Automatic control system for an electrosurgical generator

Information

  • Patent Grant
  • 7300435
  • Patent Number
    7,300,435
  • Date Filed
    Friday, November 21, 2003
    21 years ago
  • Date Issued
    Tuesday, November 27, 2007
    17 years ago
Abstract
An automatic control system for an electrosurgical generator is herein disclosed. The automatic control system includes voltage and current sensing circuits, a processing circuit, an output determining circuit, and a control circuit. Samples of the voltage and current outputs are supplied to the processing circuit and the output determining circuit to generate an output signal. The output signal is compared to a reference signal to generate a feedback signal for controlling a drive circuit.
Description
CROSS REFERENCE TO RELATED APPLICATIONS:

This application claims the benefit of U.S. Provisional Application No. 60/515,816, filed Oct. 30, 2003.


BACKGROUND OF THE INVENTION

1. Technical Field


The present disclosure relates to electrosurgery. More particularly, the present disclosure relates to an automatic control system for an electrosurgical generator.


2. Background of Related Art


Surgeons have tried to deal with energy application by adjusting the basic power level of the electrosurgical generator and using a hand or foot switch to control the power applied over time. Unfortunately, that technique often leads to unintended power delivery or undesired duration of power delivery to the surgical site. Surgeons also experience difficulty in repeatably and/or consistently desiccating tissue to the desired levels due to the user's reaction time and/or machine response time when manual or foot activated switches are used for manual control. In addition, during endoscopic procedures, visual and tactile feedback is diminished.


A circuit for automatically controlling the output of an electrosurgical generator is disclosed in U.S. Pat. No. 6,210,403 to Klicek, currently owned, and assigned to Sherwood Services AG, the contents of which are hereby incorporated by reference in its entirety. U.S. Pat. No. 6,210,403 relates to an electrosurgical generator control, which is responsive to the tissue impedance between the active and return electrodes during desiccation.


A method for tone detection using the Goertzel algorithm is disclosed in an article entitled The Goertzel Algorithm by Kevin Banks (The Goertzel Algorithm by Kevin Banks, <http://www.embedded.com/showArticle.jhtml?articleID=9900772>, last visited on Jul. 24, 2003). The Banks' article relates to using a modified Goertzel algorithm for determining whether a tone of a specific frequency is present. The Goertzel algorithm calculates both the magnitude and the phase of signal at a specific frequency and is functionally equivalent to performing a Discrete Fourier Transform (DFT) at a single frequency, but is much less computationally demanding. The DFT is a method for calculating the magnitude and phase of a band of frequencies of interest. An N-point DFT is computationally demanding, but will calculate the real and imaginary frequency terms for all the frequencies up to half the sampling rate of the signal.


According to Banks, using a modified Goertzel algorithm is preferable in applications requiring tone detection such as DTMF, call progress decoding, and frequency response measurements. However, the modified Goertzel algorithm proposed by Banks does not provide the real and imaginary frequency components of the sampled waveform. As a result, the modified Goertzel algorithm is unsuited for determining the phase of the waveform.


It is an object of the present disclosure to provide an automatic control system that uses fewer computational steps.


Another object of the present disclosure is to provide an automatic control system that measures the power delivered to a patient.


Yet a further object of the present disclosure is to provide an automatic control system that is adaptable to both monopolar and bipolar electrosurgical generator configurations.


It is a further object of the present disclosure to provide an automatic control system that adjusts the power delivered to a patient by an electrosurgical generator.


SUMMARY

An automatic control system for an electrosurgical generator is hereinafter disclosed. The automatic control system includes voltage and current sensing circuits, a processing circuit, an output determining circuit, and a control circuit. The voltage and current sensing circuits produce voltage and current signals that are representative of the voltage and current present in the output of the electrosurgical generator. These signals are coupled to the processing circuit that uses a Goertzel algorithm to determine the phase difference between the voltage waveform and the current waveform according to circuitry within the processing circuit.


The processing circuit produces a phase difference signal that is communicated to the output determining circuit for determining the output of the electrosurgical generator. The output determining circuit produces an output signal that is compared to a reference signal in the control circuit. The control circuit determines the difference between the output signal and the reference signal and generates a feedback signal that is representative of the difference. The feedback signal is communicated to a drive control circuit for controlling the output of a drive circuit.


Preferably, the Goertzel algorithm determines phase angle between the voltage waveform and the current waveform. Advantageously, the phase angle is used to compensate for energy delivery at the operating site. It is also contemplated that the phase angle can be utilized to provide feedback to the generator about tissue relating to at least one of: tissue change over time, tissue impedance, tissue type, tissue cycle completion.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the presently disclosed are described herein with reference to the drawing, wherein:



FIG. 1 is block diagram of an automatic control system for an electrosurgical generator in accordance with an embodiment of the present disclosure.





DETAILED DESCRIPTION

Embodiments of the presently disclosed automatic control system will now be described in detail with reference to the drawing where, in FIG. 1, an exemplary embodiment of the presently disclosed automatic control system 10 is illustrated. Automatic control system 10 is ideally disposed within an electrosurgical generator 11. Electrosurgical generator 11 includes a user control 16 preferably on its front panel accessible to the doctor for setting the output level desired for a particular electrosurgical procedure. User control 16 may be a knob, a slider, or other structures and/or devices as is known in the art for use by the doctor to set a reference signal 26 indicative of the desired output.


A voltage sensing circuit 17 has an isolation transformer, which acts as an inductive pickup. Its primary side is electrically connected between leads 14 and 15 for inducing a voltage signal 18 on the secondary windings thereby responding to the high frequency electrosurgical energy supplied by electrosurgical generator 11 flowing through leads 14 and 15. A current sensing circuit 19 responds to high frequency electrosurgical energy supplied by electrosurgical generator 11 and flowing through return lead 15. Current sensing circuit 19 provides a current signal 20 as an instantaneous output representative of the current passing therethrough. Preferably, voltage signal 18 and current signal 20 are AC waveforms that are representative of the output of leads 14 and 15.


Operatively connected to leads 14 and 15 are electrodes 12 and 13. Electrodes 12 and 13 are used to provide the output of electrosurgical generator 11 to a patient. In a bipolar configuration, electrodes 12 and 13 are both present in an electrosurgical instrument (not shown), which is used at a surgical site of the patient with electrode 13 providing the return path for the output of electrosurgical generator 11.


In a monopolar configuration, the electrosurgical instrument (not shown) includes one electrode 12 while electrode 13 is connected to a surface near the patient and provides the return path. The active ends of electrodes 12 and 13 are electrically connected to electrosurgical generator 11 by one or more conductive cables. Although monopolar and bipolar configurations are used in electrosurgical generators, they are electrically equivalent and equally suited for use with automatic control system 10 of the present disclosure.


Voltage sensing circuit 17 and current sensing circuit 19 are operatively coupled to a processing circuit 21. In a preferred embodiment, processing circuit 21 includes one or more digital signal processors (DSP) and associated circuitry. The DSPs may be upgradeable using flash ROM as is known in the art. Upgrades for the DSPs may be stored on computer readable media such as magnetic disks, optical disks, magnetic tape, or other media as is known in the art. Processing circuit 21 simultaneously receives voltage signal 18 and current signal 20.


In a preferred embodiment, processing circuit uses the Goertzel algorithm for processing voltage and current signals 18, 20. The Goertzel algorithm is advantageously implemented as a second order recursive infinite impulse response filter, as shown below.


The Goertzel algorithm is defined by the equation:








Hf
i



(
z
)


=


1
-





2

π






f
i



f
s




z

-
1





1
-

2


cos


(


2

π






f
i



f
S


)




z

-
1



+

z

-
2









Where fi is the frequency of interest and fA is the sampling frequency.




embedded image



The Goertzel algorithm is implemented digitally as:








υ
k



[
n
]


=


x


[
n
]


+

2






cos


(


2

π





k

N

)





υ
k



[

n
-
1

]



-


υ
k



[

n
-
2

]







Since the output frequency of electrosurgical generator 11 is known, and preferably, about 470 KHz, the digitally implemented Goertzel algorithm calculates the real and imaginary frequency components of the known waveform using the following formulae:

Real=(vk[n−1]−(vk[n−2]*cos (2πk/N))
Imaginary=(vk[n−2]*sin (2πk/N))
Magnitude=square_root (Real2+Imaginary2)
Phase=ATAN (Imaginary/Real)

The DSPs of processing circuit 21 calculates the Voltage_Phase for voltage signal 18 and the Current_Phase for current signal 20 according to the above-mentioned formulae. Additionally, the phase shift, preferably in radians, between voltage signal 18 and current signal 20 can then be calculated by applying the algorithm on voltage signal 18 and current signal 20 concurrently and subtracting the difference in the phases as follows:

Phase_Difference=Current_Phase−Voltage_Phase.


This phase calculation is implemented to calculate the phase differential between voltage signal 18 and current signal 20. In the preferred embodiment, the DSPs of processing circuit 21 include the Goertzel algorithm along with associated processing software to determine the phase difference between voltage signal 18 and current signal 20. Additionally, processing circuit 21 determines a magnitude value of both voltage and current signals 18, 20 and communicates these values along with the Phase_Difference to an output determining circuit 24 as phase difference signal 22.


In one embodiment, output determining circuit 24 includes a microprocessor with associated circuitry for calculating the dosage (current, power or voltage) output of electrosurgical generator 11 using the calculated Phase_Difference and values of the voltage and current outputs of electrosurgical generator 11. In an AC circuit, power is determined by the formula P=EI cos (q), where P is the power measured in watts, E is a voltage value, I is a current value, and q is the Phase_Difference between the voltage and current waveforms.


By advantageously using the Goertzel algorithm for a single known value of frequency, automatic control system 10 of the present disclosure calculates the output for electrosurgical generator 11 using fewer computational steps than a DFT. More particularly, due to the frequency of the output and the selected sampling rate for the voltage and current components of the output, there is insufficient bandwidth to use a DFT to determine the Phase_Difference. However, processing circuit 21, according to the present disclosure, determines the Phase_Difference using the Goertzel algorithm, thereby using fewer computational steps and within the existing bandwidth. As used herein, bandwidth refers to the time between the voltage and/or current samples acquired by voltage and current sensing circuits 17, 19.


Preferably, automatic control system 10 additionally calculates the output of electrosurgical generator 11 and performs any necessary adjustments to the output within the existing bandwidth. In the preferred embodiment, after automatic control system 10 calculates the output and performs any necessary adjustments, there is additional bandwidth available before the next sample of the output is taken. Furthermore, by using fewer computational steps to determine Phase_Difference, a minimum amount of data is lost between samples.


Preferably, the Goertzel algorithm is used to determine the phase angle or Phase_Difference between the voltage waveform and the current waveform. Advantageously, the Phase_Difference is used to compensate for energy delivery at the operating site. It is also contemplated that the Phase_Difference can be utilized to provide feedback to the generator 11 about tissue relating to at least one of: tissue change over time, tissue impedance, tissue type, tissue cycle completion.


Extra bandwidth between samples of the output is advantageously utilized to perform additional calculations, perform additional control functions, or allow the output frequency of electrosurgical generator 11 to be increased. By way of example, such additional calculations include average values of voltage and current, peak values of voltage and current, and root mean square values of voltage and current. It is contemplated that, additional control functions may include calibration of system components and adjusting system parameters for cable compensation.


Output determining circuit 24 includes circuitry for determining electrosurgical generator's 11 output. Preferably, output determining circuit 24 includes a processor and associated circuitry for determining the current, voltage, and/or power delivered to the patient. An output signal 25 is generated by output determining circuit 24 and is coupled to an input of a control circuit 27. In a preferred embodiment, voltage and current signals 18, 20 are also communicated to output determining circuit 24. The circuitry in output determining circuit 24 determines the output of electrosurgical generator 11 using voltage and current signals 18, 20 in conjunction with phase difference signal 22. The output of electrosurgical generator 11 is represented by a value of output signal 25.


Control circuit 27 has at least two inputs where a first input is output signal 25 and a second input is a reference signal 26. Reference signal 26 is controlled by the setting of user control 16 and it establishes a reference value for control circuit 27. In a preferred embodiment, control circuit 27 includes at least one DSP and associated circuitry for determining the difference between output signal 25 and reference signal 26. A feedback signal 28 is generated by control circuit 27 where the feedback signal 28 is representative of the difference between output signal 25 and reference signal 26.


Feedback signal 28 is operatively coupled to a drive control circuit 34 for controlling the output of a drive circuit 33. Drive control circuit 34 includes structure and/or circuitry for controlling the output of drive circuit 33. In one embodiment, drive control circuit 34 controls an input to drive circuit 33 for adjusting the output of drive circuit 33 according to a value of feedback signal 28. Alternatively, drive control circuit 34 controls the output of drive circuit 33 by adjusting the biasing of associated circuitry in drive circuit 33 according to a value of feedback signal 28, thereby controlling its output.


During operation of electrosurgical generator 11, drive circuit 33 produces an output, or drive signal, that is coupled to a first winding of a transformer. A portion of the output present on the first winding of the transformer is coupled to a second winding of the transformer that is electrically communicated to leads 14 and 15. Leads 14 and 15 are electrically connected to electrodes 12 and 13 for operating an electrosurgical instrument (not shown) during an electrosurgical procedure. The output present on leads 14 and 15 is sampled by voltage sensing circuit 17 and current sensing circuit 19. As discussed in detail above, the Phase_Difference between the output voltage waveform and output current waveform is determined by processing circuit 21 and the output of electrosurgical generator 11 is determined by output determining circuit 24.


As output from electrosurgical generator 11 increases, the values of voltage signal 18 and current signal 20 also increase in a proportional relationship. Output determining circuit 24 receives phase difference signal 22 from processing circuit 21 and determines the change in the output. Accordingly, an increase in output is reflected in an increase in output signal 25 that is coupled to control circuit 27. Due to the increase in output signal 25, the difference between output signal 25 and reference signal 26 decreases resulting in a decreased feedback signal 28.


When output signal 25 is substantially equal to reference signal 26, feedback signal 28 is essentially zero. Additionally, the substantial equality of these signals indicates that electrosurgical generator 11 is producing the desired output for the selected electrosurgical procedure.


Other uses for electrosurgical generator 11 including automatic control system 10 are envisioned to be within the scope of this disclosure. Such applications include procedures where fine control and accuracy of delivered output is desirable. These applications include neurosurgical applications, ligasure sealing, thoracic and throat procedures, ocular surgery, procedures on small structures, and neonatal procedures. The determination of the Phase_Difference will allow output compensation so that with a known cable and handset, the output delivered to the patient can be more accurately calculated.


Further still, since automatic control system 10 determines the Phase_Difference between the voltage and current components of the output, this information may be coupled with known values of a handset and cable electrical characteristics (i.e. resistance, capacitance, and inductance) to determine the distance between the electrosurgical instrument and the surface of the patient. This is especially advantageous in a coagulation procedure where an electrosurgical generator is used in conjunction with an electrosurgical pencil (i.e. monopolar mode of operation) disposede above the surface of the patient. In this procedure, the electrosurgical generator typically produces a high voltage that arcs from the electrosurgical pencil to the surface of the patient, thereby coagulating affected tissue. By determining the distance between the electrosurgical pencil and the patient, automatic control system 10 can adjust the power output to a desired value that is sufficient to coagulate the affected tissue without producing additional power.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, Although a Goertzel algorithm is described herein as one low computation algorithm for determining the magnitude and phase components of a narrow band sinusoidal signal, any other algorithm which similarly derives the magnitude and phase components could also be used, such as a ‘Fourier Transform’, ‘Fast Fourier Transform (FFT)’ or ‘Discrete Fourier Transform (DFT)’. Other similar algorithms which focus on a narrow band of frequencies, will gain the benefit of reduced computational effort similar to the Goertzel implementation.


Although the illustrative embodiments of the present disclosure have been described herein with reference to the accompanying drawings, it is to be understood that the disclosure is not limited to those precise embodiments, and that various other changes and modifications may be affected therein by one skilled in the art without departing from the scope or spirit of the disclosure. All such changes and modifications are intended to be included within the scope of the disclosure.

Claims
  • 1. A system for controlling an output of an electrosurgical generator comprising: a drive circuit for generating an output, the output being responsive to a feedback signal and operatively coupled to at least one electrode of the electrosurgical generator;at least one sensing circuit operatively coupled to the at least one electrode for generating a first signal corresponding to a value of a voltage waveform present on the at least one electrode and a second signal corresponding to a value of a current waveform present on the at least one electrode;a processing circuit for receiving the first and second signals, wherein the processing circuit implements the Goertzel algorithm for determining a phase of each of the voltage waveform and the current waveform;a determining circuit in communication with the processing circuit for generating an output signal as a function of a phase difference between the voltage waveform and the current waveform; anda control circuit for generating a feedback signal, the feedback signal representative of a difference between a value of the output signal and a reference value, the feedback signal operatively coupled to the drive circuit.
  • 2. The system of claim 1, wherein the processing circuit includes at least one digital signal processor.
  • 3. The system of claim 1, wherein the phase difference is used to compensate for energy delivery at the operating site.
  • 4. The system of claim 1, wherein the phase difference provides feedback to the generator about tissue relating to at least one of: tissue change over time, tissue impedance, tissue type, tissue cycle completion.
  • 5. The system of claim 1, wherein the at least one sensing circuit includes a voltage sensing circuit and/or a current sensing circuit.
  • 6. A system for controlling an output of an electrosurgical generator comprising: a drive circuit for generating an output, the output being responsive to a feedback signal from at least one electrode operatively coupled to the electrosurgical generator;at least one sensing circuit operatively coupled to the at least one electrode that generates a first signal corresponding to a value of a voltage waveform present on the at least one electrode and a second signal corresponding to a value of a current waveform present on the at least one electrode;a processing circuit that receives the first and second signals, wherein the processing circuit implements the Goertzel algorithm for determining a phase of each of the voltage waveform and the current waveform; anda determining circuit in communication with the processing circuit that generates an output signal as a function of a phase difference between the voltage waveform and the current waveform.
  • 7. The system of claim 6, further comprising: a control circuit that generates a feedback signal, the feedback signal representative of a difference between a value of the output signal and a reference value, the feedback signal operatively coupled to the drive circuit.
  • 8. The system of claim 6, wherein the processing circuit includes at least one digital signal processor.
  • 9. The system of claim 6, wherein the phase difference is used to compensate for energy delivery at the operating site.
  • 10. The system of claim 6, wherein the phase difference provides feedback to the generator relating to at least one of: tissue change over time, tissue impedance, tissue type and tissue cycle completion.
  • 11. The system of claim 6, wherein the at least one sensing circuit includes at least one of a voltage sensing circuit and a current sensing circuit.
  • 12. A method for controlling an output of an electrosurgical generator comprising the step of: generating an output through at least one electrode operatively coupled to the electrosurgical generator, the output being responsive to a feedback signal;generating a first signal corresponding to a value of a voltage waveform present on the at least one electrode and a second signal corresponding to a value of a current waveform present on the at least one electrode;processing the first and second signals using the Goertzel algorithm to determine a phase of each of the voltage waveform and the current waveform; andgenerating an output signal as a function of a phase difference between the voltage waveform and the current waveform.
  • 13. A method according to claim 12, further comprising the step of: generating a feedback signal representative of a difference between a value of the output signal and a reference value, the feedback signal operatively coupled to the drive circuit.
US Referenced Citations (508)
Number Name Date Kind
1787709 Wappler Jan 1931 A
1813902 Bovie Jul 1931 A
1841968 Lowry Jan 1932 A
1863118 Liebel Jun 1932 A
1945867 Rawls Feb 1934 A
2827056 Degelman Mar 1958 A
2849611 Adams Aug 1958 A
2982881 Reich May 1961 A
3058470 Seeliger et al. Oct 1962 A
3089496 Degelman May 1963 A
3163165 Islikawa Dec 1964 A
3252052 Nash May 1966 A
3391351 Trent Jul 1968 A
3402326 Guasco et al. Sep 1968 A
3413480 Biard et al. Nov 1968 A
3436563 Regitz Apr 1969 A
3439253 Piteo Apr 1969 A
3439680 Thomas, Jr. Apr 1969 A
3461874 Martinez Aug 1969 A
3471770 Haire Oct 1969 A
3478744 Leiter Nov 1969 A
3486115 Anderson Dec 1969 A
3495584 Schwalm Feb 1970 A
3513353 Lansch May 1970 A
3514689 Glannamore May 1970 A
3515943 Warrington Jun 1970 A
3551786 Van Gulik Dec 1970 A
3562623 Farnsworth Feb 1971 A
3571644 Jakoubovitch Mar 1971 A
3589363 Banko Jun 1971 A
3595221 Blackett Jul 1971 A
3601126 Estes Aug 1971 A
3611053 Rowell Oct 1971 A
3641422 Farnsworth et al. Feb 1972 A
3662151 Haffey May 1972 A
3675655 Sittner Jul 1972 A
3683923 Anderson Aug 1972 A
3693613 Kelman Sep 1972 A
3697808 Lee Oct 1972 A
3699967 Anderson Oct 1972 A
3720896 Biertein Mar 1973 A
3743918 Maitre Jul 1973 A
3766434 Sherman Oct 1973 A
3768482 Shaw Oct 1973 A
3783340 Becker Jan 1974 A
3784842 Kremer Jan 1974 A
3801766 Morrison, Jr. Apr 1974 A
3801800 Newton Apr 1974 A
3812858 Oringer May 1974 A
3815015 Swin et al. Jun 1974 A
3826263 Cage et al. Jul 1974 A
3828768 Douglas Aug 1974 A
3848600 Patrick, Jr. et al. Nov 1974 A
3870047 Gonser Mar 1975 A
3875945 Friedman Apr 1975 A
3885569 Judson May 1975 A
3897787 Ikuno et al. Aug 1975 A
3897788 Newton Aug 1975 A
3901216 Felger Aug 1975 A
3905373 Gonser Sep 1975 A
3913583 Bross Oct 1975 A
3923063 Andrews et al. Dec 1975 A
3933157 Bjurwill et al. Jan 1976 A
3946738 Newton et al. Mar 1976 A
3952748 Kaliher et al. Apr 1976 A
3963030 Newton Jun 1976 A
3964487 Judson Jun 1976 A
3971365 Smith Jul 1976 A
3980085 Ikuno Sep 1976 A
4005714 Hiltebrandt Feb 1977 A
4024467 Andrews et al. May 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4051855 Schneiderman Oct 1977 A
4063557 Wuchinich et al. Dec 1977 A
4074719 Semm Feb 1978 A
4092986 Schneiderman Jun 1978 A
4094320 Newton et al. Jun 1978 A
4102341 Ikuno et al. Jul 1978 A
4114623 Meinke et al. Sep 1978 A
4121590 Gonser Oct 1978 A
4123673 Gonser Oct 1978 A
4126137 Archibald Nov 1978 A
4145636 Doi Mar 1979 A
4171700 Farin Oct 1979 A
4188927 Harris Feb 1980 A
4191188 Belt et al. Mar 1980 A
4196734 Harris Apr 1980 A
4200104 Harris Apr 1980 A
4200105 Gonser Apr 1980 A
4209018 Meinke et al. Jun 1980 A
4231372 Newton Nov 1980 A
4232676 Herczog Nov 1980 A
4237887 Gosner Dec 1980 A
4237891 DuBose et al. Dec 1980 A
4281373 Mabille Jul 1981 A
4287557 Brehse Sep 1981 A
4303073 Archibald Dec 1981 A
4311154 Sterzer et al. Jan 1982 A
4314559 Allen Feb 1982 A
4321926 Roge Mar 1982 A
4334539 Childs et al. Jun 1982 A
4343308 Gross Aug 1982 A
4372315 Shapiro et al. Feb 1983 A
4376263 Pittroff et al. Mar 1983 A
4378801 Oosten Apr 1983 A
4384582 Watt May 1983 A
4397314 Vaguine Aug 1983 A
4407272 Yamaguchi Oct 1983 A
4411266 Cosman Oct 1983 A
4416276 Newton et al. Nov 1983 A
4416277 Newton et al. Nov 1983 A
4429694 McGreevy Feb 1984 A
4437464 Crow Mar 1984 A
4438766 Bowers Mar 1984 A
4452546 Hiltebrandt et al. Jun 1984 A
4463759 Garito et al. Aug 1984 A
4470414 Imagawa et al. Sep 1984 A
4472661 Culver Sep 1984 A
4474179 Koch Oct 1984 A
4492231 Auth Jan 1985 A
4492832 Taylor Jan 1985 A
4494541 Archibald Jan 1985 A
4514619 Kugelman Apr 1985 A
4520818 Mickiewicz Jun 1985 A
4559943 Bowers Dec 1985 A
4565200 Cosman Jan 1986 A
4566454 Mehl et al. Jan 1986 A
4569345 Manes Feb 1986 A
4576177 Webster, Jr. Mar 1986 A
4582057 Auth et al. Apr 1986 A
4590934 Malis et al. May 1986 A
4608977 Brown Sep 1986 A
4630218 Hurley Dec 1986 A
4632109 Patterson Dec 1986 A
4644955 Mioduski Feb 1987 A
4646222 Okado et al. Feb 1987 A
4651264 Shiao-Chung Hu Mar 1987 A
4651280 Chang et al. Mar 1987 A
4657015 Irnich Apr 1987 A
4658815 Farin et al. Apr 1987 A
4658819 Harris et al. Apr 1987 A
4658820 Klicek Apr 1987 A
4662383 Sogawa et al. May 1987 A
4712559 Turner Dec 1987 A
4727874 Bowers et al. Mar 1988 A
4735204 Sussman et al. Apr 1988 A
4739759 Rexroth et al. Apr 1988 A
4741334 Irnich May 1988 A
4754757 Feucht Jul 1988 A
4788634 Schlecht et al. Nov 1988 A
4805621 Heinze et al. Feb 1989 A
4818954 Flachenecker et al. Apr 1989 A
4827911 Broadwin et al. May 1989 A
4827927 Newton May 1989 A
4832024 Boussignac et al. May 1989 A
4848335 Manes Jul 1989 A
4848355 Nakamura et al. Jul 1989 A
4860745 Farin et al. Aug 1989 A
4862889 Feucht Sep 1989 A
4880719 Murofushi et al. Nov 1989 A
4890610 Kirwan et al. Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4907589 Cosman Mar 1990 A
4922210 Flachenecker et al. May 1990 A
4931047 Broadwin et al. Jun 1990 A
4931717 Gray et al. Jun 1990 A
4938761 Ensslin Jul 1990 A
4942313 Kinzel Jul 1990 A
4961047 Carder Oct 1990 A
4961435 Kitagawa et al. Oct 1990 A
4966597 Cosman Oct 1990 A
RE33420 Sussman Nov 1990 E
4969885 Farin Nov 1990 A
4993430 Shimoyama et al. Feb 1991 A
4995877 Ams et al. Feb 1991 A
5015227 Broadwin et al. May 1991 A
5019176 Brandhorst, Jr. May 1991 A
5029588 Yock et al. Jul 1991 A
5087257 Farin Feb 1992 A
5103804 Abele et al. Apr 1992 A
5108389 Cosmescu Apr 1992 A
5108391 Flachenecker Apr 1992 A
5122137 Lennox Jun 1992 A
5133711 Hagen Jul 1992 A
5151102 Kamiyama et al. Sep 1992 A
5152762 McElhenney Oct 1992 A
5157603 Scheller et al. Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162217 Hartman Nov 1992 A
5167658 Ensslin Dec 1992 A
5190517 Zieve et al. Mar 1993 A
5196008 Kuenecke Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5201900 Nardella Apr 1993 A
5207691 Nardella May 1993 A
5230623 Guthrie et al. Jul 1993 A
5233515 Cosman Aug 1993 A
5249121 Baum et al. Sep 1993 A
RE34432 Bertrand Nov 1993 E
5267994 Gentelia et al. Dec 1993 A
5267997 Farin Dec 1993 A
5281213 Milder et al. Jan 1994 A
5300068 Rosar et al. Apr 1994 A
5300070 Gentelia Apr 1994 A
5318563 Malis et al. Jun 1994 A
5323778 Kandarpa et al. Jun 1994 A
5324283 Heckele Jun 1994 A
5330518 Neilson et al. Jul 1994 A
5334193 Nardella Aug 1994 A
5341807 Nardella Aug 1994 A
5342356 Ellman Aug 1994 A
5342357 Nardella Aug 1994 A
5342409 Mullett Aug 1994 A
5348554 Imran et al. Sep 1994 A
5370645 Klicek et al. Dec 1994 A
5370672 Fowler et al. Dec 1994 A
5370675 Edwards et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5383874 Jackson Jan 1995 A
5383876 Nardella Jan 1995 A
5383917 Desai et al. Jan 1995 A
5385148 Lesh et al. Jan 1995 A
5396062 Eisentraut et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403311 Abele et al. Apr 1995 A
5403312 Yates et al. Apr 1995 A
5409000 Imran Apr 1995 A
5409006 Buchholtz et al. Apr 1995 A
5409485 Suda Apr 1995 A
5413573 Koivukangas May 1995 A
5414238 Steigerwald et al. May 1995 A
5417719 Hull et al. May 1995 A
5422567 Matsunaga Jun 1995 A
5423808 Edwards et al. Jun 1995 A
5423809 Klicek Jun 1995 A
5423810 Goble et al. Jun 1995 A
5430434 Lederer et al. Jul 1995 A
5432459 Thompson Jul 1995 A
5433739 Sluijter et al. Jul 1995 A
5434398 Goldberg Jul 1995 A
5436566 Thompson Jul 1995 A
5438302 Goble Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445635 Denen Aug 1995 A
5451224 Goble et al. Sep 1995 A
5458597 Edwards et al. Oct 1995 A
5462521 Brucker et al. Oct 1995 A
5472441 Edwards et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5478303 Foley-Nolan et al. Dec 1995 A
5480399 Hebborn Jan 1996 A
5483952 Aranyi Jan 1996 A
5490850 Ellman et al. Feb 1996 A
5496312 Klicek Mar 1996 A
5496313 Gentelia et al. Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5500616 Ochi Mar 1996 A
5514129 Smith May 1996 A
5520684 Imran May 1996 A
5531774 Schulman et al. Jul 1996 A
5534018 Wahlstrand et al. Jul 1996 A
5536267 Edwards et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540683 Ichikawa Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540724 Cox Jul 1996 A
5556396 Cohen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5569242 Lax et al. Oct 1996 A
5571147 Sluijter et al. Nov 1996 A
5573533 Strul Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5594636 Schauder Jan 1997 A
5596466 Ochi Jan 1997 A
5599344 Paterson Feb 1997 A
5599345 Edwards et al. Feb 1997 A
5605150 Radons et al. Feb 1997 A
5613966 Makower et al. Mar 1997 A
5613996 Lindsay Mar 1997 A
5625370 D'Hont Apr 1997 A
5626575 Crenner May 1997 A
5628745 Bek May 1997 A
5643330 Holsheimer et al. Jul 1997 A
5647869 Goble Jul 1997 A
5647871 Levine et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5658322 Fleming Aug 1997 A
5660567 Nierlich et al. Aug 1997 A
5688267 Panescu et al. Nov 1997 A
5690692 Fleming Nov 1997 A
5693042 Boiarski et al. Dec 1997 A
5694304 Telefus et al. Dec 1997 A
5695494 Becker Dec 1997 A
5696351 Benn et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5702429 King Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5712772 Telefus et al. Jan 1998 A
5713896 Nardella Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722975 Edwards et al. Mar 1998 A
5733281 Nardella Mar 1998 A
5749869 Lindenmeier et al. May 1998 A
5749871 Hood et al. May 1998 A
5755715 Stern May 1998 A
5766165 Gentelia et al. Jun 1998 A
5769847 Panescu Jun 1998 A
5772659 Becker et al. Jun 1998 A
5792138 Shipp Aug 1998 A
5797802 Nowak Aug 1998 A
5797902 Netherly Aug 1998 A
5814092 King Sep 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5820568 Willis Oct 1998 A
5827271 Bussey et al. Oct 1998 A
5830212 Cartmell Nov 1998 A
5836943 Miller, III Nov 1998 A
5836990 Li Nov 1998 A
5846236 Lindenmeier et al. Dec 1998 A
5868737 Taylor et al. Feb 1999 A
5868739 Lindenmeier et al. Feb 1999 A
5868740 LeVeen et al. Feb 1999 A
5871481 Kannenberg et al. Feb 1999 A
5897552 Edwards et al. Apr 1999 A
5908444 Azure Jun 1999 A
5913882 King Jun 1999 A
5921982 Lesh et al. Jul 1999 A
5925070 King et al. Jul 1999 A
5931836 Hatta et al. Aug 1999 A
5938690 Law et al. Aug 1999 A
5948007 Starkebaum et al. Sep 1999 A
5951545 Schilling Sep 1999 A
5951546 Lorentzen Sep 1999 A
5954686 Garito et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5954719 Chen et al. Sep 1999 A
5961344 Rosales et al. Oct 1999 A
5971980 Sherman Oct 1999 A
5976128 Schilling et al. Nov 1999 A
5983141 Sluijter et al. Nov 1999 A
6010499 Cobb Jan 2000 A
6014581 Whayne et al. Jan 2000 A
6033399 Gines Mar 2000 A
6044283 Fein et al. Mar 2000 A
6053910 Fleenor Apr 2000 A
6053912 Panescu et al. Apr 2000 A
6056745 Panescu et al. May 2000 A
6056746 Goble et al. May 2000 A
6063075 Mihori May 2000 A
6063078 Wittkampf May 2000 A
6068627 Orszulak et al. May 2000 A
6074386 Goble et al. Jun 2000 A
6093186 Goble Jul 2000 A
RE36871 Epstein Sep 2000 E
6113591 Whayne et al. Sep 2000 A
6113596 Hooven Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6132429 Baker Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6162217 Kannenberg et al. Dec 2000 A
6171304 Netherly et al. Jan 2001 B1
6203541 Keppel Mar 2001 B1
6210403 Klicek Apr 2001 B1
6228080 Gines May 2001 B1
6228081 Goble May 2001 B1
6231569 Bek May 2001 B1
6235020 Cheng et al. May 2001 B1
6238387 Miller, III May 2001 B1
6238388 Ellman May 2001 B1
6241725 Cosman Jun 2001 B1
6245065 Panescu Jun 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6251106 Becker et al. Jun 2001 B1
6258085 Eggleston Jul 2001 B1
6261285 Novak Jul 2001 B1
6273886 Edwards Aug 2001 B1
6275786 Daners Aug 2001 B1
6293941 Strul Sep 2001 B1
6306131 Hareyama et al. Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6309386 Bek Oct 2001 B1
6325799 Goble Dec 2001 B1
6337998 Behl et al. Jan 2002 B1
6338657 Harper et al. Jan 2002 B1
6350262 Ashley Feb 2002 B1
6358245 Edwards Mar 2002 B1
6383183 Sekino et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6398781 Goble et al. Jun 2002 B1
6402741 Keppel et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6436096 Hareyama Aug 2002 B1
6451015 Rittman, III et al. Sep 2002 B1
6458121 Rosenstock . Oct 2002 B1
6464689 Qin Oct 2002 B1
6464696 Oyama Oct 2002 B1
6506189 Rittman, III et al. Jan 2003 B1
6508815 Strul Jan 2003 B1
6511476 Hareyama Jan 2003 B2
6511478 Burnside et al. Jan 2003 B1
6524308 Muller et al. Feb 2003 B1
6547786 Goble Apr 2003 B1
6562037 Paton May 2003 B2
6565559 Eggleston May 2003 B2
6573248 Ramasamy et al. Jun 2003 B2
6575969 Rittman, III et al. Jun 2003 B1
6620157 Dabney et al. Sep 2003 B1
6623423 Sakurai Sep 2003 B2
6635057 Harano Oct 2003 B2
6648883 Francischelli Nov 2003 B2
6652514 Ellman Nov 2003 B2
6663623 Oyama et al. Dec 2003 B1
6663624 Edwards Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6679875 Honda Jan 2004 B2
6682527 Strul Jan 2004 B2
6685700 Behl Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6692489 Heim Feb 2004 B1
6712813 Ellman Mar 2004 B2
6730080 Harano May 2004 B2
6733495 Bek May 2004 B1
6733498 Paton May 2004 B2
6740079 Eggers May 2004 B1
6740085 Hareyama May 2004 B2
6783523 Qin Aug 2004 B2
6790206 Panescu Sep 2004 B2
6796981 Wham Sep 2004 B2
6824539 Novak Nov 2004 B2
6830569 Thompson Dec 2004 B2
6843789 Goble Jan 2005 B2
6849073 Hoey Feb 2005 B2
6855141 Lovewell Feb 2005 B2
6855142 Harano Feb 2005 B2
6860881 Sturm Mar 2005 B2
6864686 Novak Mar 2005 B2
6875210 Refior Apr 2005 B2
6893435 Roane May 2005 B2
7044948 Keppel May 2006 B2
7060063 Marion et al. Jun 2006 B2
7063692 Sakurai et al. Jun 2006 B2
7066933 Hagg Jun 2006 B2
7131860 Sartor et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
20010014804 Goble et al. Aug 2001 A1
20010031962 Eggleston Oct 2001 A1
20020035353 Edwards et al. Mar 2002 A1
20020035363 Edwards et al. Mar 2002 A1
20020035364 Schoenman et al. Mar 2002 A1
20020068932 Edwards Jun 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020193787 Qin Dec 2002 A1
20030004510 Wham et al. Jan 2003 A1
20030060818 Kannenberg Mar 2003 A1
20030078572 Pearson et al. Apr 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030153908 Goble Aug 2003 A1
20030163123 Goble Aug 2003 A1
20030163124 Goble Aug 2003 A1
20030171745 Francischelli Sep 2003 A1
20030199863 Swanson Oct 2003 A1
20030225401 Eggers et al. Dec 2003 A1
20040002745 Flemming Jan 2004 A1
20040015163 Buysse et al. Jan 2004 A1
20040015216 DeSisto Jan 2004 A1
20040019347 Sakurai Jan 2004 A1
20040024395 Ellman Feb 2004 A1
20040030328 Eggers Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040044339 Beller Mar 2004 A1
20040049179 Francischelli Mar 2004 A1
20040054365 Goble Mar 2004 A1
20040059323 Sturm et al. Mar 2004 A1
20040068304 Paton Apr 2004 A1
20040082946 Malis Apr 2004 A1
20040095100 Thompson May 2004 A1
20040097912 Gonnering May 2004 A1
20040097914 Pantera May 2004 A1
20040097915 Refior May 2004 A1
20040116919 Heim Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040138653 Dabney Jul 2004 A1
20040138654 Goble Jul 2004 A1
20040147918 Keppel Jul 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040172016 Bek Sep 2004 A1
20040193148 Wham et al. Sep 2004 A1
20040230189 Keppel Nov 2004 A1
20040243120 Orszulak et al. Dec 2004 A1
20040260279 Goble Dec 2004 A1
20050004564 Wham Jan 2005 A1
20050004569 Witt et al. Jan 2005 A1
20050021022 Sturm et al. Jan 2005 A1
20050101951 Wham May 2005 A1
20050113818 Sartor May 2005 A1
20050113819 Wham May 2005 A1
20050149151 Orszulak Jul 2005 A1
20050182398 Paterson Aug 2005 A1
20050197659 Bahney Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20060025760 Podhajsky Feb 2006 A1
20060079871 Plaven et al. Apr 2006 A1
20060161148 Behnke Jul 2006 A1
20060178664 Keppel Aug 2006 A1
20060224152 Behnke et al. Oct 2006 A1
20060281360 Sartor et al. Dec 2006 A1
Foreign Referenced Citations (81)
Number Date Country
179607 Mar 1905 DE
1099658 Feb 1961 DE
1139927 Nov 1962 DE
1149832 Jun 1963 DE
1439302 Jan 1969 DE
2439587 Feb 1975 DE
2455174 May 1975 DE
2407559 Aug 1975 DE
2602517 Jul 1976 DE
2504280 Aug 1976 DE
2540968 Mar 1977 DE
2820908 Nov 1978 DE
2803275 Aug 1979 DE
2823291 Nov 1979 DE
2946728 May 1981 DE
3143421 May 1982 DE
3045996 Jul 1982 DE
3143421 Aug 1982 DE
3120102 Dec 1982 DE
3510586 Oct 1986 DE
3604823 Aug 1987 DE
390937 Apr 1989 DE
3904558 Aug 1990 DE
3942998 Jul 1991 DE
4339049 May 1995 DE
19717411 Nov 1998 DE
19848540 May 2000 DE
246350 Nov 1987 EP
310431 Apr 1989 EP
325456 Jul 1989 EP
336742 Oct 1989 EP
390937 Oct 1990 EP
556705 Aug 1993 EP
0569130 Nov 1993 EP
608609 Aug 1994 EP
836868 Apr 1998 EP
878169 Nov 1998 EP
1293171 Mar 2003 EP
0880220 Jun 2006 EP
1275415 Oct 1961 FR
1347865 Nov 1963 FR
2313708 Dec 1976 FR
2502935 Oct 1982 FR
2517953 Jun 1983 FR
2573301 May 1986 FR
607850 Sep 1948 GB
855459 Nov 1960 GB
902775 Aug 1962 GB
2164473 Mar 1986 GB
2214430 Sep 1989 GB
2358934 Aug 2001 GB
166452 Jan 1965 SU
727201 Apr 1980 SU
WO9206642 Apr 1992 WO
WO9324066 Dec 1993 WO
WO9424949 Nov 1994 WO
WO9428809 Dec 1994 WO
WO9509577 Apr 1995 WO
WO9519148 Jul 1995 WO
WO9602180 Feb 1996 WO
WO9604860 Feb 1996 WO
WO9608794 Mar 1996 WO
WO9618349 Jun 1996 WO
WO9629946 Oct 1996 WO
WO9639914 Dec 1996 WO
WO9706739 Feb 1997 WO
WO9706740 Feb 1997 WO
WO9706855 Feb 1997 WO
WO9717029 May 1997 WO
WO02011634 Feb 2002 WO
WO02045589 Jun 2002 WO
WO0247565 Jun 2002 WO
WO02088128 Jul 2002 WO
WO 03092520 Nov 2003 WO
WO 05060365 Nov 2003 WO
WO 04028385 Apr 2004 WO
WO 04098385 Apr 2004 WO
WO 05046496 May 2005 WO
WO 05048809 Jun 2005 WO
WO 05050151 Jun 2005 WO
WO05048809 Jun 2005 WO
Related Publications (1)
Number Date Country
20050113819 A1 May 2005 US