The present invention relates generally to a control system for a grain or seed carrier. More particularly, the present invention relates to a control system for a conveyor that can turn on or off the conveyor based on the amount of material being conveyed.
Farm implements (e.g., seed tenders, weigh wagons, grain carts, etc.) utilize conveyor systems to move material. Current conveyor systems for moving grain, seed, etc. from farm implements require an operator to manually control the conveyor system. Conventionally, the operator turns ON the conveyor manually, then manually monitors the conveying of the material until a desired amount of material is moved. At this point, the operator manually disables or turns OFF the conveyor system.
Some implements utilize weight measuring devices (e.g., scales), which may be coupled with an indicator, for measuring and displaying the weight (or relative weight) of material in a bin of the farm implement. Scale indicators can include an alarm mechanism, such as a buzzer or light, to let an operator know when a desired weight has been met. Such scale indicators can include a batch system, or preset value, that can be used for repeating a set weight (e.g., the alarm could be triggered every hundred pounds).
Current systems require an operator to be present to monitor manually the alarm associated with the scale indicator and to manually control the conveyor system. However, such manual operation is highly susceptible to human error.
Thus, there is a need for a new and improved conveyor shutoff system that automatically turns off the conveyor when a desired weight has been achieved.
According to an embodiment of the present invention, a system for automatically controlling the conveying of material from a conveying device for a farm implement is provided. The implement may include a storage bin configured to store a material and a conveying device for moving material from the bin. The conveying device may be an auger, belt conveyor or other conventional conveyor. The system further includes a scale configured to measure the weight of the material in the storage bin and/or the material being conveyed. A controller is coupled with and in communication with the scale. The controller is configured to disable conveying device when the weight of the material in the storage bin achieves a pre-set weight limit.
According to another embodiment of the present invention, the system for automatically controlling the conveying of material from a conveying device may include a user input device configured to allow a user to enter at least one weight limit. The preset weight limit can be set to the entered weight limit(s). According to another embodiment of the present invention, the system may include a user control switch configured to allow a user to manually activate and disable the conveying device.
According to another embodiment of the present invention, the weighing device may include a scale display indicator that displays the weight of the bin and outputs an alarm signal when the weight of the material in the storage bin reaches a present limit. The controller may be coupled with the scale display such that it receives the alarm signal and controls the conveyor in response to the alarm signal. According to another embodiment of the present invention, the controller is configured to disable the conveyor upon receiving the alarm signal from the scale indicator.
According to another embodiment of the present invention, the conveying device is a motor driven belt conveyor. According to another embodiment of the present invention, the storage bin can include a discharge and the conveying device input is positioned to receive material from the storage bin discharge. According to another embodiment of the present invention, the conveying device discharge is positioned over the storage bin.
According to another embodiment of the present invention, the system for automatically controlling the conveying of material from a conveying device can include a conveyor control valve electronically coupled to the controller and configured to receive a signal from the controller and disable the conveying device upon receiving the signal. According to another embodiment of the present invention, the conveyor control valve includes a throttle actuator.
According to an embodiment of the present invention, a method for controlling the amount of material output from a conveyor includes conveying material from a storage hopper and monitoring the weight of the storage hopper with an electronic scale. The method further includes providing one or more preset weight alarms and sending a signal, with the electronic scale, representing the weight of the storage hopper to a controller. The method also includes determining if the weight of the hopper meets or exceeds the present weight alarm and, with a controller, electronically controlling the conveyor to disable the conveyor when it is determined that the weight of the hopper meets the present weight alarm.
According to one embodiment, a control system is provided that ties together the scale indicator, the electric on/off of the conveying device, and an operator control switch. A programmable multi-switch was set up to perform this task. When the scale indicator reaches the set weight and sends a signal out, the multi-switch receives this signal and turns the conveying device off. To restart the conveying device, the operator is required to turn the operator control switch off and then back on. This will signal the multi-switch to restart the conveying device. The multi-switch sends a signal to the scale indicator to reset the indicator for the next weighing cycle, and the scale indicator will begin the next cycle. The operator control switch is also tied in such that it will turn the conveying device off at any time, and will allow it to be restarted. In addition, the multi-switch defaults to the off position, so that anytime power is lost, the conveying device turns off. This also means that at start up, the conveying device will always be off, and there is no chance of it being in mid-cycle.
The above and/or other aspects, features and/or advantages of various embodiments will be further appreciated in view of the following description in conjunction with the accompanying figures. Various embodiments can include or exclude different aspects, features, or advantages where applicable. In addition, various embodiments can combine one or more aspects, features, or advantages where applicable. The descriptions of the aspects, features, or advantages of a particular embodiment should not be construed as limiting any other embodiment of the claimed invention.
While the present invention may be embodied in many different forms, a number of illustrative embodiments are described herein with the understanding that the present disclosure is to be considered as providing examples of the principles of the invention and such examples are not intended to limit the invention to preferred embodiment described herein and/or illustrated herein.
In embodiments of the present invention, an automatic conveyor shutoff system is configured to monitor the quantity of material that has been discharged or loaded has been achieved and to shutoff automatically a conveyor when a specified quantity of material has been discharged or loaded has been achieved. The following includes non-limiting examples of an automatic conveyor control system according to embodiments of the present invention. It should be appreciated that the following examples are provided for illustration and the present invention is not intended to be limited to the embodiments described herein.
The weigh scale display 130 may be configured to determine the weight of the material that has been loaded into or discharged from a conveying device from a weigh system (not shown). An exemplary system that could be employed with the present invention is disclosed in U.S. Pat. No. 7,205,490, the entire contents of which is incorporated herein by reference. When the amount of material that has been loaded into or discharged from the conveying device has achieved a preset weight limit, the electrical output 134 of the scale indicator sends a signal that is received by the electrical input 116 of the multi-switch. Upon receiving the signal, the multi-switch 110 controls the conveyor control valve 140—via the electrical output 114—to turn off the conveying device.
In an embodiment of the present invention, the weigh scale indicator 130 can include an input configured to allow a user to enter at least one preset limit into the scale indicator 130. In another embodiment of the present invention, the multi-switch 110 can be configured to enter a preset limit into the weigh scale indicator 130 by sending a signal from output 122 to input 136 of the scale indicator. Alternatively, a digital controller or processor could be employed to monitor the quantity of material that has been discharged or loaded directly.
In an embodiment of the present invention, the automatic conveyor shutoff system 100 includes an operator control switch 150. The operator control switch 150 is configured to allow a user to manually turn off the conveying device prior to weight achieving the preset limit. The operator control switch 150 may be a radio remote unit or corded controls. Further, the operator control switch 150 can be used to turn on the conveying device.
In an embodiment of the present invention, the weigh scale indicator 130 is configured to perform batch processing—a preset value can be used for repeating a set weight—in order to unload material in batches. After the conveying device has completed one cycle of loading or unloading material, a user can use the operator control switch 150 to signal the multi-switch 110 to repeat the cycle. The multi-switch 110 communicates with the scale indicator 130 by sending a signal from output 122 to input 136 of the scale indicator. The multi-switch 110 also controls the conveyor control valve 140 to turn on the conveying device.
In an embodiment of the present invention, the automatic conveyor shutoff system 100 includes a power supply 160. The power supply 160 can be an independent power supply for the automatic conveyor shutoff system 100 or it can be the power supply of the conveying device using the automatic conveyor shutoff system.
The conveyor 204 may include a conveyor hopper 208 at its base, which is shown in the unloading position below the gravity discharge 210 of the main hopper 205. At the other end of the conveyor 204 is the discharge 212. Seed can be gravity feed from the main hopper 205 into the conveyor hopper 208, which can then be moved to the discharge 212 of the conveyor 204 by an internal elevator (not shown). In one embodiment, the elevator is a motor-driven belt type elevator coupled onto rollers at both ends of the conveyor. The belt of the elevator may be a flat belt, a crescent belt or a cleated belt. In an embodiment of the present invention, the motor-driven belt type elevator coupled onto rollers at both ends of the conveyor includes a centrifugal clutch. The conveyor 204 may be driven by a mechanical, hydraulic or electric means.
When the seed carrier 200 is in the unloading position, the automatic conveyor control system 100 can regulate the amount of material unloaded from the main hopper 205 by the conveyor 204. A weigh or scale system (not shown) measures the weight of a material stored in the main hopper 205 and provides data to the weigh scale indicator. When the weight of the material unloaded from the main hopper 205 achieves a preset limit, the scale indicator 130 sends a signal to the multi-switch 110. The multi-switch 110 then turns off the conveyor 204 via the conveyor control valve 140. In an embodiment of the present invention, the conveyor control valve 140 is a throttle actuator that causes the engine to idle and the centrifugal clutch of the conveyor to disengage. In an embodiment of the present invention, a user may turn the conveyor 204 back on using the operator control switch 150, and the conveyor 204 will unload material from the main hopper 205 until the next preset limit is achieved.
The seed carrier 200 may be transported by conventional means such as on a trailer.
Accordingly, in the loading position, grain, seed or like can be feed into the conveyor hopper 208 to be moved to the discharge 212 for filling the main hopper 205.
When the seed carrier 200 is in the loading position, the automatic conveyor control system can regulate the amount of material being loaded into the main hopper 205 in a similar fashion. The weigh system measures the weight of the material loaded into the main hopper 205. When the weight of the material loaded into the main hopper 205 achieves a preset limit, the scale indicator 130 sends a signal to the multi-switch 110. The multi-switch 110 then turns off the conveyor 204 via the conveyor control valve 140. In an embodiment of the present invention, a user may turn the conveyor 204 back on using the operator control switch 150, and the conveyor 204 will load material into the main hopper 205 until the next preset limit is achieved.
The conveyor hopper 208 is preferably manufactured from light weight materials such as plastic, canvas, rubber or vinyl. As shown, the hopper 208 may include a mechanism for opening and closing the hopper 208. In this embodiment, a flexible coupling or hinge is provided at one end 708 of the hopper 208 and a mechanism 710 is provided at another end of the hopper 208 and is coupled with the conveyor 204, such that the hopper 208 may be made to have an appropriate fit with the discharge 210 of the main hopper 205. A flap 712 can be provided at the bottom of the discharge 110.
Thus, a number of preferred embodiments have been fully described above with reference to the drawing figures. Although the invention has been described based upon these preferred embodiments, it would be apparent to those of skill in the art that certain modifications, variations, and alternative constructions could be made to the described embodiments within the spirit and scope of the invention. For example, the conveyor controller could be built into the same processor as is used for a digital scale. A computerized method could be provided for controlling the conveyer.
The present application is a continuation of U.S. patent application Ser. No. 12/862,052 filed Aug. 24, 2010, which is a continuation-in-part of U.S. patent application Ser. No. 12/554,740 filed Sep. 4, 2009, the entire disclosure of which is incorporated herein by reference, which was a continuation-in-part of U.S. patent application Ser. No. 12/031,867 filed Feb. 15, 2008, the entire disclosure of which is incorporated herein by reference, which claimed the benefit of priority to U.S. Provisional Application Ser. No. 60/901,321 filed on Feb. 15, 2007, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60901321 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12862052 | Aug 2010 | US |
Child | 14161594 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12554740 | Sep 2009 | US |
Child | 12862052 | US | |
Parent | 12031867 | Feb 2008 | US |
Child | 12554740 | US |