The present invention is related to automated data mining that uses a knowledge model and goals as input. (As used herein, references to the “present invention” or “invention” relate to exemplary embodiments and not necessarily to every embodiment encompassed by the appended claims.) More specifically, the present invention is related to automated data mining that uses a knowledge model and goals as input to a planning and learning module which provides plans as instructions to a data mining processing unit which in turn provides feedback to the planning and learning module to correct or reinforce the model used.
This section is intended to introduce the reader to various aspects of the art that may be related to various aspects of the present invention. The following discussion is intended to provide information to facilitate a better understanding of the present invention. Accordingly, it should be understood that statements in the following discussion are to be read in this light, and not as admissions of prior art.
The field of Data Mining has been widely explored and its applications cover very different areas, from banking, to genetics, and also telecommunications. Several examples of the existing approaches to Data Mining are offered below.
Although in the early days of Data Mining the solutions were predominantly adhoc for each different application and purpose, as the technology has matured there have appeared industry standards, such as the CRISP-DM process. (CRISP-DM process—http://www.crisp-dm.org/).
The Cross Industry Standard Process for Data Mining, or CRISP-DM, incorporated by reference herein, was a project to develop an industry- and tool-neutral data mining process model [reference to CRISP-DM]. The CRISP-DM concept was conceived by DaimlerChrysler (then Daimler-Benz), SPSS (then ISL), and NCR, in 1996 and evolved over several years, building on industry experience, both company-internal and through consulting engagements, and specific user requirements.
Although most data mining projects traditionally had been one-off design and implementation efforts by highly specialized individuals, they suffered from budget and deadline overruns. CRISP-DM had as goals to bring data mining projects to fruition faster and more cheaply. Since data mining projects that followed ad hoc processes tended to be less reliable and manageable, by standardizing the data mining phases and integrating and validating best practices from experts in diverse industry sectors, data mining projects could become both reliable and manageable.
It should be noted that data mining project success depends heavily on the data available and the quality of that data. As a whole, placing greater emphasis on current and future data analysis requirements during system and application design can greatly reduce future data mining effort. Poor data design and organization poses one of the greatest challenges to data mining projects.
Some efforts are found in the prior art regarding so-called automation of data processing tasks, usually trying to optimize some data transformation step that is part of a bigger process.
One of them is found in patent US 20060112110, incorporated by reference herein, with the title “Automated data enhancement processing system for database management system performs set of text analytics processes on structured data to generate normalized data automatically”, which addresses the automated normalization of data stored in a database system.
This “automated data enhancement processing system” does not cover the overall data mining process which is the focus of the present invention, only aims to automate the internal mechanisms of data normalization, limited to text analysis techniques. Data normalization of text structured data is just one of out of the many possible transformations that can be performed during the Data Preparation phase, in the previously described CRISP-DM process.
Another related patent, US 20040010505, incorporated by reference herein, titled “Automatic data mining method in domain specific analytic application, involves scheduling steps of populating input data schema, training of predefined data mining model and scoring of input data from input data schema”, addresses the automation of the scheduling of the different tasks involved in a simplified version of the process of data mining. This patent belongs to a family that describes IBM's “Intelligent Miner” data mining product.
IBM's method basically leverages on the combination of pre-configured data schemas and models that are specific for a given domain, with a task scheduler to control the execution of three main tasks: populating input data schema (corresponding to simplified Data preparation in CRISP-DM), production training a predefined model (corresponding to simplified Modeling), and production scoring (corresponding to simplified Evaluation).
As stated specifically in claim 1, this patent relies on previously defined models and schemas that undergo several steps that are scheduled:
“What is claimed is:
The method presented allows a ready-made approach to data mining in very specific domains, for which most of the work has been previously done in the form of pre-defined data schemas and models, meant to work together to solve very specific problems. The scheduler describes a quite normal context function for the orderly execution of a single data mining process.
In the rest of the claims, further detail is provided on the layout of the predefined schemas and models, and the data exchanges between steps in the process.
The system described in IBM's patent simplifies the deployment of a data mining system. But, it is not intended to work as an exploratory tool to obtain knowledge about the optimal data mining schemas, models and execution steps. According to the claims, the context knowledge is provided manually in form of pre-defined schemas, models and steps. It is not an adaptive, domain-independent system, and so it cannot simplify the data mining expert's work, which is still fully needed during configuration of every step.
The whole Data Mining process as understood nowadays is a complex process that involves necessarily the manual intervention of experts and analysts in order to make sense of the results of the process.
The process itself is better understood as a pure roadmap with milestones indicating where the expert's assistance is needed. The overall description indicates that each of the boxes can only lead to the next if the results can be cross checked against the original purpose. The reasons for this are manifold:
The inductive process of extracting conclusions out of large amounts of collected data is a very lasting process. That constraint implies that trial and error, or even more exploratory techniques that might lead to the evaluation of different alternatives, are considered too costly and avoided. A typical solution is pre-configuration to limit the choices to a reduced number of pre-defined combinations.
The choice of useful data and its coding into more proper representations is a very manual step, where a lot of past experience and domain expert's knowledge take place. Therefore, the simple selection of data during the data understanding and preparation conditions the whole process to a manual decision. Again, the possibility to have an exploratory system to support in this step would allow data selection and combinations otherwise unbeknownst to the expert, to be found.
There exist wide combinations of complex fields (different techniques like advanced statistics, clustering or classification that belong to different complex disciplines) in place during the modeling phase that lead to the creation of specialized models for each different domain, which are difficult to abstract or isolate for its automation. These specialized models contain a large number of parameters and contextual information that is linked to the whole process, which means that is very difficult to, either, combine the disciplines into a single one knowing everything, or hardcode the different possibilities, as they all depend on the previous and next steps in the process.
Finally, the interpretation of results depends heavily on expert's skills to assess the goodness of results, usually through graphical representations or complex numerical dependencies.
All in all, the data mining process chain becomes a progression of experts-guided steps, with a lot of knowledge based decisions, made either manually or using predefined templates that capture the expert's decisions. This limitation makes existing solutions unable to truly automate the process.
A clear example is prior art patent US 20060112110, incorporated by reference herein, where automation is achieved by heavy pre-configuration manually by a data mining expert that simplifies deployment, but limits the system to a reduced number of pre-defined combinations.
The present invention pertains to a data mining system. The system comprises a planning and learning module which receives as input a knowledge model and a set of goals and automatically produces as output a number of plans. The system comprises a data mining processing unit which receives the plans as instructions and automatically creates results which are provided back to the planning and learning module as feedback.
The present invention pertains to a data mining system as. The system comprises means for planning and learning which receives as input a knowledge model and a set of goals and automatically produces as output a number of plans. The system comprises means for data mining and processing which receives the plans as instructions and automatically produces results which are provided back to the planning and learning module as feedback.
The present invention pertains to a method for data mining. A method comprises the steps of receiving as input at a planning and learning module a knowledge model and a set of goals. There is the step of automatically producing as output of the planning and learning module a number of plans from the input. There is the step of receiving by a data mining processing unit the plans as instructions. There is the step of automatically producing results by the data mining processing unit. There is the step of providing back to the planning and learning module the results as feedback.
In the accompanying drawings, the preferred embodiment of the invention and preferred methods of practicing the invention are illustrated in which:
Referring now to the drawings wherein like reference numerals refer to similar or identical parts throughout the several views, and more specifically to
Preferably, the data mining processing unit includes an evaluator module 16 that chooses which plan of the number of plans to execute. The data mining processing unit preferably includes a data mining module 18 which mines the data based on the plan chosen by the evaluator module 16 and produces an outcome. Preferably, the data mining processing unit 14 includes a reinforcement learning module 20 which receives the outcome from the data mining module 18 and produces and sends reinforcement learning signals as feedback to the planning and learning module 12 so that the learning signals are used to correct or reinforce either the model used by the planning and learning module 12, or the plans produced therein, or both.
The data mining module 18 preferably performs data collection, preparation, analysis and evaluation of the data. Preferably, the planning and learning module 12 includes an automated planning part 22 which receives the goals and the model. The planning and learning module 12 preferably includes an automated learning part 24 which receives the feedback to correct or reinforce either the model used, or the plans, or both. Preferably, the outcome from the data mining module 18 is ranked and scored according to the plan by the reinforcement learning module 20 and included in the learning signals that are sent as feedback to the learning part 24. The planning and learning module 12 can have a first input unit which receives the knowledge model (of the environment), that includes a number of datasets, and the set of goals. The planning and learning module 12 can include a number of planners that produces the number of plans as alternative sets of instructions that, by operating on the model, achieve the goals. The planning and learning module 12 can include a first output unit for submitting the alternative sets of instructions and the datasets towards the data mining processing unit 14. In one embodiment the data mining processing unit 14 applies the alternative sets of instructions on the datasets. The evaluator module 16 can evaluates the alternatives to determine the most appropriate alternative to produce a result. The data mining processing unit 14 can include a second output unit for offering the number of results. The reinforcement learning module 20 can be coupled with the second output unit to feedback the planning and learning module 12 with the number of results, along with transitions and rewards scoring each result and usable for reinforcement learning purposes. The planning and learning module 20 can include a second input unit for receiving from the data mining processing unit 14 the results obtained, along with transitions and rewards scoring each result. The planners can be arranged for re-computing the sets of instructions, or the existing model, or both. The first output unit can be arranged for submitting the recomputed sets of instructions and the datasets towards the data mining processing unit 14.
The present invention pertains to a data mining system 10 as shown in
The planning and learning means can be the planning and learning module 12. The data mining and processing means can be the data mining processing unit 14.
The present invention pertains to a method for data mining. A method comprises the steps of receiving as input at a planning and learning module 12 a knowledge model and a set of goals. There is the step of automatically producing as output of the planning and learning module 12 a number of plans from the input. There is the step of receiving by a data mining processing unit 14 the number of plans as instructions. There is the step of automatically producing results by the data mining processing unit 14. There is the step of providing back to the planning and learning module 12 the results as feedback.
Preferably, there is the step of choosing with an evaluator module 16 of the data mining processing unit which plan of the number of plans to execute. There is preferably the step of mining the data with a data mining module 18 of the data mining processing unit based on the plan chosen by the evaluator module 16. Preferably, there is the step of producing an outcome by the data mining module 18. There is preferably the step of receiving by a reinforcement learning module 20 of the data mining processing unit the outcome from the data mining module 18. Preferably, there is the step of producing with the reinforcement learning module 20 reinforcement learning signals from the outcome. There is preferably the step of sending the reinforcement learning signals as feedback to the planning and learning module 12.
Preferably, there is the step of using the learning signals by the planning and learning module 12 to correct or reinforce either the model used by the planning and learning module 12, or the plans produced therein, or both. There is preferably the step of performing with the data mining module 18 data collection, preparation, analysis and evaluation of the data. Preferably, there is the step of receiving at an automated planning part 22 of the planning and learning module 12 the goals and the model. There is preferably the step of receiving at an automated learning part 24 of the planning and learning module 12 the feedback to correct or reinforce either the model used, or the plans, or both. Preferably, there is the step of ranking and scoring by the reinforcement learning module 20 the outcome from the data mining module 18 according to the plan and including the ranked and scored outcome in the learning signals that is sent as feedback to the learning part 24.
In the operation of the invention, one of the basic concepts of the invention is to define a mechanism that allows the Data Mining process to behave more autonomously. That mechanism relies on capturing and modeling the knowledge involved along the whole process of data mining, from data selection to evaluation of models outcome.
The model containing the knowledge involved on most of the situations and contexts that might be present in the process, together with the certainty about the proposed move forward, is the input to a subsystem (planner) that is able to propose the sequence of actions and configurations of each component used to achieve a certain goal.
Therefore, the invention comprises the combination of learning planning systems that configure and control a generic data mining process, based on the knowledge that experts are able to model out of the previous experience with the same or similar environments.
The combination of basic elements proposed by this invention, which in one possible embodiment could be seen as the components inside a single entity, and in other embodiments could be seen as separate collaborating modules, can be summarized in
One of the core features of the invention is the Planning and learning module 12 devised to operate a Data Mining process that initially is provided with expert input through a model of the environment it is running on.
The following illustrates how the invention is able to automate a traditionally manual data mining process. For the sake of simplicity, such a process has been grouped and summarized into 4 main block steps.
Referring to
The “Planning and Learning” box, receiving the aforementioned Knowledge Model and Goals as input, and producing a set of possible “Plans” that once evaluated can produce a set of instructions to be executed by a data mining system 10 is described in detail below.
The Data Mining Processing unit has been extended to illustrate the presence of an “Evaluator” module, describing an evaluation function that will decide which plan to apply, execute and evaluate. The intermediate “Data Mining” module would represent the actual data mining system 10 implementing the CRISP-DM data mining process. (As identified above, the CRISP-DM data mining process itself is well known in the art.) Also, the final outcome of the data mining process is received by a Reinforcement learning module 20 that takes care of it, producing and sending reinforcement learning signals as feedback to the Planning and learning module 12, so that those signals can be used to correct or reinforce the models used.
The following illustrates how the Planning and learning module 12 is fed with the models and goals to produce the Plans that will be evaluated and executed. Please note that those models and goals contains concepts that closely resemble the data mining concepts being modeled, but are abstractions used by the Planning and learning module 12 for its internal purposes. Those abstractions are used, for instance, as part of its detail description in each Plan, as it will be shown later on.
But, only when a particular Plan is selected to be executed, the abstractions get translated into concrete instructions in order to prepare and process data sets and produce observable results. The Evaluator would carry this translation, while the Data mining module 18 would be in charge of executing the instructions, as part of the Data Mining Processing unit tasks.
There are a number of sources of information that can be interesting in order to build the abstract knowledge model and goals that will be the input to the Planning and learning module 12.
The result of this modeling phase would be received by the “Planner” part inside the Planning and learning module 12. In order to know how to actually build such a Planner, see below, for detailed information about how a planner works, and what would be a preferred embodiment for this invention.
During the modeling phase, which is a manual step previous to applying the mechanisms in this invention, different information sources will be used in order to gather all desired information.
Context information can be understood as all the environment information used as source data for the data mining process.
Environment information comprises the network data repositories (static or provisioned, and dynamic or event logs) to be used, the psychological and geographical information about the users of the network where data mining process will be run, and the previous conclusions that could have been reached through previous data mining processes. A more comprehensive list of sample contextual (environment) information is the following:
Along with the description of the different repositories used, the data dictionary associated with them is described, which allows a generic automatic data mining process to understand it.
In the domain language specification of the context information, it is specified as many attributes as it is considered interesting for the reasoning of the automated planning algorithm. As with the previous information, there is also described data types, processing requirements or any other information that will enrich the search and decision process of the planning methods. For example:
The description above defines two datasets: d1 and d2. Attributes a1 to a4, are also defined (without specifying yet which class or type they belong to). Three different data-types, called classes are also defined: c1, c2 and c3. And finally, r1 and r2 summarize how will be produced the results. This example might apply to HLR, HSS, charging, traffic, messaging, location or any other terminal or network data sources.
Data preparation is the first step in the data mining process, inside the Data mining module 18 of the Data Mining processing unit that is conceptually described in the Knowledge Model.
The sequence of concrete functions to be applied to the different data sets, in order to transform them into the more appropriate formats for each mining model, is described here. A typical list of data transformations is:
The invention proposes to include knowledge information about what data is interesting to prepare for every type of problem, and also how to do that. The list above is therefore included in the list of possible actions to be selected in the domain knowledge, embedding in the preconditions and effects on them. This will allow the planner to select them properly under different conditions.
The example above includes two actions that allow the preparation of the data. Each of them includes different pre-conditions, so the selection of any of those will depend on the problem specification and the goals.
For an advantageous embodiment of the present invention applied to the “Data Preparation” part of the Data mining process, in which the overall benefits of feedback and learning are illustrated below.
Analysis is the second step in the data mining process, inside the Data mining module 18 of the Data Mining processing unit that is conceptually described in the Knowledge Model. The description of the data mining techniques used (or the composition of them) is described. Different sections within the Knowledge Model will describe what techniques have been used, and what is the result obtained from applying them to the data sources. The format of the results will depend upon the data mining techniques used, since the output from a neural network differs from the output of a decision tree.
Our PDDL example model will then try to collect all possible methods available in the data mining toolbox, together with the pre-conditions that trigger one or another choice, and the effects of selecting them. For example:
This predicate belonging to the domain knowledge (generate-classifier) clearly states that in order to select a “classifier” for the analysis phase, the data representation (type) of the input data and the algorithm is the same. Similar further preconditions can be read in this oversimplified example.
Together with this small piece of knowledge instructing the adoption of a “classifier”, also present is the different definitions that lead to the formal representation of all the possibilities that exist:
Finally, Evaluation is the third and last step in the data mining process, inside the Data mining module 18 of the Data Mining processing unit that is conceptually described in the Knowledge Model. This manual Evaluation stage contains valid interpretations of the results, to the light of the problem to be solved. That is, if a classification problem is being solved, this section of the results will describe how to correctly interpret the results obtained from the model.
For instance, if the business question is “What users are more likely to adopt a new pricing offer?”, and a classifier technique was used, the Evaluation step will describe how the different groupings of users found as results of the classifier can be used to answer to the business question.
By using the different sources of information described herein and the experience from the field expert in data mining, the Knowledge Model and Goals can be built, using and extending known standards.
The representation of the sequential manual steps is proposed to be enriched with expert knowledge about “how” and “when” applying the different alternative configurations and methods that are feasible to apply. This process can be done using symbolic representations, like predicate logic, STRIPS or PDDL (Planning Domain Definition Language).
By using symbolic representations, it is proposed to have a way of mapping near-natural-language statements into first or second order logic programs that can be interpreted by the appropriate automatic planners, as requirements to be fulfilled.
See below for a description and example on how the domain knowledge can be represented in PDDL.
After the modeling phase has rendered its result in the shape of a Knowledge Model and a set of Goals, this would be received as input by the “Planner” part inside the Planning and learning module 12. How to actually build such a Planner, based on the automatic planner state of the art is now described.
The automatic planners can propose the sequence of actions that better fulfill the set of requirements proposed as input, by using the knowledge model described above. This problem of planning is a classical artificial intelligence problem that can be summarized as follows:
Planning consists on given a domain theory (set of states and operators) and a problem (initial state and set of goals), obtain a plan (set of operators and an partial order of execution among them) such that, when executed, transforms the initial state in a state where all goals are achieved.
The domain theory is the symbolic description of the possible actions that can be performed by a data mining system 10, and the set of circumstances that are to be fulfilled to do so. The initial state and goals form the input to the automatic data mining system 10. This is what is to be found, from which data sets and methods available. Finally, the planner will produce an order list of actions that when executed in order will produce the desired goal.
See below for a description and example on how a planner works.
A possible embodiment of the previous example, applied to the data mining process, can be summarized in the predicates list provided here, of a domain description. Recall that a very straightforward data mining process consists of the following steps:
So, the corresponding symbolic representation of the above actions can be:
Combining those actions described above, with the description of the problem domain and the goal expected, a data mining process chain will be produced. The problem domain will look like this (together with the problem goal, and the metrics to be used):
And, eventually, the outcome of the planner will look like the following set of instructions and parameters that instruct the underlying data mining system 10 to run the whole sequence of steps.
The previous example only shows a very simple plan that is executed in the correct order to produce the expected results. The list of possible actions can be further expanded to offer different alternatives of achieving the same goal. And there can be also domain descriptions that are able to fulfill different goals and different possibilities for all of them.
The result of the Planning and learning module 12 would then be one or more Plans that would be received by the Evaluator module 16 inside the Data Mining processing unit.
Once the sequence and configuration has been proposed, one scheduler is responsible for executing the actions in the proposed order, with the selected parameters. The format can be exactly the same as the one proposed in step 1, for describing the process. This sequence can also be a list of equally possible sequences that is evaluated to check which better fits. The scheduler is also responsible to evaluate the result and provide that feedback in terms of changes to the knowledge model.
Generally, before the scheduling process starts, that whenever more than one plan is produced, they will be evaluated to decide which one is more suitable according to the goals and setup of the data mining process.
Inside the Data Mining processing unit, the Data mining module 18 receives the input instructions from the Evaluator, in order to actually perform each of the data mining steps in the process, that is, data preparation, analysis and evaluation, as for instance, in the CRISP-DM process description.
As the whole process was previously modeled, the Data mining module 18 could get the instructions, in a possible embodiment as a PMML document, and process them in order to execute complex sets of data mining tasks.
The Reinforcement learning module 20 inside the Data Mining processing unit would receive the outcome from the Data mining module 18.
As seen previously, the Planning and learning module 12 could provide different possible Plans, and so, the results from the Data mining module 18 according to each Plan that was executed is processed for ranking and scoring, but this module also creates reinforcement learning signals, and sends those signals as feedback to the Planning and learning module 12, so that they can be used to correct or reinforce the models used.
So, the overall Results from the Data Mining processing unit are not exclusively the data mining results, but also the set of signals related to the Learning part 24 within the Planning and learning module 12, that provides both Rewards for each Plan according to the accuracy of results, and Transitions used to reach the Goals.
Inside the Planning and learning module 12, there is a “Leaning” part that receives the reinforcement learning signals from the Reinforcement learning module 20 inside the Data Mining processing unit. How this Learning part 24 works is now described.
The Learning part 24 basically interprets the feedback mechanisms provided by a data mining system 10 in order to evaluate and compare how good (according to different metrics) the different alternatives are, and therefore, selecting the most appropriate.
The feedback signals provided are interpreted in the following way:
By processing the incoming reinforcement learning signals, the Learning part 24 of the Planning and learning module 12 is able to build and incorporate new control knowledge.
By leveraging on the control knowledge built by the Learning part 24, the Planner part can, as a possible consequence, prioritize the selection of the most accurate Plans according to previous results, rewards and transitions, in order to get better chances of obtaining accurate results in successive executions of the data mining process.
Therefore, the invention consists of the combination of learning-enabled planning systems that configure and control a generic data mining process, based on the knowledge that experts are able to model out of the previous experience with the same or similar environments.
In the Data Preparation phase, a first step is the collecting of data from sources, which usually results in large amounts of data stored in a data repository such as the “Data” component in
Next step in Preparation is to apply so-called feature extraction techniques in order to reduce the number of features (attributes, fields) included in the data, by eliminating or “extracting” the non-relevant. A typical such technique is Principal Component Analysis (PCA) that is described in prior art patent US 20060112110, incorporated by reference herein. Briefly, PCA applies statistical techniques to the dataset, to rank higher those fields that have values with more variance (that represent the data set better), and rank lower those fields with constant values or very little variance.
By applying Feature Extraction, a new version of the data is obtained, where a good amount of the original data has been discarded without losing the most relevant data used to obtain the desired results, but anyway bringing down the amount of data that is to be mined. For instance, in a set of Call Data Record (CDR) data from a Charging system in a telecoms network, the most relevant attributes or fields might be those such as: IMSI, From, To, CallStartTime, CallEndTime, etc.
In
The collection of Data Records is usually an ad-hoc part of the process, highly dependent on the details of the data source, or Service Logic element presented in the example
Regarding the layout of the data, it is almost impossible to know “at first sight” by looking at the data, which of the attributes (or features, or fields) will be relevant and which won't, for the purpose of data mining. So, the process as described (1, 2 and 3 from
At that very point, the present invention proposes the introduction on a number of modifications on the existing elements, so that a feedback loop is enabled between the Feature Extraction Analysis element, and the Data Record Collector elements.
Also, another modification can occur so that the process can work with existing data records in its original format, but also recognizes the new feature records that correspond to a reduced format with only relevant features or attributes. The new records do not have to undergo Feature Extraction again, so they are handled differently.
This is shown in
An implementation of the mechanisms presented in this invention is now described, which should be seen as a first example of the many possible.
For instance, in a telecom network, there can be the following setup:
This setup is shown in
For the purpose of Data Mining in a telecoms networks scenario, let's now suppose that the most relevant attributes or fields found using the statistical analysis (PCA in this case) are these: Source IP address, Service type, URL accessed, start time, end time. These would be included in a Feature CDR.
In order to optimize the data collected to only the most relevant, the mechanisms in the present invention are used to instruct the data collecting step to discard the non-relevant attributes: duration of access, session-id, comments, sequence-id and CRC-code.
The steps used are the same described previously in
A new type of CDR is to be collected from the AAA Server, so that only the most relevant attributes are included. That kind of CDR will be the Feature CDR. It will also include a new attribute to help identify it. In a possible implementation, that attribute could be named “FeatureCDR” and would always have a value of “1”, when present.
The Data Warehouse System will collect the Feature CDRs and store them in the Data Mart. The Statistical Analysis step will identify the Feature CDRs thanks to the attribute “FeatureCDR” being present, and skip execution, sending the Feature CDRs directly to the Data Mining element.
The same effects would be produced if several of the elements mentioned in the previous example were changed:
As a result of discarding non-relevant data very early in the process, there will be an overall effect in that a smaller amount data will have to be transmitted and stored, and collection will be faster, require less bandwidth and also take less storage resources in databases.
In the cases where the Feature Extraction step is not repeated due to the fact that the collected data does not contain non-relevant attributes or features, there will be less processing to do in order to produce the Feature Records at a later stage, and the impression will be of a faster data mining process.
And, when data collection feedback is applied to several nodes, the mentioned benefits would sum up overall, with greatly reduced data sets traversing the networks and using much less storage.
As an example, a symbolic representation of the experts' knowledge might enable the translation of sentences like the following:
This approach allows reflecting expert decision in a computer tractable manner, though the example is not related at all with the data mining field.
In
The knowledge model contains the following information: there is a robot arm which is capable of four operations:
to pickup a block,
to putdown a block,
to stack a block on top of another block and
unstuck a block.
There some other predicates (in symbolic representation) that are able to represent the state of the different blocks and the robot arm itself:
holding (is the robot holding a block?),
ontable (is a block, on top of the table?) and
clear (has a block any other block on top of itself?).
By using these 3 predicates and the four operations (actions) described, an automatic planner which is fed with the initial state and goal, will produce the following output:
UNSTACK (A, B),
PUTDOWN (A)
This is a rather simplistic example, but shows what the final purpose of using planners is: they provide an automatic way of searching and finding sequences of actions that fulfill a goal, from an initial state.
The automation of the traditionally manual data mining process:
OPEX—Operation Expenses.
ML—Machine Learning
PDDL—Planning Domain Definition Language
PPDDL—Probabilistic Planning Domain Definition Language
Although the invention has been described in detail in the foregoing embodiments for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention except as it may be described by the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB08/02245 | 8/29/2008 | WO | 00 | 4/15/2011 |
Number | Date | Country | |
---|---|---|---|
61061757 | Jun 2008 | US |