1. Field of the Invention
The present invention relates to an automatic cutting machine, and particularly relates to an automatic cutting machine having a receiving device for lens.
2. Description of Prior Art
Materials employed in the generating of lenses are basically those of glass (inorganic) or plastic (organic) compounds. As an inorganic material, glass has excellent transparency. However, to obtain an optical lens, the glass substrate must be subject to a plurality of processes, such as coarse grind, fine grind and polish processes. This results in increased cost. Accordingly, a plastic material, such as polycarbonate, is generally used for optical lenses. Polycarbonate lenses are the most-used alternative material for modem consuming product lenses. The polycarbonate lens is thinner, lighter, and provides greater impact resistance, high refractive index, complete UV protection, heat resistance and easy processability.
Plastic becomes soft when heated, and thus can be molded into any desired shape by applying heat and pressure to it. A schematic view of a semi-finished plastic lens assembly 9 with scraps is shown in
Conventionally, the lenses 90 are separated from the runner scraps 91, 92 by manual cutting. This reduces production efficiency and provides unstable lens quality due to the operator's skill level. Additionally, with the rapid development of the technology, lenses used in consuming products, such as mobile phones, are becoming increasingly smaller. This also makes manual cutting more and more difficult and unpractical.
The emergency of an automatic cutting machine addresses the above-mentioned problems of manual cutting. A conventional automatic cutting machine generally employs a mechanically linked robotic arm to pick up the lenses. That is, the gripper of the robotic arm grips the runner to place the lens on a tray. The runner scraps are then cut. The separated lens is sucked up by a cupula of the robotic arm and finally placed into a lens receiver for stockage. However, as the cupula of the robotic arm of the conventional automatic cutting machine keeps intimate contact with the lens during the sucking process, the lens may be damaged. In addition, the multi-axis mechanism, positioning portion and control device applied by the conventional automatic cutting machine are rather complex and bulky, which also increases cost and occupies a large space.
Therefore, an improved automatic cutting machine is desired to overcome the above-mentioned disadvantages present in prior art.
Accordingly, one object of the present invention is to provide an automatic cutting machine that facilitates operation, occupies a small space, realizes integration of cutting and packaging, and ensures reliable and efficient output of high-quality products.
Another object of the present invention is to provide a lens cutting device that increases cutting efficiency and lens yield.
A further object of the present invention is to provide an automatic cutting machine having a take out device for lens. The take out device ensures rapid take out of lens to increase production efficiency, and also prevents the lens from contamination or damage.
Yet another object of the present invention is to provide a method for cutting lens, whereby integration of lens cutting and packaging can be realized, and production efficiency and lens yield can be increased.
According to one object of the present invention, there is provided an automatic cutting machine comprising a body portion, a carrying device, a cutting device, a take out device, a power device and an electrical control portion. The body portion has a base and a power supply unit. The carrying device comprises a shelf mounted on the base of the body portion, and a receptacle above the shelf for carrying a semi-finished lens assembly. Lenses on the semi-finished lens assembly are outwardly exposed to the outside of the receptacle for facilitating cutting. The cutting device, which is adjacent to the carrying device, comprises a shelf mounted on the base of the body portion and a scissor seat movably disposed on the shelf. The scissor seat has cutting blades for cutting the semi-finished lens assembly. The take out device is also located adjacent to the carrying device, and comprises a shelf mounted on the base of the body portion and a receiving device for receiving the projected lenses of the semi-finished lens assembly. After the cutting device separates the lenses from the semi-finished lens assembly, the lenses are retained in the receiving device. The power device is adapted to provide power to the cutting device and the take out device for moving. The electrical control portion comprises programmable logic controllers and relays.
According to another object of the present invention, there is provided a lens cutting device applied in the above automatic cutting machine for cutting a semi-finished lens assembly to obtain separated lenses. The semi-finished lens assembly includes runner scraps, four lenses, and four connecting portions between the runner scraps and the lenses. The cutting device includes two subassemblies each comprising a shelf and a scissor seat movably disposed on the shelf. The scissor seat has opposed first and second pairs of scissors. Each pair of scissors has two cutting blades. Thus, four groups of vertically aligned opposing cutting blades are provided on the cutting device each corresponding to a connecting portion of the semi-finished lens assembly. When each group of opposing cutting blades is driven to close, the aligned corresponding connecting portion of the semi-finished lens assembly is cut off. Thus, four separate lenses are obtained at one time, thereby increasing cutting efficiency.
According to a further object of the present invention, there is provided a lens take out device applied in the above automatic cutting machine for containing lenses. The take out device is located aside a carrying device of the automatic cutting machine, and comprises a shelf mounted on the base of the automatic cutting machine and a lens receiving device. The lens receiving device has multirow tubular rings, each row having a plurality of rings aligned for receiving lenses therein. When the automatic cutting machine starts up to work, the lens of the semi-finished lens assembly is received in the ring for cutting. When the cutting operation is performed, the separated lens is retained in the receiving device. Therefore, integration of cutting and packaging is realized and take out efficiency is thus increased.
According to yet another object of the present invention, there is provided a method for cutting lens performed by the above automatic cutting machine. The method comprises the following steps of: a) turning on the power, starting up the automatic cutting machine, and resetting the carrying device, the cutting device and the take out device of the automatic cutting machine to their original positions; b) positioning a semi-finished lens assembly in a receptacle of the carrying device via a robotic arm with lenses of the semi-finished lens assembly projecting outwardly from the receptacle; c) driving the take out device by the power device to move toward the receptacle of the carrying device to a predetermined position, whereby the projected lenses of the semi-finished lens assembly are received in corresponding rings of the receiving device of the take out device; d) driving the cutting device by the power device to move toward the receptacle of the carrying device to a predetermined position, and closing the vertically aligned opposing cutting blades of the scissors of the cutting device to cut the connecting portions of the semi-finished lens assembly between the lenses and the runner scraps, whereby the lenses are separated and retained in corresponding rings of the take out device; e) opening the vertically aligned opposing cutting blades of the scissors of the cutting device and returning the scissors to their original positions; f) returning the take out device to its original position; g) taking away the remaining runner scraps of the semi-finished lens assembly by the robotic arm; h) counting the number of lenses received in the tubular rings of the receiving device of the take out device by a counter; if the result being less than the maximal number of lenses being receivable in one row of tubular rings, repeating the above steps b) to g); if the result being equal to or greater than the maximal number of lenses being receivable in one row of tubular rings, raising the positioning portions of the receiving device to a higher level so that a lower row of tubular rings is in position for receiving lenses, and then repeating the above steps b) to g) until the counted total number of lenses received in the receiving device is equal to the maximal number of lenses being receivable in all rows of tubular rings; and i) replacing the lens receiving devices and resetting the carrying device, the cutting device and the take out device to repeat steps b) to h).
The automatic cutting machine of the present invention employs a take out device having a lens receiving device. This enables integration of lens cutting and packaging, and ensures rapid take out of lenses to obtain high-quality lenses. In addition, since the cutting device of the present automatic cutting machine cuts four lenses at one time, production efficiency is significantly increased.
The present invention may best be understood through the following description with reference to the accompanying drawings, in which:
Referring to
As shown in
Referring to
As shown in
If the determining result of the counter is less than N, then the above-mentioned processes are recycled. As shown in
During the above lens cutting processes, it can be found that the four lenses 90 of the semi-finished lens assembly 9 are cut by the cutting devices 20 at one time, and all separated lenses 90 are neatly and closely received in corresponding lens receiving devices 34. Thus, integration of lens cutting and packaging is realized, whereby the lens cutting cycle is shortened and production efficiency is increased. Further, during the cutting and take out processes, the lenses 90 are prevented from direct contact with external mechanical parts such as a robotic arm, thereby avoiding damages to the lenses 90. In addition, the operation of the present automatic cutting machine 1 is controlled by a predetermined program, and thus the present automatic cutting machine 1 is easy to operate and only a small space is occupied.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
093120326 | Jul 2004 | TW | national |