 | Sep 1987 | CN |
2078807 | Jun 1991 | CN |
1431400 | Jul 2003 | CN |
ZL03114505.1 | Jul 2005 | CN |
101929463 | Dec 2010 | CN |
201810554 | Apr 2011 | CN |
2161572 | Jun 1973 | DE |
1190535 | Oct 1959 | FR |
398395 | Sep 1933 | GB |
5018376 | Jan 1993 | JP |
WO 2008034331 | Mar 2008 | WO |
Entry |
---|
Wang, MengYing et al., International Search Report issued in parent International Patent Application No. PCT/CN2011/077360 on Oct. 27, 2011. |
Number | Date | Country | |
---|---|---|---|
20140159313 A1 | Jun 2014 | US |