Generally described, computing devices utilize a communication network, or a series of communication networks, to exchange data. Companies and organizations operate computer networks that interconnect a number of computing devices to support operations or provide services to third parties. The computing systems can be located in a single geographic location or located in multiple, distinct geographic locations (e.g., interconnected via private or public communication networks). Specifically, data centers or data processing centers, herein generally referred to as a “data center,” may include a number of interconnected computing systems to provide computing resources to users of the data center. The data centers may be private data centers operated on behalf of an organization or public data centers operated on behalf, or for the benefit of, the general public.
To facilitate increased utilization of data center resources, virtualization technologies may allow a single physical computing device to host one or more instances of virtual machines that appear and operate as independent computing devices to users of a data center. With virtualization, the single physical computing device can create, maintain, delete, or otherwise manage virtual machines in a dynamic manner. In turn, users can request computer resources from a data center, including single computing devices or a configuration of networked computing devices, and be provided with varying numbers of virtual machine resources.
In some scenarios, virtual machine instances may be configured according to a number of virtual machine instance types to provide specific functionality. For example, various computing devices may be associated with different combinations of operating systems or operating system configurations, virtualized hardware resources and software applications to enable a computing device to provide different desired functionalities, or to provide similar functionalities more efficiently. These virtual machine instance type configurations are often contained within a device image, which includes static data containing the software (e.g., the OS and applications together with their configuration and data files, etc.) that the virtual machine will run once started. The device image is typically stored on the disk used to create or initialize the instance. Thus, a computing device may process the device image in order to implement the desired software configuration.
The foregoing aspects and many of the attendant advantages of this disclosure will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Companies and organizations no longer need to acquire and manage their own data centers in order to perform computing operations (e.g., execute code, including threads, programs, functions, software, routines, subroutines, processes, etc.). With the advent of cloud computing, storage space and compute power traditionally provided by hardware computing devices can now be obtained and configured in minutes over the Internet. Thus, developers can quickly purchase a desired amount of computing resources without having to worry about acquiring physical machines. Such computing resources are typically purchased in the form of virtual computing resources, or virtual machine instances. These instances of virtual machines are software implementations of physical machines (e.g., computers), which are hosted on physical computing devices, and may contain operating systems and applications that are traditionally provided on physical machines. These virtual machine instances are configured with a set of computing resources (e.g., memory, CPU, disk, network, etc.) that applications running on the virtual machine instances may request and can be utilized in the same manner as physical computers.
However, even when virtual computing resources are purchased (e.g., in the form of virtual machine instances), developers still have to decide how many and what type of virtual machine instances to purchase, and how long to keep them. For example, the costs of using the virtual machine instances may vary depending on the type and the number of hours they are rented. In addition, the minimum time a virtual machine may be rented is typically on the order of hours. Further, developers have to specify the hardware and software resources (e.g., type of operating systems and language runtimes, etc.) to install on the virtual machines. Other concerns that they might have include over-utilization (e.g., acquiring too little computing resources and suffering performance issues), under-utilization (e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying), prediction of change in traffic (e.g., so that they know when to scale up or down), and instance and language runtime startup delay, which can take 3-10 minutes, or longer, even though users may desire computing capacity on the order of seconds or even milliseconds. Thus, an improved method of allowing users to take advantage of the virtual machine instances provided by service providers is desired.
According to aspects of the present disclosure, by maintaining a pool of pre-initialized virtual machine instances that are ready for use as soon as a user request is received, delay (sometimes referred to as latency) associated with executing the user code (e.g., instance and language runtime startup time) can be significantly reduced.
Generally described, aspects of the present disclosure relate to the management of virtual machine instances and containers created therein. Specifically, systems and methods are disclosed which facilitate management of virtual machine instances in a virtual compute system. The virtual compute system maintains a pool of virtual machine instances that have one or more software components (e.g., operating systems, language runtimes, libraries, etc.) loaded thereon. Maintaining the pool of virtual machine instances may involve creating a new instance, acquiring a new instance from an external instance provisioning service, destroying an instance, assigning/reassigning an instance to a user, modifying an instance (e.g., containers or resources therein), etc. The virtual machine instances in the pool can be designated to service user requests to execute program codes. In the present disclosure, the phrases “program code,” “user code,” and “cloud function” may sometimes be interchangeably used. The program codes can be executed in isolated containers that are created on the virtual machine instances. Since the virtual machine instances in the pool have already been booted and loaded with particular operating systems and language runtimes by the time the requests are received, the delay associated with finding compute capacity that can handle the requests (e.g., by executing the user code in one or more containers created on the virtual machine instances) is significantly reduced.
In another aspect, a virtual compute system may monitor and log information related to the amount of resources allocated for executing user code. By doing so, the virtual compute system may be able to identify opportunities for improving the performance of the user code execution by adjusting the amount of allocated resources. Error rates may be reduced by increasing the amount of allocated resources in the event of over-utilization, and costs associated with executing the user code may be reduced by decreasing the amount of allocated resources in the event of under-utilization.
Specific embodiments and example applications of the present disclosure will now be described with reference to the drawings. These embodiments and example applications are intended to illustrate, and not limit, the present disclosure.
With reference to
By way of illustration, various example user computing devices 102 are shown in communication with the virtual compute system 110, including a desktop computer, laptop, and a mobile phone. In general, the user computing devices 102 can be any computing device such as a desktop, laptop, mobile phone (or smartphone), tablet, kiosk, wireless device, and other electronic devices. In addition, the user computing devices 102 may include web services running on the same or different data centers, where, for example, different web services may programmatically communicate with each other to perform one or more techniques described herein. Further, the user computing devices 102 may include Internet of Things (IoT) devices such as Internet appliances and connected devices. The virtual compute system 110 may provide the user computing devices 102 with one or more user interfaces, command-line interfaces (CLI), application programming interfaces (API), and/or other programmatic interfaces for generating and uploading user codes, invoking the user codes (e.g., submitting a request to execute the user codes on the virtual compute system 110), scheduling event-based jobs or timed jobs, tracking the user codes, and/or viewing other logging or monitoring information related to their requests and/or user codes. Although one or more embodiments may be described herein as using a user interface, it should be appreciated that such embodiments may, additionally or alternatively, use any CLIs, APIs, or other programmatic interfaces.
The user computing devices 102 access the virtual compute system 110 over a network 104. The network 104 may be any wired network, wireless network, or combination thereof. In addition, the network 104 may be a personal area network, local area network, wide area network, over-the-air broadcast network (e.g., for radio or television), cable network, satellite network, cellular telephone network, or combination thereof. For example, the network 104 may be a publicly accessible network of linked networks, possibly operated by various distinct parties, such as the Internet. In some embodiments, the network 104 may be a private or semi-private network, such as a corporate or university intranet. The network 104 may include one or more wireless networks, such as a Global System for Mobile Communications (GSM) network, a Code Division Multiple Access (CDMA) network, a Long Term Evolution (LTE) network, or any other type of wireless network. The network 104 can use protocols and components for communicating via the Internet or any of the other aforementioned types of networks. For example, the protocols used by the network 104 may include Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and the like. Protocols and components for communicating via the Internet or any of the other aforementioned types of communication networks are well known to those skilled in the art and, thus, are not described in more detail herein.
The virtual compute system 110 is depicted in
Further, the virtual compute system 110 may be implemented in hardware and/or software and may, for instance, include one or more physical or virtual servers implemented on physical computer hardware configured to execute computer executable instructions for performing various features that will be described herein. The one or more servers may be geographically dispersed or geographically co-located, for instance, in one or more data centers.
In the environment illustrated
In the example of
Users may use the virtual compute system 110 to execute user code thereon. For example, a user may wish to run a piece of code in connection with a web or mobile application that the user has developed. One way of running the code would be to acquire virtual machine instances from service providers who provide infrastructure as a service, configure the virtual machine instances to suit the user's needs, and use the configured virtual machine instances to run the code. Alternatively, the user may send a code execution request to the virtual compute system 110. The virtual compute system 110 can handle the acquisition and configuration of compute capacity (e.g., containers, instances, etc., which are described in greater detail below) based on the code execution request, and execute the code using the compute capacity. The virtual compute system 110 may automatically scale up and down based on the volume, thereby relieving the user from the burden of having to worry about over-utilization (e.g., acquiring too little computing resources and suffering performance issues) or under-utilization (e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying).
The frontend 120 processes all the requests to execute user code on the virtual compute system 110. In one embodiment, the frontend 120 serves as a front door to all the other services provided by the virtual compute system 110. The frontend 120 processes the requests and makes sure that the requests are properly authorized. For example, the frontend 120 may determine whether the user associated with the request is authorized to access the user code specified in the request.
The user code as used herein may refer to any program code (e.g., a program, routine, subroutine, thread, etc.) written in a specific program language. In the present disclosure, the terms “code,” “user code,” and “program code,” may be used interchangeably. Such user code may be executed to achieve a specific task, for example, in connection with a particular web application or mobile application developed by the user. For example, the user codes may be written in JavaScript (node.js), Java, Python, and/or Ruby. The request may include the user code (or the location thereof) and one or more arguments to be used for executing the user code. For example, the user may provide the user code along with the request to execute the user code. In another example, the request may identify a previously uploaded program code (e.g., using the API for uploading the code) by its name or its unique ID. In yet another example, the code may be included in the request as well as uploaded in a separate location (e.g., the storage service 108 or a storage system internal to the virtual compute system 110) prior to the request is received by the virtual compute system 110. The virtual compute system 110 may vary its code execution strategy based on where the code is available at the time the request is processed.
The frontend 120 may receive the request to execute such user codes in response to Hypertext Transfer Protocol Secure (HTTPS) requests from a user. Also, any information (e.g., headers and parameters) included in the HTTPS request may also be processed and utilized when executing the user code. As discussed above, any other protocols, including, for example, HTTP, MQTT, and CoAP, may be used to transfer the message containing the code execution request to the frontend 120. The frontend 120 may also receive the request to execute such user codes when an event is detected, such as an event that the user has registered to trigger automatic request generation. For example, the user may have registered the user code with an auxiliary service 106 and specified that whenever a particular event occurs (e.g., a new file is uploaded), the request to execute the user code is sent to the frontend 120. Alternatively, the user may have registered a timed job (e.g., execute the user code every 24 hours). In such an example, when the scheduled time arrives for the timed job, the request to execute the user code may be sent to the frontend 120. In yet another example, the frontend 120 may have a queue of incoming code execution requests, and when the user's batch job is removed from the virtual compute system's work queue, the frontend 120 may process the user request. In yet another example, the request may originate from another component within the virtual compute system 110 or other servers or services not illustrated in
A user request may specify one or more third-party libraries (including native libraries) to be used along with the user code. In one embodiment, the user request is a ZIP file containing the user code and any libraries (and/or identifications of storage locations thereof). In some embodiments, the user request includes metadata that indicates the program code to be executed, the language in which the program code is written, the user associated with the request, and/or the computing resources (e.g., memory, CPU, storage, network packets, etc.) to be reserved for executing the program code. For example, the program code may be provided with the request, previously uploaded by the user, provided by the virtual compute system 110 (e.g., standard routines), and/or provided by third parties. In some embodiments, resource-level constraints (e.g., how much memory is to be allocated for executing a particular user code) are specified for the particular user code, and may not vary over each execution of the user code. In such cases, the virtual compute system 110 may have access to such resource-level constraints before each individual request is received, and the individual requests may not specify such resource-level constraints. In some embodiments, the resource-level constraints are adjusted over time and may vary across different executions of a single program code. For example, the same program code may be used to process two different sets of data, where one set of data requires more resources than the other. In such a case, the user may specify different resource constraints for the two different executions or the virtual compute system 110 may automatically adjust the amount of resources allocated to each execution of the program code based on spatial (e.g., in other parts of the virtual compute system 110) or historical (e.g., over time) trends for the user and/or program code. In some embodiments, the user request may specify other constraints such as permission data that indicates what kind of permissions that the request has to execute the user code. Such permission data may be used by the virtual compute system 110 to access private resources (e.g., on a private network).
In some embodiments, the user request may specify the behavior that should be adopted for handling the user request. In such embodiments, the user request may include an indicator for enabling one or more execution modes in which the user code associated with the user request is to be executed. For example, the request may include a flag or a header for indicating whether the user code should be executed in a debug mode in which the debugging and/or logging output that may be generated in connection with the execution of the user code is provided back to the user (e.g., via a console user interface). In such an example, the virtual compute system 110 may inspect the request and look for the flag or the header, and if it is present, the virtual compute system 110 may modify the behavior (e.g., logging facilities) of the container in which the user code is executed, and cause the output data to be provided back to the user. In some embodiments, the behavior/mode indicators are added to the request by the user interface provided to the user by the virtual compute system 110. Other features such as source code profiling, remote debugging, etc. may also be enabled or disabled based on the indication provided in the request.
In some embodiments, the virtual compute system 110 may include multiple frontends 120. In such embodiments, a load balancer may be provided to distribute the incoming requests to the multiple frontends 120, for example, in a round-robin fashion. In some embodiments, the manner in which the load balancer distributes incoming requests to the multiple frontends 120 may be based on the state of the warming pool 130A and/or the active pool 140A. For example, if the capacity in the warming pool 130A is deemed to be sufficient, the requests may be distributed to the multiple frontends 120 based on the individual capacities of the frontends 120 (e.g., based on one or more load balancing restrictions). On the other hand, if the capacity in the warming pool 130A is less than a threshold amount, one or more of such load balancing restrictions may be removed such that the requests may be distributed to the multiple frontends 120 in a manner that reduces or minimizes the number of virtual machine instances taken from the warming pool 130A. For example, even if, according to a load balancing restriction, a request is to be routed to Frontend A, if Frontend A needs to take an instance out of the warming pool 130A to service the request but Frontend B can use one of the instances in its active pool to service the same request, the request may be routed to Frontend B.
The warming pool manager 130 ensures that virtual machine instances are ready to be used by the worker manager 140 when the virtual compute system 110 receives a request to execute user code on the virtual compute system 110. In the example illustrated in
As shown in
In some embodiments, the virtual machine instances in the warming pool 130A may be used to serve any user's request. In one embodiment, all the virtual machine instances in the warming pool 130A are configured in the same or substantially similar manner. In another embodiment, the virtual machine instances in the warming pool 130A may be configured differently to suit the needs of different users. For example, the virtual machine instances may have different operating systems, different language runtimes, and/or different libraries loaded thereon. In yet another embodiment, the virtual machine instances in the warming pool 130A may be configured in the same or substantially similar manner (e.g., with the same OS, language runtimes, and/or libraries), but some of those instances may have different container configurations. For example, two instances may have runtimes for both Python and Ruby, but one instance may have a container configured to run Python code, and the other instance may have a container configured to run Ruby code. In some embodiments, multiple warming pools 130A, each having identically-configured virtual machine instances, are provided.
The warming pool manager 130 may pre-configure the virtual machine instances in the warming pool 130A, such that each virtual machine instance is configured to satisfy at least one of the operating conditions that may be requested or specified by the user request to execute program code on the virtual compute system 110. In one embodiment, the operating conditions may include program languages in which the potential user codes may be written. For example, such languages may include Java, JavaScript, Python, Ruby, and the like. In some embodiments, the set of languages that the user codes may be written in may be limited to a predetermined set (e.g., set of 4 languages, although in some embodiments sets of more or less than four languages are provided) in order to facilitate pre-initialization of the virtual machine instances that can satisfy requests to execute user codes. For example, when the user is configuring a request via a user interface provided by the virtual compute system 110, the user interface may prompt the user to specify one of the predetermined operating conditions for executing the user code. In another example, the service-level agreement (SLA) for utilizing the services provided by the virtual compute system 110 may specify a set of conditions (e.g., programming languages, computing resources, etc.) that user requests should satisfy, and the virtual compute system 110 may assume that the requests satisfy the set of conditions in handling the requests. In another example, operating conditions specified in the request may include: the amount of compute power to be used for processing the request; the type of the request (e.g., HTTP vs. a triggered event); the timeout for the request (e.g., threshold time after which the request may be terminated); security policies (e.g., may control which instances in the warming pool 130A are usable by which user); and etc.
The worker manager 140 manages the instances used for servicing incoming code execution requests. In the example illustrated in
In the example illustrated in
As shown in
In the example of
Although the components inside the containers 156B, 157A, 157B, 157C, 158A, 159A are not illustrated in the example of
After a request has been successfully processed by the frontend 120, the worker manager 140 finds capacity to service the request to execute user code on the virtual compute system 110. For example, if there exists a particular virtual machine instance in the active pool 140A that has a container with the same user code loaded therein (e.g., code 156A-3 shown in the container 156A), the worker manager 140 may assign the container to the request and cause the user code to be executed in the container. Alternatively, if the user code is available in the local cache of one of the virtual machine instances (e.g., stored on the instance 158 but do not belong to any individual containers), the worker manager 140 may create a new container on such an instance, assign the container to the request, and cause the user code to be loaded and executed in the container.
If the worker manager 140 determines that the user code associated with the request is not found on any of the instances (e.g., either in a container or the local cache of an instance) in the active pool 140A, the worker manager 140 may determine whether any of the instances in the active pool 140A is currently assigned to the user associated with the request and has compute capacity to handle the current request. If there is such an instance, the worker manager 140 may create a new container on the instance and assign the container to the request. Alternatively, the worker manager 140 may further configure an existing container on the instance assigned to the user, and assign the container to the request. For example, the worker manager 140 may determine that the existing container may be used to execute the user code if a particular library demanded by the current user request is loaded thereon. In such a case, the worker manager 140 may load the particular library and the user code onto the container and use the container to execute the user code.
If the active pool 140A does not contain any instances currently assigned to the user, the worker manager 140 pulls a new virtual machine instance from the warming pool 130A, assigns the instance to the user associated with the request, creates a new container on the instance, assigns the container to the request, and causes the user code to be downloaded and executed on the container.
In some embodiments, the virtual compute system 110 is adapted to begin execution of the user code shortly after it is received (e.g., by the frontend 120). A time period can be determined as the difference in time between initiating execution of the user code (e.g., in a container on a virtual machine instance associated with the user) and receiving a request to execute the user code (e.g., received by a frontend). The virtual compute system 110 is adapted to begin execution of the user code within a time period that is less than a predetermined duration. In one embodiment, the predetermined duration is 500 ms. In another embodiment, the predetermined duration is 300 ms. In another embodiment, the predetermined duration is 100 ms. In another embodiment, the predetermined duration is 50 ms. In another embodiment, the predetermined duration is 10 ms. In another embodiment, the predetermined duration may be any value chosen from the range of 10 ms to 500 ms. In some embodiments, the virtual compute system 110 is adapted to begin execution of the user code within a time period that is less than a predetermined duration if one or more conditions are satisfied. For example, the one or more conditions may include any one of: (1) the user code is loaded on a container in the active pool 140A at the time the request is received; (2) the user code is stored in the code cache of an instance in the active pool 140A at the time the request is received; (3) the active pool 140A contains an instance assigned to the user associated with the request at the time the request is received; or (4) the warming pool 130A has capacity to handle the request at the time the request is received.
The user code may be downloaded from an auxiliary service 106 such as the storage service 108 of
Once the worker manager 140 locates one of the virtual machine instances in the warming pool 130A that can be used to serve the user code execution request, the warming pool manager 130 or the worker manager 140 takes the instance out of the warming pool 130A and assigns it to the user associated with the request. The assigned virtual machine instance is taken out of the warming pool 130A and placed in the active pool 140A. In some embodiments, once the virtual machine instance has been assigned to a particular user, the same virtual machine instance cannot be used to service requests of any other user. This provides security benefits to users by preventing possible co-mingling of user resources. Alternatively, in some embodiments, multiple containers belonging to different users (or assigned to requests associated with different users) may co-exist on a single virtual machine instance. Such an approach may improve utilization of the available compute capacity. In some embodiments, the virtual compute system 110 may maintain a separate cache in which user codes are stored to serve as an intermediate level of caching system between the local cache of the virtual machine instances and a web-based network storage (e.g., accessible via the network 104).
After the user code has been executed, the worker manager 140 may tear down the container used to execute the user code to free up the resources it occupied to be used for other containers in the instance. Alternatively, the worker manager 140 may keep the container running to use it to service additional requests from the same user. For example, if another request associated with the same user code that has already been loaded in the container, the request can be assigned to the same container, thereby eliminating the delay associated with creating a new container and loading the user code in the container. In some embodiments, the worker manager 140 may tear down the instance in which the container used to execute the user code was created. Alternatively, the worker manager 140 may keep the instance running to use it to service additional requests from the same user. The determination of whether to keep the container and/or the instance running after the user code is done executing may be based on a threshold time, the type of the user, average request volume of the user, and/or other operating conditions. For example, after a threshold time has passed (e.g., 5 minutes, 30 minutes, 1 hour, 24 hours, 30 days, etc.) without any activity (e.g., running of the code), the container and/or the virtual machine instance is shutdown (e.g., deleted, terminated, etc.), and resources allocated thereto are released. In some embodiments, the threshold time passed before a container is torn down is shorter than the threshold time passed before an instance is torn down.
In some embodiments, the virtual compute system 110 may provide data to one or more of the auxiliary services 106 as it services incoming code execution requests. For example, the virtual compute system 110 may communicate with the monitoring/logging/billing services 107. The monitoring/logging/billing services 107 may include: a monitoring service for managing monitoring information received from the virtual compute system 110, such as statuses of containers and instances on the virtual compute system 110; a logging service for managing logging information received from the virtual compute system 110, such as activities performed by containers and instances on the virtual compute system 110; and a billing service for generating billing information associated with executing user code on the virtual compute system 110 (e.g., based on the monitoring information and/or the logging information managed by the monitoring service and the logging service). In addition to the system-level activities that may be performed by the monitoring/logging/billing services 107 (e.g., on behalf of the virtual compute system 110) as described above, the monitoring/logging/billing services 107 may provide application-level services on behalf of the user code executed on the virtual compute system 110. For example, the monitoring/logging/billing services 107 may monitor and/or log various inputs, outputs, or other data and parameters on behalf of the user code being executed on the virtual compute system 110. Although shown as a single block, the monitoring, logging, and billing services 107 may be provided as separate services. The monitoring/logging/billing services 107 may communicate with the resource manager 150 to allow the resource manager 150 to determine the appropriate amount of resources to be used for executing the various program codes on the virtual compute system 150.
In some embodiments, the worker manager 140 may perform health checks on the instances and containers managed by the worker manager 140 (e.g., those in the active pool 140A). For example, the health checks performed by the worker manager 140 may include determining whether the instances and the containers managed by the worker manager 140 have any issues of (1) misconfigured networking and/or startup configuration, (2) exhausted memory, (3) corrupted file system, (4) incompatible kernel, and/or any other problems that may impair the performance of the instances and the containers. In one embodiment, the worker manager 140 performs the health checks periodically (e.g., every 5 minutes, every 30 minutes, every hour, every 24 hours, etc.). In some embodiments, the frequency of the health checks may be adjusted automatically based on the result of the health checks. In other embodiments, the frequency of the health checks may be adjusted based on user requests. In some embodiments, the worker manager 140 may perform similar health checks on the instances and/or containers in the warming pool 130A. The instances and/or the containers in the warming pool 130A may be managed either together with those instances and containers in the active pool 140A or separately. In some embodiments, in the case where the health of the instances and/or the containers in the warming pool 130A is managed separately from the active pool 140A, the warming pool manager 130, instead of the worker manager 140, may perform the health checks described above on the instances and/or the containers in the warming pool 130A.
The resource manager 150 manages the amount of resources allocated for processing incoming requests to execute user code on the virtual compute system 110. For example, the resource manager 150 may communicate with the frontend 120, the warming pool manager 130, the worker manager 140, and/or the auxiliary services 106 to monitor and manage the compute capacity allocated to (and used by) the various program codes executed on the virtual compute system 110. Although the resource manager 150 is illustrated as a distinct component within the virtual compute system 110, part or all of the functionalities of the resource manager 150 may be performed by the frontend 120, the warming pool manager 130, the worker manager 140, and/or the auxiliary services 106. For example, the resource manager 150 may be implemented entirely within one of the other components of the virtual compute system 110 or in a distributed manner across the other components of the virtual compute system 110. In the example of
As discussed above, the request itself may specify the amount of computing resources (e.g., memory, CPU, storage, network packets, etc.) to be used for executing the program code associated with the request. After such a request has been processed and a virtual machine instance has been assigned to the user associated with the request, the resource manager 150 may allocate the amount of resources specified in the request to the request by creating a container for the same amount of resources. For example, if the request specifies that 512 MB of memory is to be used for executing the program code associated with the request, the resource manager 150 may create a container having a memory size of 512 MB on the instance assigned to the user associated with the request. In some embodiments, other configuration information associated with the request, the program code, or the user may specify the amount of computing resources to be used for executing the program code. Such configuration information may be provided to the virtual compute system 110 either with the request or separately from the request. The resource manager 150 may maintain the amount of resources specified in the request as a default setting for the particular program code associated with the request and use the same amount for any subsequent requests that are processed on the virtual compute system 110. In some embodiments, the resource manager 150 may allow one or more subsequent requests to override such a default setting if the one or more subsequent requests indicate that a resource amount that is different from the default amount is to be allocated to the one or more subsequent requests. For example, a subsequent request may indicate that a resource amount that is 10% above the default amount is to be allocated to the subsequent request for executing the program code. Upon determining that the subsequent request indicates that an alternate amount of resources is to be allocated to the subsequent request for executing the program code, the resource manager 150 allocates the alternate amount of resources to the subsequent request.
In some embodiments, the amount of resources specified in the request may differ from the actual amount of resources allocated to the request. For example, in some scenarios, the virtual compute system 110 may allocate to the request an amount of resources that is a threshold percentage over the amount of resources specified in the request. In other situations, the virtual compute system 110 may allocate to the request an amount of resources that is a threshold percentage under the amount of resources specified in the request. Whether to over-subscribe or under-subscribe a particular resource may be determined based on the type of the particular resource, the user, the request, and/or the physical hardware (e.g., any tolerance or variance associated therewith) on which the particular resource is provided. In some embodiments, the amount of resources allocated to the request may be less than a maximum value (or percentage above the amount specified in the request) and/or greater than a minimum value (or percentage below the amount specified in the request) determined based on the type of the particular resource, the user, the request, and/or the physical hardware (e.g., any tolerance or variance associated therewith) on which the particular resource is provided.
In some embodiments, the particular type of resource specified in the request (e.g., memory) serves as a guideline for allocating other types of resource available on the virtual compute system 110. For example, if the request specifies that 512 MB of memory is to be used for executing the program code associated with the request, and the total (e.g., physical or virtual maximum) or available (e.g., resources not currently occupied by other containers) amount of memory on the instance assigned to the user is 2 GB, other types of resource (e.g., CPU, storage, network packets, etc.) available on the instance are also allocated in proportionate amounts (e.g., a quarter of the CPU, a quarter of the storage, a quarter of the network packets, etc. are allocated to the container). On the other hand, if the total or available amount of memory on the instance assigned to the user were 1 GB, half the CPU, half the storage, half the network packets would be allocated to the container. In some embodiments, the amount of memory that can be specified by the request or otherwise allocated to the container ranges from 64 MB to 1 GB, in 64 MB increments. In some embodiments, other amounts may be specified by the request and/or allocated to the container. Although memory is used as an example, any other resource may be selected and used as a guideline for setting the amount of all the resources to be allocated to process the request (e.g., to execute the program code). In some embodiments, a single form of resource (e.g., one that is easiest to understand, most user-friendly, most basic, largest in absolute number, or smallest in absolute number) is selected to be the representative for all other forms of resource. The request may specify, instead of an amount of a particular type of resource, a percentage that may be used for allocating all the resources. Additionally, the request may specify the amounts of more than one resource.
In some embodiments, the resource manager 150 may, instead of creating a new container and allocating the specified amount of resources to the container, locate an existing container having the specified amount of resources and cause the program code to be executed in the existing container. The amount of resources allocated to the existing container does not exactly match the specified amount of resources but is within a threshold percentage of the specified amount of resources. In some embodiments, the resource manager 150 may resize an existing container by allocating a fewer or greater amount of computing resource(s) and designate the existing container having an adjusted resource size to handle the program code associated with a particular program code. Whether the resource manager 150 can dynamically resize the existing container may depend on the language runtime used by the program code. For example, Java runtime might not allow dynamic resizing, whereas Python runtime might.
After a container having the specified amount of resources has been created or located, the program code associated with the request is executed in the container. The amount of resources allocated to the container (e.g., requested by the user) and/or the amount of resources actually utilized by the program code may be logged (e.g., by the monitoring/logging/billing services 107 and/or the resource manager 150) for further analysis. For example, the logged information may include the amount of memory, the amount of CPU cycles, the amount of network packets, and the amount of storage actually used during one or more executions of the program code in the container. Additionally, the logged information may include resource utilization, error rates, latency, and any errors or exceptions encountered during the execution of the program code. In some embodiments, any errors that are related to the amount of resources allocated to the container (e.g., out of memory exceptions) are tagged with a special marking and further analyzed by the resource manager 150.
In some embodiments, the resource manager 150 may create, or have access to, multiple classes of users, and apply different rules for different classes of users. For example, for more sophisticated users, more control may be given (e.g., control over individual resource parameters), whereas for other users, they may be allowed to control only a single representative parameter, and other parameters may be sized based on the representative parameter.
In some embodiments, the resource manager 150 may, based on the information logged by the monitoring/logging/billing services 107 and/or the resource manager 150, provide some guidance to the user as to what the user may do to improve the performance of the program code or to reduce costs associated with executing the program code on the virtual compute system 110. For example, the resource manager 150 may provide to the user, after seeing repeated occurrences of out of memory exceptions, an indication that the user appears to be consistently setting the memory (or other resource) too low for running a particular user code. Similarly, after determining that invocations of the particular user code have chronically used only a small portion of the resources allocated to them, the resource manager 150 may provide to the user an indication that the user may be setting the memory (or other resource) too high. The indication may specify the amount by which the particular resource(s) should be adjusted. In some embodiments, such an indication is provided to the user after a threshold number of errors, exceptions, or other telling conditions (e.g., increased latency) have been processed by the resource manager 150. The resource manager 150 may provide the indication via any notification mechanism including email, a push notification service, SMS, a social networking service, etc. In some embodiments, the indication that a resource sizing adjustment is needed is provided to the user if the amount by which one or more resources are to be adjusted exceeds a threshold value or percentage. For example, if the resource manager 150 determines that the memory size specified by the user should be increased by 0.5% to achieve better or optimal performance, the resource manager 150 may not send a notification to the user at all, but if the resource manager 150 determines that the memory size specified by the user should be increased by 10% to achieve better or optimal performance, the resource manager 150 may send the notification to the user.
In some embodiments, the resource manager 150 may offer a limited over-subscription where an execution of the program code is allowed to exceed the request amount of resources. For example, if the request specified 64 MB of memory, the resource manager 150 may allow the program code to use up to 70 or 80 MB of memory. In such a case, the program code may execute successfully, but a notification may be provided to the user that the program code exceeded the requested amount of memory and that future requests to execute the program code should specify a greater amount of memory. The over-subscription may expire after a threshold number of usage.
In some embodiments, the virtual compute system 110 may automatically adjust the amount of resources allocated to individual code execution requests. For example, in other embodiments where the user may specify the resource parameters, if the user fails to specify a proper amount of resources, the execution of the program code may suffer performance consequences. For example, if the request specifies that 64 MB of memory is to be used for executing a particular program code that actually requires 1 GB to run, the user may run into many problems (e.g., the program code may simply fail to execute). If the virtual compute system 110 relies on the user to adjust the amount of resources specified in the request, until the issue is addressed by the user, the virtual compute system 110 may receive thousands or millions of failed requests. In such a scenario, upon detecting that the amount of resources specified in the request is insufficient, the resource manager 150 may automatically adjust the amount of resources allocated to the incoming requests to execute the particular program code. In some embodiments, such an adjustment is made after a threshold number of errors, exceptions, or other telling conditions (e.g., increased latency) have been processed by the resource manager 150. Thus, although the first few requests may fail even with the automatic resource adjustments made by the resource manager 150, subsequent requests may eventually produce the desired outcomes even without user intervention.
In some embodiments, the resource manager 150 may utilize code-specific characteristics to improve the resource sizing for executing individual program codes. For example, program codes handling image processing might require a lot of memory, whereas program codes making database accesses might not require as much memory. In another example, for a particular program code, 64 MB might be sufficient most of the time, but the virtual compute system 110 might receive a burst of code execution requests associated with the user every night at 8 pm, for which the resource manager 150 may allocate more memory to the container and/or instance handling the requests associated with the user. Such code-specific characteristics may be maintained by the resource manager 150 and the resource sizing of individual program codes may be adjusted accordingly.
In some embodiments, the resource manager 150 may initially allocate the maximum amount of resources to the program code, and if the resource manager 150 determines, after running the program code, that the program code is actually using 1/10 of the maximum amount, the resource manager 150 may allocate half of the maximum amount to subsequent requests to execute the program code. If the resource manager 150 still determines that the program code is using 1/10 of the maximum amount, the resource manager 150 may further cut the amount of resources allocated to the program code by half. The resource manager 150 may repeat the process until the program code uses a significant portion (e.g., 50%, 75%, or another threshold value) of the resources allocated to the program code.
In some embodiments, the user may specify a resource management policy that dictates the behavior of the resource manager 150. For example, a user who is really price-conscious may be happy to let occasional errors go through, if doing so minimizes his or her costs. Thus, such a user may prefer not to increase the amount of resources allocated for executing his or her program codes, even if the currently specified amount of resources occasionally results in out of memory errors. On the other hand, a user who is very error-conscious may be willing to take any measures in order to avoid errors or mistakes (e.g., out of memory errors, a very high latency, or some other problem), from happening. Such a user may prefer to minimize the number of errors his or her program code encounters, even if the resources allocated for executing the program code are sometimes under-utilized. In some embodiments, the user may specify stop limits (e.g., lower and/or upper limit) for cost, utilization, amount of resources, etc. The user may further qualify such stop limits such that they are applicable only at specified time periods. For example, the user may specify the minimum and maximum amounts of money the user would like to spend to have a program code executed, but the user may further specify that during the last week of each quarter the limits are not to be applied.
In some embodiments, the resource manager 150 may selectively over-subscribe certain resources if the resource manager 150 determines that such resources are not being fully utilized by the code execution requests. For example, the resource manager 150 may allocate 1 GB of memory to five different containers on a virtual machine instance having 4 GB of virtual or physical memory. The degree of over-subscription may be based on how likely it is that those containers created on a single instance might collectively exhaust the maximum amount of resources of the instance. In some embodiments, the user may be given the option of choosing to utilize over-subscribed resources at a reduced cost.
In some embodiments, the request may not specify any resource-level constraints, but instead request that the amount of resources be automatically determined by the virtual compute system 110 and that the amount of resources determined by the virtual compute system 110 be communicated to the user (e.g., so that the user knows the amount of resources being allocated to service the user's requests). Alternatively, the request may specify the amount of resources to be used for running the user code, but also indicate that if the virtual compute system 110 determines that the requested amount of resources can be over-subscribed (e.g., by sharing it with other users) without significantly affecting the code execution performance, the virtual compute system 110 may do so by charging the user less (e.g., less than what the specified amount of resources would normally cost).
In some embodiments, the amount of resources allocated to a particular container is adjusted by contracting or expanding the particular container (e.g., by modifying the amount of resources allocated to the existing container). Alternatively, the amount of resources may be adjusted by creating a new container having an adjusted amount of resources and letting the old container die by funneling any future requests to the new container. In some embodiments, the resizing is performed based on the characteristics of the particular language runtime used by the program code (e.g., some may allow dynamic resource resizing and others may not).
The resource manager 150 may include a resource sizing unit for sizing the containers (e.g., determining the amount of resources to be allocated to the containers) to be used to execute the user code, and a resource guidance unit for providing notifications to the user regarding how the amount of resources should be adjusted, if at all. An example configuration of the resource manager 150 is described in greater detail below with reference to
The memory 180 may contain computer program instructions (grouped as modules in some embodiments) that the processing unit 190 executes in order to implement one or more aspects of the present disclosure. The memory 180 generally includes RAM, ROM and/or other persistent, auxiliary or non-transitory computer-readable media. The memory 180 may store an operating system 184 that provides computer program instructions for use by the processing unit 190 in the general administration and operation of the resource manager 150. The memory 180 may further include computer program instructions and other information for implementing aspects of the present disclosure. For example, in one embodiment, the memory 180 includes a user interface unit 182 that generates user interfaces (and/or instructions therefor) for display upon a computing device, e.g., via a navigation and/or browsing interface such as a browser or application installed on the computing device. In addition, the memory 180 may include and/or communicate with one or more data repositories (not shown), for example, to access user program codes and/or libraries.
In addition to and/or in combination with the user interface unit 182, the memory 180 may include a resource sizing unit 186 and a resource guidance unit 188 that may be executed by the processing unit 190. In one embodiment, the user interface unit 182, resource sizing unit 186, and resource guidance unit 188 individually or collectively implement various aspects of the present disclosure, e.g., monitoring and logging the execution of program codes on the virtual compute system 110, determining the need for adjusting the amount of resources allocated to particular containers and/or requests, providing notifications to the user regarding the need to adjust the amount of resources, automatically adjusting the amount of resources, etc. as described further below.
The resource sizing unit 186 monitors execution of user code on the virtual compute system 110, provides containers having specified amounts of resources for executing the user code, and adjusts the amount of resources allocated to the containers. For example, if the resource sizing unit 186 determines that requests to execute a particular program code is consistently getting out of memory errors, the resource sizing unit 186 may increase the amount of memory allocated to subsequent requests to execute the particular program code. On the other hand, if the resource sizing unit 186 determines that requests to execute a particular program code is consistently using only a fraction of the resources allocated to the requests, the resource sizing unit 186 may decrease the amount of memory allocated to subsequent requests to execute the particular program code.
The resource guidance unit 188 provide notifications to the user regarding the need to adjust the amount of resources being allocated to service the requests associated with the user. For example, the notifications may indicate that the user is consistently specifying an amount that is too low or too high for executing the particular program code. The notifications may further specify how the amount of resources should be adjusted for improved or optimal performance.
While the resource sizing unit 186 and the resource guidance unit 188 are shown in
Turning now to
At block 302 of the illustrative routine 300, the resource manager 150 determines a user-specified amount of a first computing resource based on a request to execute program code on the virtual compute system 110. For example, the first computing resource may be memory, CPU, disk space, or any other computing resource that may be used for executing the program code on the virtual compute system 110. The request to execute the program code on the virtual compute system 110 may indicate how much resource is to be allocated for executing the program code.
Next, at block 304, the resource manager 150 determines a corresponding amount of a second computing resource based on the user-specified amount of the first computing resource. For example, the resource manager 150 may determine the corresponding amount of the second computing resource by calculating the ratio between the user-specified amount of the first computing resource and the maximum amount of the first computing resource available to be allocated to the request. If the user-specified amount is 512 MB of memory, and the maximum amount of memory available to be allocated to the request is 1 GB, the resource manager 150 may determine that the corresponding amount should be one half of the maximum amount of the second computing resource available to be allocated to the request. For example, if the second computing resource is disk space and 8 GB of disk space is available for allocation, the resource manager 150 may determine that the corresponding amount should be 4 GB.
At block 306, the resource manager 150 allocates the user-specified amount of the first computing resource (e.g., memory) and the corresponding amount of the second computing resource (e.g., disk space) to the request for executing the program code. In the example above, the resource manager 150 may create a container on one of the virtual machine instances available on the virtual compute system, where the container is allocated 512 MB of memory and 4 GB of disk space. Although first and second computing resources are used in the example of
While the routine 300 of
Turning now to
At block 402 of the illustrative routine 400, the resource manager 150 determines a user-specified amount of a computing resource based on a request to execute program code on the virtual compute system 110. For example, the computing resource may be memory, CPU, disk space, or any other computing resource that may be used for executing the program code on the virtual compute system 110. The user-specified amount may be an amount of a particular resource (e.g., memory) that is indicated in the request (e.g., included in the request or otherwise determinable based on information included in the request) that specifies how much of the particular resource is to be allocated for executing the program code. For example, the developer of a program code may specify in a code execution request how much memory (or other computing resources) is to be allocated for executing his or her program code.
Next, at block 404, the resource manager 150 allocates the user-specified amount of the computing resource for executing the program code. For example, the resource manager 150 may create a container that has the user-specified amount of the computing resource in an instance that is associated with the user and is in the active pool 140A. In another example, the resource manager 150 may select an instance from the warming pool 130A, assign the selected instance to the user, and create a container that has the user-specified amount of the computing resource in the selected instance.
At block 406, the resource manager 150 monitors the usage of the computing resource by the program code during one or more executions of the program code. For example, the resource manager 150 may cause the program code to be loaded onto the container designated to handle the request and cause the program code to be executed in the container. The resource manager 150 may monitor one or more performance characteristics during the one or more executions of the program code. Such performance characteristics may include error rates, resource utilization, latency, % of resource used, % of resource requested by the user, etc.
At block 408, the resource manager 150 compares the usage of the computing resource by the program code to the user-specified amount, and at block 410, the resource manager 150 determines, based on the comparison, that the user-specified amount of the computing resource allocated for executing the program code should be adjusted. For example, if the user requested 512 MB of memory but only 64 MB was used on average during the one or more executions of the program code, the resource manager 150 may determine that the user-specified amount may be reduced without significantly affecting the performance of the program code. On the other hand, if the user requested 512 MB of memory and nearly all of the requested amount was in use during the one or more executions of the program code, the resource manager 150 may determine that the user-specified amount should be increased to resolve the over-utilization issue.
At block 412, the resource manager 150 provides an indication of how the user-specified amount should be adjusted. For example, the resource manager 150 may provide an email notification to the user indicating that the user-specified amount should be increased or decreased by an appropriate amount.
While the routine 400 of
Turning now to
At block 502 of the illustrative routine 500, the resource manager 150 allocates a first amount of a computing resource for executing a program code. For example, the resource manager 150 may create a container that has the first amount of the computing resource in an instance that is associated with the user and is in the active pool 140A. In another example, the resource manager 150 may select an instance from the warming pool 130A, assign the selected instance to the user, and create a container that has the first amount of the computing resource in the selected instance. The computing resource may be memory, CPU, disk space, or any other computing resource that may be used for executing the program code on the virtual compute system 110. The first amount may be determined by the resource manager 150 based on information included in the request and/or information ascertainable based on the information included in the request. Such information may include the programming language used to code the program code, user type (e.g., high-volume user or low-volume user), characteristics of the program code (e.g., number of lines, number of expensive calls, etc.), etc.
Next, at block 504, the resource manager 150 monitors the usage of the computing resource by the program code during one or more executions of the program code. For example, the resource manager 150 may cause the program code to be loaded onto the container designated to handle the request and cause the program code to be executed in the container. The resource manager 150 may monitor one or more performance characteristics during the one or more executions of the program code. Such performance characteristics may include error rates, resource utilization, latency, % of resource used, % of resource requested by the user, etc.
At block 506, the resource manager 150 determines, based on the usage of the computing resource by the program code, that the first amount of the computing resource allocated for executing the program code should be adjusted. For example, if 512 MB of memory was allocated for executing the program code at block 502 but only 64 MB was used on average during the one or more executions of the program code, the resource manager 150 may determine that the amount allocated for executing the program code may be reduced without significantly affecting the performance of the program code. On the other hand, if 512 MB of memory was allocated for executing the program code and nearly all of the allocated amount was in use during the one or more executions of the program code, the resource manager 150 may determine that the amount allocated for executing the program code should be increased to resolve the over-utilization issue.
At block 508, the resource manager 150 determines a second amount of the computing resource that is different from the first amount, and at block 510, the resource manager 150 allocates the second amount of the computing resource for executing the program code. In the example in which 512 MB was allocated and 64 MB was used on average, the resource manager 150 may determine that the amount of allocated memory may be safely reduced to 128 MB without affecting the performance of the program code, and allocate 128 MB for executing the program code (e.g., for future executions of the program code).
While the routine 500 of
With reference to
In
With reference to
In
EE 1: A system adapted to provide low-latency computational capacity from a virtual compute fleet, the system comprising: an electronic data store configured to store at least a program code of a user; and a virtual compute system comprising one or more hardware computing devices adapted to execute specific computer-executable instructions, said virtual compute system in communication with the electronic data store, and configured to at least: maintain a plurality of virtual machine instances on one or more physical computing devices, wherein the plurality of virtual machine instances comprise a warming pool comprising virtual machine instances having one or more software components loaded thereon and waiting to be assigned to a user, and an active pool comprising virtual machine instances currently assigned to one or more users; receive a request to execute a program code associated with a user on the virtual compute system, the request including information indicating the program code and the user associated with the program code; select from the warming pool or the active pool a virtual machine instance to execute the program code, the selected virtual machine instance having a first computing resource and a second computing resource, wherein a first maximum amount specifies a maximum amount of the first computing resource available to be provided by the selected virtual machine instance, and a second maximum amount specifies a maximum amount of the second computing resource available to be provided by the selected virtual machine instance; determine, based on the received request, a user-specified amount of the first computing resource specified by the user; determine a first ratio of the user-specified amount to the first maximum amount of the first computing resource; determine a corresponding amount of the second computing resource based on the first ratio and the second maximum amount, wherein a second ratio of the corresponding amount to the second maximum amount is identical to the first ratio; create a container in the selected virtual machine instance based on the user-specified amount of the first computing resource and the corresponding amount of the second computing resource; and cause the program code associated with the user to be loaded from the electronic data store onto the container and executed in the container.
EE 2: The system of EE 1, wherein the virtual compute system is further configured to record actual amounts of the first and second computing resources used for executing the program code in the container.
EE 3: The system of EE 1, wherein the virtual compute system is further configured to over-subscribe the selected virtual machine instance such that a sum of the user-specified amount of the first or second computing resource of each container created in the selected virtual machine instance exceeds the first maximum amount.
EE 4: A system, comprising: a virtual compute system comprising one or more hardware computing devices executing specific computer-executable instructions and configured to at least: determine, based on a request to execute a program code associated with a user on the virtual compute system, a user-specified amount of a first computing resource; determine, based on the user-specified amount of the first computing resource, a corresponding amount of a second computing resource that is different from the first computing resource; allocate the user-specified amount of the first computing resource and the corresponding amount of the second computing resource to the request for executing the program code; record actual amounts of the first and second computing resources used by the program code during execution of the program code; maintain the user-specified amount in association with the program code associated with the user; determine that the user-specified amount is to be overridden by an alternate amount specified in a subsequent request to execute the program code; allocate the alternate amount of the first or second computing resources to the subsequent request for executing the program code.
EE 5: The system of EE 4, wherein the virtual compute system is further configured to record errors or conditions detected during an execution of the program code, the errors or conditions being caused by a level of utilization of at least one of the first computing resource or the second computing resource.
EE 6: The system of EE 4, wherein the virtual compute system is further configured to maintain a first class of users and a second class of users, wherein the first class of users are allowed to specify resource amounts for multiple computing resources, and the second class of users are restricted to specifying a resource amount for only one of the multiple computing resources.
EE 7: The system of EE 4, wherein the virtual compute system is further configured to determine, based on the user-specified amount, a resource amount of at least one computing resource other than the first and second computing resources.
EE 8: The system of EE 4, wherein the virtual compute system is further configured to: maintain a plurality of virtual machine instances on one or more physical computing devices; select one of the plurality of virtual machine instances to be used for executing the program code, the selected virtual machine instance having the first computing resource having a first maximum amount and the second computing resource having a second maximum amount; determine a first ratio of the user-specified amount to the first maximum amount; determine the corresponding amount of the second computing resource based on the determined first ratio and the second maximum amount, wherein a second ratio of the corresponding amount to the second maximum amount is identical to the first ratio; create a container in the selected virtual machine instance, the container having the user-specified amount of the first computing resource and the corresponding amount of the second computing resource; and cause the program code to be executed in the container.
EE 9: The system of EE 8, wherein the virtual compute system is further configured to over-subscribe the selected virtual machine instance such that a sum of the user-specified amount of the first or second computing resource of each container created in the selected virtual machine instance exceeds the first maximum amount.
EE 10: A computer-implemented method comprising: as implemented by one or more computing devices configured with specific executable instructions, determining, based on a request to execute a program code associated with a user on a virtual compute system, a user-specified amount of a first computing resource; determining, based on the user-specified amount of the first computing resource, a corresponding amount of a second computing resource that is different from the first computing resource; selecting a first container having the user-specified amount of the first computing resource and the corresponding amount of the second computing resource for executing the program code; causing the program code to be executed in the selected container; recording actual amounts of the first and second computing resources used by the program code during the execution of the program code; maintaining the user-specified amount in association with the program code associated with the user; determining that the user-specified amount is to be overridden by an alternate amount specified in a subsequent request to execute the program code; and selecting a second container having the alternate amount of the first or second computing resources for executing the program code.
EE 11: The computer-implemented method of EE 10, further comprising recording errors or conditions detected during an execution of the program code, the errors or conditions being caused by a level of utilization of at least one of the first computing resource or the second computing resource.
EE 12: The computer-implemented method of EE 10, further comprising: maintaining a plurality of virtual machine instances on one or more physical computing devices; selecting one of the plurality of virtual machine instances to be used for executing the program code, the selected virtual machine instance having the first computing resource having a first maximum amount and the second computing resource having a second maximum amount; determining a first ratio of the user-specified amount to the first maximum amount; determining the corresponding amount of the second computing resource based on the determined first ratio and the second maximum amount, wherein a second ratio of the corresponding amount to the second maximum amount is identical to the first ratio; creating a container in the selected virtual machine instance, the container having the user-specified amount of the first computing resource and the corresponding amount of the second computing resource; and causing the program code to be executed in the container.
EE 13: The computer-implemented method of EE 12, further comprising over-subscribing the selected virtual machine instance such that a sum of the user-specified amount of the first computing resource of each container created in the selected virtual machine instance exceeds the first maximum amount.
EE 14: The computer-implemented method of EE 10, further comprising maintaining a first class of users and a second class of users, wherein the first class of users are allowed to specify resource amounts for multiple computing resources, and the second class of users are restricted to specifying a resource amount for only one of the multiple computing resources.
EE 15: A computer-readable, non-transitory storage medium storing computer executable instructions that, when executed by one or more computing devices, configure the one or more computing devices to perform operations comprising: determining, based on a request to execute a program code associated with a user on a virtual compute system, a user-specified amount of a first computing resource; determining, based on the user-specified amount of the first computing resource, a corresponding amount of a second computing resource that is different from the first computing resource; selecting a first container having the user-specified amount of the first computing resource and the corresponding amount of the second computing resource to the request for executing the program code; causing the program code to be executed in the selected container; recording actual amounts of the first and second computing resources used by the program code during the execution of the program code; maintaining the user-specified amount in association with the program code associated with the user; determining that the user-specified amount is to be overridden by an alternate amount specified in a subsequent request to execute the program code; and selecting a second container having the alternate amount of the first or second computing resources for executing the program code.
EE 16: The computer-readable, non-transitory storage medium of EE 15, wherein the operations further comprise recording errors or conditions detected during an execution of the program code, the errors or conditions being caused by a level of utilization of at least one of the first computing resource or the second computing resource.
EE 17: The computer-readable, non-transitory storage medium of EE 15, wherein the operations further comprise: maintaining a plurality of virtual machine instances on one or more physical computing devices; selecting one of the plurality of virtual machine instances to be used for executing the program code, the selected virtual machine instance having the first computing resource having a first maximum amount and the second computing resource having a second maximum amount; determining a first ratio of the user-specified amount to the first maximum amount; determining the corresponding amount of the second computing resource based on the determined first ratio and the second maximum amount, wherein a second ratio of the corresponding amount to the second maximum amount is identical to the first ratio; creating a container in the selected virtual machine instance, the container having the user-specified amount of the first computing resource and the corresponding amount of the second computing resource; and causing the program code to be executed in the container.
EE 18: The computer-readable, non-transitory storage medium of EE 17, wherein the virtual compute system is further configured to over-subscribe the selected virtual machine instance such that a sum of the user-specified amount of the first or second computing resource of each container created in the selected virtual machine instance exceeds the first maximum amount.
EE 19: The computer-readable, non-transitory storage medium of EE 15, wherein the operations further comprise maintaining a first class of users and a second class of users, wherein the first class of users are allowed to specify resource amounts for multiple computing resources, and the second class of users are restricted to specifying a resource amount for only one of the multiple computing resources.
It will be appreciated by those skilled in the art and others that all of the functions described in this disclosure may be embodied in software executed by one or more physical processors of the disclosed components and mobile communication devices. The software may be persistently stored in any type of non-volatile storage.
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art. It will further be appreciated that the data and/or components described above may be stored on a computer-readable medium and loaded into memory of the computing device using a drive mechanism associated with a computer readable storage medium storing the computer executable components such as a CD-ROM, DVD-ROM, or network interface. Further, the component and/or data can be included in a single device or distributed in any manner. Accordingly, general purpose computing devices may be configured to implement the processes, algorithms, and methodology of the present disclosure with the processing and/or execution of the various data and/or components described above.
It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
This application is a continuation of U.S. application Ser. No. 15/396,155, filed Dec. 30, 2016 and titled “AUTOMATIC DETERMINATION OF RESOURCE SIZING,” which is a continuation of U.S. application Ser. No. 14/562,601, filed Dec. 5, 2014 and titled “AUTOMATIC DETERMINATION OF RESOURCE SIZING,” the disclosures of which are hereby incorporated by reference in their entireties. Additionally, the present application's Applicant previously filed the following U.S. patent application on Sep. 30, 2014: Application No.Title14/502,992THREADING AS A SERVICE Further, the present application's Applicant previously filed the following U.S. patent application on Dec. 5, 2014: Application No.Title14/562,577AUTOMATIC MANAGEMENT OF RESOURCESIZING The disclosures of the above-referenced applications are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4949254 | Shorter | Aug 1990 | A |
5283888 | Dao et al. | Feb 1994 | A |
5835764 | Platt et al. | Nov 1998 | A |
5970488 | Crowe et al. | Oct 1999 | A |
5983197 | Enta | Nov 1999 | A |
6237005 | Griffin | May 2001 | B1 |
6260058 | Hoenninger et al. | Jul 2001 | B1 |
6385636 | Suzuki | May 2002 | B1 |
6463509 | Teoman et al. | Oct 2002 | B1 |
6501736 | Smolik et al. | Dec 2002 | B1 |
6523035 | Fleming et al. | Feb 2003 | B1 |
6549936 | Hirabayashi | Apr 2003 | B1 |
6708276 | Yarsa et al. | Mar 2004 | B1 |
7036121 | Casabona et al. | Apr 2006 | B1 |
7308463 | Taulbee et al. | Dec 2007 | B2 |
7340522 | Basu et al. | Mar 2008 | B1 |
7558719 | Donlin | Jul 2009 | B1 |
7577722 | Khandekar et al. | Aug 2009 | B1 |
7590806 | Harris et al. | Sep 2009 | B2 |
7665090 | Tormasov et al. | Feb 2010 | B1 |
7707579 | Rodriguez | Apr 2010 | B2 |
7730464 | Trowbridge | Jun 2010 | B2 |
7774191 | Berkowitz et al. | Aug 2010 | B2 |
7823186 | Pouliot | Oct 2010 | B2 |
7831464 | Nichols et al. | Nov 2010 | B1 |
7870153 | Croft et al. | Jan 2011 | B2 |
7886021 | Scheifler et al. | Feb 2011 | B2 |
7949677 | Croft et al. | May 2011 | B2 |
7954150 | Croft et al. | May 2011 | B2 |
8010679 | Low et al. | Aug 2011 | B2 |
8010990 | Ferguson et al. | Aug 2011 | B2 |
8024564 | Bassani et al. | Sep 2011 | B2 |
8046765 | Cherkasova et al. | Oct 2011 | B2 |
8051180 | Mazzaferri et al. | Nov 2011 | B2 |
8051266 | DeVal et al. | Nov 2011 | B2 |
8065676 | Sahai et al. | Nov 2011 | B1 |
8065682 | Baryshnikov et al. | Nov 2011 | B2 |
8095931 | Chen et al. | Jan 2012 | B1 |
8127284 | Meijer et al. | Feb 2012 | B2 |
8146073 | Sinha | Mar 2012 | B2 |
8166304 | Murase et al. | Apr 2012 | B2 |
8171473 | Lavin | May 2012 | B2 |
8201026 | Bornstein et al. | Jun 2012 | B1 |
8209695 | Pruyne et al. | Jun 2012 | B1 |
8219987 | Vlaovic et al. | Jul 2012 | B1 |
8296267 | Cahill et al. | Oct 2012 | B2 |
8321554 | Dickinson | Nov 2012 | B2 |
8321558 | Sirota et al. | Nov 2012 | B1 |
8336079 | Budko et al. | Dec 2012 | B2 |
8352608 | Keagy et al. | Jan 2013 | B1 |
8387075 | McCann et al. | Feb 2013 | B1 |
8392558 | Ahuja et al. | Mar 2013 | B1 |
8417723 | Lissack et al. | Apr 2013 | B1 |
8429282 | Ahuja | Apr 2013 | B1 |
8448165 | Conover | May 2013 | B1 |
8479195 | Adams et al. | Jul 2013 | B2 |
8490088 | Tang | Jul 2013 | B2 |
8555281 | Van Dijk et al. | Oct 2013 | B1 |
8560699 | Theimer et al. | Oct 2013 | B1 |
8566835 | Wang et al. | Oct 2013 | B2 |
8601323 | Tsantilis | Dec 2013 | B2 |
8613070 | Borzycki et al. | Dec 2013 | B1 |
8615589 | Adogla | Dec 2013 | B1 |
8631130 | Jackson | Jan 2014 | B2 |
8667471 | Wintergerst et al. | Mar 2014 | B2 |
8677359 | Cavage et al. | Mar 2014 | B1 |
8694996 | Cawlfield et al. | Apr 2014 | B2 |
8700768 | Benari | Apr 2014 | B2 |
8719415 | Sirota et al. | May 2014 | B1 |
8725702 | Raman et al. | May 2014 | B1 |
8756322 | Lynch | Jun 2014 | B1 |
8756696 | Miller | Jun 2014 | B1 |
8769519 | Leitman et al. | Jul 2014 | B2 |
8793676 | Quinn et al. | Jul 2014 | B2 |
8799236 | Azari et al. | Aug 2014 | B1 |
8799879 | Wright et al. | Aug 2014 | B2 |
8806468 | Meijer et al. | Aug 2014 | B2 |
8806644 | McCorkendale et al. | Aug 2014 | B1 |
8819679 | Agarwal et al. | Aug 2014 | B2 |
8825863 | Hansson et al. | Sep 2014 | B2 |
8825964 | Sopka et al. | Sep 2014 | B1 |
8839035 | Dimitrovich et al. | Sep 2014 | B1 |
8850432 | McGrath et al. | Sep 2014 | B2 |
8869300 | Singh et al. | Oct 2014 | B2 |
8874952 | Tameshige et al. | Oct 2014 | B2 |
8904008 | Calder et al. | Dec 2014 | B2 |
8966495 | Kulkarni | Feb 2015 | B2 |
8972980 | Banga et al. | Mar 2015 | B2 |
8997093 | Dimitrov | Mar 2015 | B2 |
9027087 | Ishaya et al. | May 2015 | B2 |
9038068 | Engle et al. | May 2015 | B2 |
9052935 | Rajaa | Jun 2015 | B1 |
9086897 | Oh et al. | Jul 2015 | B2 |
9086924 | Barsness et al. | Jul 2015 | B2 |
9092837 | Bala et al. | Jul 2015 | B2 |
9098528 | Wang | Aug 2015 | B2 |
9110732 | Forschmiedt et al. | Aug 2015 | B1 |
9110770 | Raju et al. | Aug 2015 | B1 |
9111037 | Nalis et al. | Aug 2015 | B1 |
9112813 | Jackson | Aug 2015 | B2 |
9116733 | Banga et al. | Aug 2015 | B2 |
9141410 | Leafe et al. | Sep 2015 | B2 |
9146764 | Wagner | Sep 2015 | B1 |
9152406 | De et al. | Oct 2015 | B2 |
9164754 | Pohlack | Oct 2015 | B1 |
9183019 | Kruglick | Nov 2015 | B2 |
9208007 | Harper et al. | Dec 2015 | B2 |
9218190 | Anand et al. | Dec 2015 | B2 |
9223561 | Orveillon et al. | Dec 2015 | B2 |
9223966 | Satish et al. | Dec 2015 | B1 |
9250893 | Blahaerath et al. | Feb 2016 | B2 |
9268586 | Voccio et al. | Feb 2016 | B2 |
9298633 | Zhao et al. | Mar 2016 | B1 |
9317689 | Aissi | Apr 2016 | B2 |
9323556 | Wagner | Apr 2016 | B2 |
9361145 | Wilson et al. | Jun 2016 | B1 |
9413626 | Reque et al. | Aug 2016 | B2 |
9417918 | Chin et al. | Aug 2016 | B2 |
9436555 | Dornemann et al. | Sep 2016 | B2 |
9461996 | Hayton et al. | Oct 2016 | B2 |
9471775 | Wagner et al. | Oct 2016 | B1 |
9471776 | Gu et al. | Oct 2016 | B2 |
9483335 | Wagner et al. | Nov 2016 | B1 |
9489227 | Oh et al. | Nov 2016 | B2 |
9497136 | Ramarao et al. | Nov 2016 | B1 |
9501345 | Lietz et al. | Nov 2016 | B1 |
9514037 | Dow et al. | Dec 2016 | B1 |
9537788 | Reque et al. | Jan 2017 | B2 |
9563613 | Dinkel et al. | Feb 2017 | B1 |
9575798 | Terayama et al. | Feb 2017 | B2 |
9588790 | Wagner et al. | Mar 2017 | B1 |
9594590 | Hsu | Mar 2017 | B2 |
9596350 | Dymshyts et al. | Mar 2017 | B1 |
9600312 | Wagner et al. | Mar 2017 | B2 |
9613127 | Rus et al. | Apr 2017 | B1 |
9626204 | Banga et al. | Apr 2017 | B1 |
9628332 | Bruno, Jr. et al. | Apr 2017 | B2 |
9635132 | Lin et al. | Apr 2017 | B1 |
9652306 | Wagner et al. | May 2017 | B1 |
9652617 | Evans et al. | May 2017 | B1 |
9654508 | Barton et al. | May 2017 | B2 |
9661011 | Van Horenbeeck et al. | May 2017 | B1 |
9678773 | Wagner et al. | Jun 2017 | B1 |
9678778 | Youseff | Jun 2017 | B1 |
9703681 | Taylor et al. | Jul 2017 | B2 |
9715402 | Wagner et al. | Jul 2017 | B2 |
9720661 | Gschwind et al. | Aug 2017 | B2 |
9720662 | Gschwind et al. | Aug 2017 | B2 |
9727725 | Wagner et al. | Aug 2017 | B2 |
9733967 | Wagner et al. | Aug 2017 | B2 |
9760387 | Wagner et al. | Sep 2017 | B2 |
9760443 | Tarasuk-Levin et al. | Sep 2017 | B2 |
9767271 | Ghose | Sep 2017 | B2 |
9785476 | Wagner et al. | Oct 2017 | B2 |
9787779 | Frank et al. | Oct 2017 | B2 |
9811363 | Wagner | Nov 2017 | B1 |
9811434 | Wagner | Nov 2017 | B1 |
9817695 | Clark | Nov 2017 | B2 |
9830175 | Wagner | Nov 2017 | B1 |
9830193 | Wagner et al. | Nov 2017 | B1 |
9830449 | Wagner | Nov 2017 | B1 |
9864636 | Patel et al. | Jan 2018 | B1 |
9898393 | Moorthi et al. | Feb 2018 | B2 |
9910713 | Wisniewski et al. | Mar 2018 | B2 |
9921864 | Singaravelu et al. | Mar 2018 | B2 |
9928108 | Wagner et al. | Mar 2018 | B1 |
9929916 | Subramanian et al. | Mar 2018 | B1 |
9930103 | Thompson | Mar 2018 | B2 |
9930133 | Susarla et al. | Mar 2018 | B2 |
9952896 | Wagner et al. | Apr 2018 | B2 |
9977691 | Marriner et al. | May 2018 | B2 |
9979817 | Huang et al. | May 2018 | B2 |
9983982 | Kumar et al. | May 2018 | B1 |
10002026 | Wagner | Jun 2018 | B1 |
10013267 | Wagner et al. | Jul 2018 | B1 |
10042660 | Wagner et al. | Aug 2018 | B2 |
10048974 | Wagner et al. | Aug 2018 | B1 |
10061613 | Brooker et al. | Aug 2018 | B1 |
10067801 | Wagner | Sep 2018 | B1 |
10102040 | Marriner et al. | Oct 2018 | B2 |
10108443 | Wagner et al. | Oct 2018 | B2 |
10139876 | Lu et al. | Nov 2018 | B2 |
10140137 | Wagner | Nov 2018 | B2 |
10146635 | Chai et al. | Dec 2018 | B1 |
10162655 | Tuch et al. | Dec 2018 | B2 |
10162672 | Wagner et al. | Dec 2018 | B2 |
10162688 | Wagner | Dec 2018 | B2 |
10203990 | Wagner et al. | Feb 2019 | B2 |
10248467 | Wisniewski et al. | Apr 2019 | B2 |
10255090 | Tuch et al. | Apr 2019 | B2 |
10277708 | Wagner et al. | Apr 2019 | B2 |
10303492 | Wagner et al. | May 2019 | B1 |
10331462 | Varda et al. | Jun 2019 | B1 |
10346625 | Anderson et al. | Jul 2019 | B2 |
10353678 | Wagner | Jul 2019 | B1 |
10353746 | Reque et al. | Jul 2019 | B2 |
10360025 | Foskett et al. | Jul 2019 | B2 |
10360067 | Wagner | Jul 2019 | B1 |
10365985 | Wagner | Jul 2019 | B2 |
10387177 | Wagner et al. | Aug 2019 | B2 |
10402231 | Marriner et al. | Sep 2019 | B2 |
10423158 | Hadlich | Sep 2019 | B1 |
10437629 | Wagner et al. | Oct 2019 | B2 |
10445140 | Sagar et al. | Oct 2019 | B1 |
10459822 | Gondi | Oct 2019 | B1 |
10503626 | Idicula et al. | Dec 2019 | B2 |
10528390 | Brooker et al. | Jan 2020 | B2 |
10531226 | Wang et al. | Jan 2020 | B1 |
10552193 | Wagner et al. | Feb 2020 | B2 |
10564946 | Wagner et al. | Feb 2020 | B1 |
10572375 | Wagner | Feb 2020 | B1 |
10592269 | Wagner et al. | Mar 2020 | B2 |
10623476 | Thompson | Apr 2020 | B2 |
10649749 | Brooker et al. | May 2020 | B1 |
10649792 | Kulchytskyy et al. | May 2020 | B1 |
10650156 | Anderson et al. | May 2020 | B2 |
10691498 | Wagner | Jun 2020 | B2 |
10713080 | Brooker et al. | Jul 2020 | B1 |
10719367 | Kim et al. | Jul 2020 | B1 |
10725752 | Wagner et al. | Jul 2020 | B1 |
10725826 | Sagar et al. | Jul 2020 | B1 |
10733085 | Wagner | Aug 2020 | B1 |
10754701 | Wagner | Aug 2020 | B1 |
10776091 | Wagner et al. | Sep 2020 | B1 |
10776171 | Wagner et al. | Sep 2020 | B2 |
10817331 | Mullen et al. | Oct 2020 | B2 |
10824484 | Wagner et al. | Nov 2020 | B2 |
10831898 | Wagner | Nov 2020 | B1 |
10853112 | Wagner et al. | Dec 2020 | B2 |
10853115 | Mullen et al. | Dec 2020 | B2 |
10884722 | Brooker et al. | Jan 2021 | B2 |
10884787 | Wagner et al. | Jan 2021 | B1 |
10884802 | Wagner et al. | Jan 2021 | B2 |
10884812 | Brooker et al. | Jan 2021 | B2 |
10891145 | Wagner et al. | Jan 2021 | B2 |
10915371 | Wagner et al. | Feb 2021 | B2 |
10942795 | Yanacek et al. | Mar 2021 | B1 |
10949237 | Piwonka et al. | Mar 2021 | B2 |
10956185 | Wagner | Mar 2021 | B2 |
20010044817 | Asano et al. | Nov 2001 | A1 |
20020120685 | Srivastava et al. | Aug 2002 | A1 |
20020172273 | Baker et al. | Nov 2002 | A1 |
20030071842 | King et al. | Apr 2003 | A1 |
20030084434 | Ren | May 2003 | A1 |
20030149801 | Kushnirskiy | Aug 2003 | A1 |
20030191795 | Bernardin et al. | Oct 2003 | A1 |
20030229794 | James, II et al. | Dec 2003 | A1 |
20040003087 | Chambliss et al. | Jan 2004 | A1 |
20040019886 | Berent et al. | Jan 2004 | A1 |
20040044721 | Song et al. | Mar 2004 | A1 |
20040049768 | Matsuyama et al. | Mar 2004 | A1 |
20040098154 | McCarthy | May 2004 | A1 |
20040158551 | Santosuosso | Aug 2004 | A1 |
20040205493 | Simpson et al. | Oct 2004 | A1 |
20040249947 | Novaes et al. | Dec 2004 | A1 |
20040268358 | Darling et al. | Dec 2004 | A1 |
20050027611 | Wharton | Feb 2005 | A1 |
20050044301 | Vasilevsky et al. | Feb 2005 | A1 |
20050120160 | Plouffe et al. | Jun 2005 | A1 |
20050132167 | Longobardi | Jun 2005 | A1 |
20050132368 | Sexton et al. | Jun 2005 | A1 |
20050149535 | Frey et al. | Jul 2005 | A1 |
20050193113 | Kokusho et al. | Sep 2005 | A1 |
20050193283 | Reinhardt et al. | Sep 2005 | A1 |
20050237948 | Wan et al. | Oct 2005 | A1 |
20050257051 | Richard | Nov 2005 | A1 |
20050262183 | Colrain et al. | Nov 2005 | A1 |
20060010440 | Anderson et al. | Jan 2006 | A1 |
20060015740 | Kramer | Jan 2006 | A1 |
20060080678 | Bailey et al. | Apr 2006 | A1 |
20060123066 | Jacobs et al. | Jun 2006 | A1 |
20060129684 | Datta | Jun 2006 | A1 |
20060155800 | Matsumoto | Jul 2006 | A1 |
20060168174 | Gebhart et al. | Jul 2006 | A1 |
20060184669 | Vaidyanathan et al. | Aug 2006 | A1 |
20060200668 | Hybre et al. | Sep 2006 | A1 |
20060212332 | Jackson | Sep 2006 | A1 |
20060218601 | Michel | Sep 2006 | A1 |
20060242647 | Kimbrel et al. | Oct 2006 | A1 |
20060248195 | Toumura et al. | Nov 2006 | A1 |
20060288120 | Hoshino et al. | Dec 2006 | A1 |
20070033085 | Johnson | Feb 2007 | A1 |
20070050779 | Hayashi | Mar 2007 | A1 |
20070094396 | Takano et al. | Apr 2007 | A1 |
20070101325 | Bystricky et al. | May 2007 | A1 |
20070112864 | Ben-Natan | May 2007 | A1 |
20070130341 | Ma | Jun 2007 | A1 |
20070174419 | O'Connell et al. | Jul 2007 | A1 |
20070180449 | Croft et al. | Aug 2007 | A1 |
20070180450 | Croft et al. | Aug 2007 | A1 |
20070180493 | Croft et al. | Aug 2007 | A1 |
20070186212 | Mazzaferri et al. | Aug 2007 | A1 |
20070192082 | Gaos et al. | Aug 2007 | A1 |
20070192329 | Croft et al. | Aug 2007 | A1 |
20070198656 | Mazzaferri et al. | Aug 2007 | A1 |
20070199000 | Shekhel et al. | Aug 2007 | A1 |
20070220009 | Morris et al. | Sep 2007 | A1 |
20070226700 | Gal et al. | Sep 2007 | A1 |
20070240160 | Paterson-Jones | Oct 2007 | A1 |
20070255604 | Seelig | Nov 2007 | A1 |
20080028409 | Cherkasova et al. | Jan 2008 | A1 |
20080052401 | Bugenhagen et al. | Feb 2008 | A1 |
20080052725 | Stoodley et al. | Feb 2008 | A1 |
20080082977 | Araujo et al. | Apr 2008 | A1 |
20080104247 | Venkatakrishnan et al. | May 2008 | A1 |
20080104608 | Hyser et al. | May 2008 | A1 |
20080115143 | Shimizu et al. | May 2008 | A1 |
20080126110 | Haeberle et al. | May 2008 | A1 |
20080126486 | Heist | May 2008 | A1 |
20080127125 | Anckaert et al. | May 2008 | A1 |
20080147893 | Marripudi et al. | Jun 2008 | A1 |
20080189468 | Schmidt et al. | Aug 2008 | A1 |
20080195369 | Duyanovich et al. | Aug 2008 | A1 |
20080201568 | Quinn et al. | Aug 2008 | A1 |
20080201711 | Amir Husain | Aug 2008 | A1 |
20080209423 | Hirai | Aug 2008 | A1 |
20080244547 | Wintergerst et al. | Oct 2008 | A1 |
20080288940 | Adams et al. | Nov 2008 | A1 |
20090006897 | Sarsfield | Jan 2009 | A1 |
20090013153 | Hilton | Jan 2009 | A1 |
20090025009 | Brunswig et al. | Jan 2009 | A1 |
20090034537 | Colrain et al. | Feb 2009 | A1 |
20090055810 | Kondur | Feb 2009 | A1 |
20090055829 | Gibson | Feb 2009 | A1 |
20090070355 | Cadarette et al. | Mar 2009 | A1 |
20090077569 | Appleton et al. | Mar 2009 | A1 |
20090125902 | Ghosh et al. | May 2009 | A1 |
20090158275 | Wang et al. | Jun 2009 | A1 |
20090158407 | Nicodemus et al. | Jun 2009 | A1 |
20090177860 | Zhu et al. | Jul 2009 | A1 |
20090183162 | Kindel et al. | Jul 2009 | A1 |
20090193410 | Arthursson et al. | Jul 2009 | A1 |
20090198769 | Keller et al. | Aug 2009 | A1 |
20090204960 | Ben-yehuda et al. | Aug 2009 | A1 |
20090204964 | Foley et al. | Aug 2009 | A1 |
20090222922 | Sidiroglou et al. | Sep 2009 | A1 |
20090271472 | Scheifler et al. | Oct 2009 | A1 |
20090288084 | Astete et al. | Nov 2009 | A1 |
20090300151 | Friedman et al. | Dec 2009 | A1 |
20090300599 | Piotrowski | Dec 2009 | A1 |
20100023940 | Iwamatsu et al. | Jan 2010 | A1 |
20100031274 | Sim-Tang | Feb 2010 | A1 |
20100031325 | Maigne et al. | Feb 2010 | A1 |
20100036925 | Haffner | Feb 2010 | A1 |
20100037031 | DeSantis et al. | Feb 2010 | A1 |
20100058342 | Machida | Mar 2010 | A1 |
20100058351 | Yahagi | Mar 2010 | A1 |
20100064299 | Kacin et al. | Mar 2010 | A1 |
20100070678 | Zhang et al. | Mar 2010 | A1 |
20100070725 | Prahlad et al. | Mar 2010 | A1 |
20100083048 | Calinoiu | Apr 2010 | A1 |
20100083248 | Wood et al. | Apr 2010 | A1 |
20100094816 | Groves, Jr. et al. | Apr 2010 | A1 |
20100106926 | Kandasamy et al. | Apr 2010 | A1 |
20100114825 | Siddegowda | May 2010 | A1 |
20100115098 | De Baer et al. | May 2010 | A1 |
20100122343 | Ghosh | May 2010 | A1 |
20100131936 | Cheriton | May 2010 | A1 |
20100131959 | Spiers et al. | May 2010 | A1 |
20100186011 | Magenheimer | Jul 2010 | A1 |
20100198972 | Umbehocker | Aug 2010 | A1 |
20100199285 | Medovich | Aug 2010 | A1 |
20100257116 | Mehta et al. | Oct 2010 | A1 |
20100257269 | Clark | Oct 2010 | A1 |
20100269109 | Cartales | Oct 2010 | A1 |
20100299541 | Ishikawa et al. | Nov 2010 | A1 |
20100312871 | Desantis et al. | Dec 2010 | A1 |
20100325727 | Neystadt et al. | Dec 2010 | A1 |
20100329149 | Singh et al. | Dec 2010 | A1 |
20100329643 | Kuang | Dec 2010 | A1 |
20110010690 | Howard et al. | Jan 2011 | A1 |
20110010722 | Matsuyama | Jan 2011 | A1 |
20110023026 | Oza | Jan 2011 | A1 |
20110029970 | Arasaratnam | Feb 2011 | A1 |
20110029984 | Norman et al. | Feb 2011 | A1 |
20110040812 | Phillips | Feb 2011 | A1 |
20110055378 | Ferris et al. | Mar 2011 | A1 |
20110055396 | DeHaan | Mar 2011 | A1 |
20110055683 | Jiang | Mar 2011 | A1 |
20110078679 | Bozek et al. | Mar 2011 | A1 |
20110099204 | Thaler | Apr 2011 | A1 |
20110099551 | Fahrig et al. | Apr 2011 | A1 |
20110131572 | Elyashev et al. | Jun 2011 | A1 |
20110134761 | Smith | Jun 2011 | A1 |
20110141124 | Halls et al. | Jun 2011 | A1 |
20110153541 | Koch et al. | Jun 2011 | A1 |
20110153727 | Li | Jun 2011 | A1 |
20110153838 | Belkine et al. | Jun 2011 | A1 |
20110154353 | Theroux et al. | Jun 2011 | A1 |
20110173637 | Brandwine et al. | Jul 2011 | A1 |
20110179162 | Mayo et al. | Jul 2011 | A1 |
20110184993 | Chawla et al. | Jul 2011 | A1 |
20110225277 | Freimuth et al. | Sep 2011 | A1 |
20110231680 | Padmanabhan et al. | Sep 2011 | A1 |
20110247005 | Benedetti et al. | Oct 2011 | A1 |
20110258603 | Wisnovsky et al. | Oct 2011 | A1 |
20110265067 | Schulte et al. | Oct 2011 | A1 |
20110265069 | Fee et al. | Oct 2011 | A1 |
20110265164 | Lucovsky | Oct 2011 | A1 |
20110271276 | Ashok | Nov 2011 | A1 |
20110276945 | Chasman et al. | Nov 2011 | A1 |
20110276963 | Wu et al. | Nov 2011 | A1 |
20110296412 | Banga et al. | Dec 2011 | A1 |
20110314465 | Smith et al. | Dec 2011 | A1 |
20110321033 | Kelkar et al. | Dec 2011 | A1 |
20110321051 | Rastogi | Dec 2011 | A1 |
20120011496 | Shimamura | Jan 2012 | A1 |
20120011511 | Horvitz et al. | Jan 2012 | A1 |
20120016721 | Weinman | Jan 2012 | A1 |
20120041970 | Ghosh et al. | Feb 2012 | A1 |
20120054744 | Singh et al. | Mar 2012 | A1 |
20120072762 | Atchison et al. | Mar 2012 | A1 |
20120072914 | Ota | Mar 2012 | A1 |
20120072920 | Kawamura | Mar 2012 | A1 |
20120079004 | Herman | Mar 2012 | A1 |
20120096271 | Ramarathinam et al. | Apr 2012 | A1 |
20120096468 | Chakravorty et al. | Apr 2012 | A1 |
20120102307 | Wong | Apr 2012 | A1 |
20120102333 | Wong | Apr 2012 | A1 |
20120102481 | Mani et al. | Apr 2012 | A1 |
20120102493 | Allen et al. | Apr 2012 | A1 |
20120110155 | Adlung et al. | May 2012 | A1 |
20120110164 | Frey et al. | May 2012 | A1 |
20120110570 | Jacobson et al. | May 2012 | A1 |
20120110588 | Bieswanger et al. | May 2012 | A1 |
20120131379 | Tameshige et al. | May 2012 | A1 |
20120144290 | Goldman et al. | Jun 2012 | A1 |
20120166624 | Suit | Jun 2012 | A1 |
20120192184 | Burckart et al. | Jul 2012 | A1 |
20120197795 | Campbell et al. | Aug 2012 | A1 |
20120197958 | Nightingale et al. | Aug 2012 | A1 |
20120198442 | Kashyap et al. | Aug 2012 | A1 |
20120198514 | McCune et al. | Aug 2012 | A1 |
20120204164 | Castanos et al. | Aug 2012 | A1 |
20120209947 | Glaser et al. | Aug 2012 | A1 |
20120222038 | Katragadda et al. | Aug 2012 | A1 |
20120233464 | Miller et al. | Sep 2012 | A1 |
20120324236 | Srivastava et al. | Dec 2012 | A1 |
20120331113 | Jain et al. | Dec 2012 | A1 |
20130014101 | Ballani et al. | Jan 2013 | A1 |
20130042234 | DeLuca et al. | Feb 2013 | A1 |
20130054804 | Jana et al. | Feb 2013 | A1 |
20130054927 | Raj et al. | Feb 2013 | A1 |
20130055262 | Lubsey et al. | Feb 2013 | A1 |
20130061208 | Tsao et al. | Mar 2013 | A1 |
20130061212 | Krause et al. | Mar 2013 | A1 |
20130061220 | Gnanasambandam et al. | Mar 2013 | A1 |
20130067484 | Sonoda et al. | Mar 2013 | A1 |
20130067494 | Srour et al. | Mar 2013 | A1 |
20130080641 | Lui et al. | Mar 2013 | A1 |
20130091387 | Bohnet et al. | Apr 2013 | A1 |
20130097601 | Podvratnik et al. | Apr 2013 | A1 |
20130111032 | Alapati et al. | May 2013 | A1 |
20130111469 | B et al. | May 2013 | A1 |
20130124807 | Nielsen et al. | May 2013 | A1 |
20130132942 | Wang | May 2013 | A1 |
20130132953 | Chuang et al. | May 2013 | A1 |
20130139152 | Chang et al. | May 2013 | A1 |
20130139166 | Zhang et al. | May 2013 | A1 |
20130151587 | Takeshima et al. | Jun 2013 | A1 |
20130151648 | Luna | Jun 2013 | A1 |
20130151684 | Forsman et al. | Jun 2013 | A1 |
20130152047 | Moorthi et al. | Jun 2013 | A1 |
20130167147 | Corrie et al. | Jun 2013 | A1 |
20130179574 | Calder et al. | Jul 2013 | A1 |
20130179881 | Calder et al. | Jul 2013 | A1 |
20130179894 | Calder et al. | Jul 2013 | A1 |
20130179895 | Calder et al. | Jul 2013 | A1 |
20130185719 | Kar et al. | Jul 2013 | A1 |
20130185729 | Vasic et al. | Jul 2013 | A1 |
20130191924 | Tedesco | Jul 2013 | A1 |
20130198319 | Shen et al. | Aug 2013 | A1 |
20130198743 | Kruglick | Aug 2013 | A1 |
20130198748 | Sharp et al. | Aug 2013 | A1 |
20130198763 | Kunze et al. | Aug 2013 | A1 |
20130205092 | Roy et al. | Aug 2013 | A1 |
20130219390 | Lee et al. | Aug 2013 | A1 |
20130227097 | Yasuda et al. | Aug 2013 | A1 |
20130227534 | Ike et al. | Aug 2013 | A1 |
20130227563 | McGrath | Aug 2013 | A1 |
20130227641 | White et al. | Aug 2013 | A1 |
20130227710 | Barak et al. | Aug 2013 | A1 |
20130232190 | Miller et al. | Sep 2013 | A1 |
20130232480 | Winterfeldt et al. | Sep 2013 | A1 |
20130239125 | Iorio | Sep 2013 | A1 |
20130246944 | Pandiyan et al. | Sep 2013 | A1 |
20130262556 | Xu et al. | Oct 2013 | A1 |
20130263117 | Konik et al. | Oct 2013 | A1 |
20130274006 | Hudlow et al. | Oct 2013 | A1 |
20130275376 | Hudlow et al. | Oct 2013 | A1 |
20130275958 | Ivanov et al. | Oct 2013 | A1 |
20130275969 | Dimitrov | Oct 2013 | A1 |
20130275975 | Masuda et al. | Oct 2013 | A1 |
20130283141 | Stevenson et al. | Oct 2013 | A1 |
20130283176 | Hoole et al. | Oct 2013 | A1 |
20130290538 | Gmach et al. | Oct 2013 | A1 |
20130291087 | Kailash et al. | Oct 2013 | A1 |
20130297964 | Hegdal et al. | Nov 2013 | A1 |
20130298183 | McGrath et al. | Nov 2013 | A1 |
20130311650 | Brandwine et al. | Nov 2013 | A1 |
20130326506 | McGrath et al. | Dec 2013 | A1 |
20130326507 | McGrath et al. | Dec 2013 | A1 |
20130339950 | Ramarathinam et al. | Dec 2013 | A1 |
20130346470 | Obstfeld et al. | Dec 2013 | A1 |
20130346946 | Pinnix | Dec 2013 | A1 |
20130346952 | Huang et al. | Dec 2013 | A1 |
20130346964 | Nobuoka et al. | Dec 2013 | A1 |
20130346987 | Raney et al. | Dec 2013 | A1 |
20130346994 | Chen et al. | Dec 2013 | A1 |
20130347095 | Barjatiya et al. | Dec 2013 | A1 |
20140007097 | Chin | Jan 2014 | A1 |
20140019523 | Heymann et al. | Jan 2014 | A1 |
20140019735 | Menon et al. | Jan 2014 | A1 |
20140019965 | Neuse et al. | Jan 2014 | A1 |
20140019966 | Neuse et al. | Jan 2014 | A1 |
20140040343 | Nickolov et al. | Feb 2014 | A1 |
20140040857 | Trinchini et al. | Feb 2014 | A1 |
20140040880 | Brownlow et al. | Feb 2014 | A1 |
20140058871 | Marr | Feb 2014 | A1 |
20140059209 | Alnoor | Feb 2014 | A1 |
20140059226 | Messerli et al. | Feb 2014 | A1 |
20140059552 | Cunningham et al. | Feb 2014 | A1 |
20140068568 | Wisnovsky | Mar 2014 | A1 |
20140068608 | Kulkarni | Mar 2014 | A1 |
20140068611 | McGrath et al. | Mar 2014 | A1 |
20140073300 | Leeder et al. | Mar 2014 | A1 |
20140081984 | Sitsky et al. | Mar 2014 | A1 |
20140082165 | Marr et al. | Mar 2014 | A1 |
20140082201 | Shankari | Mar 2014 | A1 |
20140101643 | Inoue | Apr 2014 | A1 |
20140101649 | Kamble et al. | Apr 2014 | A1 |
20140108722 | Lipchuk et al. | Apr 2014 | A1 |
20140109087 | Jujare et al. | Apr 2014 | A1 |
20140109088 | Dournov et al. | Apr 2014 | A1 |
20140129667 | Ozawa | May 2014 | A1 |
20140130040 | Lemanski | May 2014 | A1 |
20140137110 | Engle | May 2014 | A1 |
20140173614 | Konik et al. | Jun 2014 | A1 |
20140173616 | Bird et al. | Jun 2014 | A1 |
20140180862 | Certain et al. | Jun 2014 | A1 |
20140189677 | Curzi et al. | Jul 2014 | A1 |
20140189704 | Narvaez et al. | Jul 2014 | A1 |
20140201735 | Kannan et al. | Jul 2014 | A1 |
20140207912 | Thibeault | Jul 2014 | A1 |
20140214752 | Rash et al. | Jul 2014 | A1 |
20140215073 | Dow et al. | Jul 2014 | A1 |
20140229221 | Shih et al. | Aug 2014 | A1 |
20140245297 | Hackett | Aug 2014 | A1 |
20140279581 | Devereaux | Sep 2014 | A1 |
20140280325 | Krishnamurthy et al. | Sep 2014 | A1 |
20140282418 | Wood et al. | Sep 2014 | A1 |
20140282559 | Verduzco et al. | Sep 2014 | A1 |
20140282615 | Cavage et al. | Sep 2014 | A1 |
20140282629 | Gupta et al. | Sep 2014 | A1 |
20140283045 | Brandwine et al. | Sep 2014 | A1 |
20140289286 | Gusak | Sep 2014 | A1 |
20140298295 | Overbeck | Oct 2014 | A1 |
20140304246 | Helmich et al. | Oct 2014 | A1 |
20140304698 | Chigurapati et al. | Oct 2014 | A1 |
20140304815 | Maeda | Oct 2014 | A1 |
20140317617 | O'Donnell | Oct 2014 | A1 |
20140337953 | Banatwala et al. | Nov 2014 | A1 |
20140344457 | Bruno, Jr. et al. | Nov 2014 | A1 |
20140344736 | Ryman et al. | Nov 2014 | A1 |
20140359093 | Raju et al. | Dec 2014 | A1 |
20140372489 | Jaiswal et al. | Dec 2014 | A1 |
20140372533 | Fu et al. | Dec 2014 | A1 |
20140380085 | Rash et al. | Dec 2014 | A1 |
20150033241 | Jackson et al. | Jan 2015 | A1 |
20150039891 | Ignatchenko et al. | Feb 2015 | A1 |
20150040229 | Chan et al. | Feb 2015 | A1 |
20150046926 | Kenchammana-Hosekote et al. | Feb 2015 | A1 |
20150052258 | Johnson et al. | Feb 2015 | A1 |
20150058914 | Yadav | Feb 2015 | A1 |
20150067019 | Balko | Mar 2015 | A1 |
20150067830 | Johansson et al. | Mar 2015 | A1 |
20150074659 | Madsen et al. | Mar 2015 | A1 |
20150074661 | Kothari et al. | Mar 2015 | A1 |
20150074662 | Saladi et al. | Mar 2015 | A1 |
20150081885 | Thomas et al. | Mar 2015 | A1 |
20150095822 | Feis et al. | Apr 2015 | A1 |
20150106805 | Melander et al. | Apr 2015 | A1 |
20150120928 | Gummaraju et al. | Apr 2015 | A1 |
20150121391 | Wang | Apr 2015 | A1 |
20150134626 | Theimer et al. | May 2015 | A1 |
20150135287 | Medeiros et al. | May 2015 | A1 |
20150142747 | Zou | May 2015 | A1 |
20150142952 | Bragstad et al. | May 2015 | A1 |
20150143374 | Banga et al. | May 2015 | A1 |
20150143381 | Chin et al. | May 2015 | A1 |
20150154046 | Farkas et al. | Jun 2015 | A1 |
20150161384 | Gu et al. | Jun 2015 | A1 |
20150163231 | Sobko et al. | Jun 2015 | A1 |
20150178110 | Li et al. | Jun 2015 | A1 |
20150186129 | Apte et al. | Jul 2015 | A1 |
20150188775 | Van Der Walt et al. | Jul 2015 | A1 |
20150199218 | Wilson et al. | Jul 2015 | A1 |
20150205596 | Hiltegen et al. | Jul 2015 | A1 |
20150227598 | Hahn et al. | Aug 2015 | A1 |
20150229645 | Keith et al. | Aug 2015 | A1 |
20150235144 | Gusev et al. | Aug 2015 | A1 |
20150242225 | Muller et al. | Aug 2015 | A1 |
20150254248 | Burns et al. | Sep 2015 | A1 |
20150256621 | Noda et al. | Sep 2015 | A1 |
20150261578 | Greden et al. | Sep 2015 | A1 |
20150264014 | Budhani et al. | Sep 2015 | A1 |
20150269494 | Kardes et al. | Sep 2015 | A1 |
20150289220 | Kim et al. | Oct 2015 | A1 |
20150309923 | Iwata et al. | Oct 2015 | A1 |
20150319160 | Ferguson et al. | Nov 2015 | A1 |
20150324174 | Bromley et al. | Nov 2015 | A1 |
20150324182 | Barros et al. | Nov 2015 | A1 |
20150324229 | Valine | Nov 2015 | A1 |
20150332048 | Mooring et al. | Nov 2015 | A1 |
20150332195 | Jue | Nov 2015 | A1 |
20150334173 | Coulmeau et al. | Nov 2015 | A1 |
20150350701 | Lemus et al. | Dec 2015 | A1 |
20150356294 | Tan et al. | Dec 2015 | A1 |
20150363181 | Alberti et al. | Dec 2015 | A1 |
20150363304 | Nagamalla et al. | Dec 2015 | A1 |
20150370560 | Tan et al. | Dec 2015 | A1 |
20150370591 | Tuch et al. | Dec 2015 | A1 |
20150370592 | Tuch et al. | Dec 2015 | A1 |
20150371244 | Neuse et al. | Dec 2015 | A1 |
20150378762 | Saladi et al. | Dec 2015 | A1 |
20150378764 | Sivasubramanian et al. | Dec 2015 | A1 |
20150378765 | Singh et al. | Dec 2015 | A1 |
20150379167 | Griffith et al. | Dec 2015 | A1 |
20160011901 | Hurwitz et al. | Jan 2016 | A1 |
20160012099 | Tuatini et al. | Jan 2016 | A1 |
20160019081 | Chandrasekaran et al. | Jan 2016 | A1 |
20160019082 | Chandrasekaran et al. | Jan 2016 | A1 |
20160019536 | Ortiz et al. | Jan 2016 | A1 |
20160026486 | Abdallah | Jan 2016 | A1 |
20160048606 | Rubinstein et al. | Feb 2016 | A1 |
20160070714 | D'Sa et al. | Mar 2016 | A1 |
20160072727 | Leafe et al. | Mar 2016 | A1 |
20160077901 | Roth et al. | Mar 2016 | A1 |
20160092320 | Baca | Mar 2016 | A1 |
20160092493 | Ko et al. | Mar 2016 | A1 |
20160098285 | Davis et al. | Apr 2016 | A1 |
20160100036 | Lo et al. | Apr 2016 | A1 |
20160103739 | Huang et al. | Apr 2016 | A1 |
20160110188 | Verde et al. | Apr 2016 | A1 |
20160117163 | Fukui et al. | Apr 2016 | A1 |
20160117254 | Susarla et al. | Apr 2016 | A1 |
20160124665 | Jain et al. | May 2016 | A1 |
20160124978 | Nithrakashyap et al. | May 2016 | A1 |
20160140180 | Park et al. | May 2016 | A1 |
20160150053 | Janczuk et al. | May 2016 | A1 |
20160188367 | Zeng | Jun 2016 | A1 |
20160191420 | Nagarajan et al. | Jun 2016 | A1 |
20160203219 | Hoch et al. | Jul 2016 | A1 |
20160212007 | Alatorre et al. | Jul 2016 | A1 |
20160226955 | Moorthi et al. | Aug 2016 | A1 |
20160282930 | Ramachandran et al. | Sep 2016 | A1 |
20160285906 | Fine et al. | Sep 2016 | A1 |
20160292016 | Bussard et al. | Oct 2016 | A1 |
20160294614 | Searle et al. | Oct 2016 | A1 |
20160306613 | Busi et al. | Oct 2016 | A1 |
20160315910 | Kaufman | Oct 2016 | A1 |
20160350099 | Suparna et al. | Dec 2016 | A1 |
20160357536 | Firlik et al. | Dec 2016 | A1 |
20160364265 | Cao et al. | Dec 2016 | A1 |
20160364316 | Bhat et al. | Dec 2016 | A1 |
20160371127 | Antony et al. | Dec 2016 | A1 |
20160371156 | Merriman | Dec 2016 | A1 |
20160378449 | Khazanchi et al. | Dec 2016 | A1 |
20160378547 | Brouwer et al. | Dec 2016 | A1 |
20160378554 | Gummaraju et al. | Dec 2016 | A1 |
20170004169 | Merrill et al. | Jan 2017 | A1 |
20170041144 | Krapf et al. | Feb 2017 | A1 |
20170041309 | Ekambaram et al. | Feb 2017 | A1 |
20170060615 | Thakkar et al. | Mar 2017 | A1 |
20170060621 | Whipple et al. | Mar 2017 | A1 |
20170068574 | Cherkasova et al. | Mar 2017 | A1 |
20170075749 | Ambichl et al. | Mar 2017 | A1 |
20170083381 | Cong et al. | Mar 2017 | A1 |
20170085447 | Chen et al. | Mar 2017 | A1 |
20170085502 | Biruduraju | Mar 2017 | A1 |
20170085591 | Ganda et al. | Mar 2017 | A1 |
20170093684 | Jayaraman et al. | Mar 2017 | A1 |
20170093920 | Ducatel et al. | Mar 2017 | A1 |
20170134519 | Chen et al. | May 2017 | A1 |
20170147656 | Choudhary et al. | May 2017 | A1 |
20170149740 | Mansour et al. | May 2017 | A1 |
20170161059 | Wood et al. | Jun 2017 | A1 |
20170177854 | Gligor et al. | Jun 2017 | A1 |
20170188213 | Nirantar et al. | Jun 2017 | A1 |
20170230262 | Sreeramoju et al. | Aug 2017 | A1 |
20170230499 | Mumick et al. | Aug 2017 | A1 |
20170249130 | Smiljamic et al. | Aug 2017 | A1 |
20170264681 | Apte et al. | Sep 2017 | A1 |
20170272462 | Kraemer et al. | Sep 2017 | A1 |
20170286143 | Wagner et al. | Oct 2017 | A1 |
20170286187 | Chen et al. | Oct 2017 | A1 |
20170308520 | Beahan, Jr. et al. | Oct 2017 | A1 |
20170315163 | Wang et al. | Nov 2017 | A1 |
20170329578 | Iscen | Nov 2017 | A1 |
20170346808 | Anzai et al. | Nov 2017 | A1 |
20170353851 | Gonzalez et al. | Dec 2017 | A1 |
20170364345 | Fontoura et al. | Dec 2017 | A1 |
20170371720 | Basu et al. | Dec 2017 | A1 |
20170371724 | Wagner et al. | Dec 2017 | A1 |
20170372142 | Bilobrov | Dec 2017 | A1 |
20180004555 | Ramanathan et al. | Jan 2018 | A1 |
20180004556 | Marriner et al. | Jan 2018 | A1 |
20180004575 | Marriner et al. | Jan 2018 | A1 |
20180046453 | Nair et al. | Feb 2018 | A1 |
20180046482 | Karve et al. | Feb 2018 | A1 |
20180060132 | Maru et al. | Mar 2018 | A1 |
20180060221 | Yim et al. | Mar 2018 | A1 |
20180060318 | Yang et al. | Mar 2018 | A1 |
20180067841 | Mahimkar | Mar 2018 | A1 |
20180081717 | Li | Mar 2018 | A1 |
20180089232 | Spektor et al. | Mar 2018 | A1 |
20180095738 | Dürkop et al. | Apr 2018 | A1 |
20180121245 | Wagner et al. | May 2018 | A1 |
20180121665 | Anderson et al. | May 2018 | A1 |
20180129684 | Wilson et al. | May 2018 | A1 |
20180143865 | Wagner et al. | May 2018 | A1 |
20180150339 | Pan et al. | May 2018 | A1 |
20180192101 | Bilobrov | Jul 2018 | A1 |
20180203717 | Wagner et al. | Jul 2018 | A1 |
20180225096 | Mishra et al. | Aug 2018 | A1 |
20180239636 | Arora et al. | Aug 2018 | A1 |
20180253333 | Gupta | Sep 2018 | A1 |
20180268130 | Ghosh et al. | Sep 2018 | A1 |
20180275987 | Vandeputte | Sep 2018 | A1 |
20180285101 | Yahav et al. | Oct 2018 | A1 |
20180300111 | Bhat et al. | Oct 2018 | A1 |
20180309819 | Thompson | Oct 2018 | A1 |
20180314845 | Anderson et al. | Nov 2018 | A1 |
20180316552 | Subramani Nadar et al. | Nov 2018 | A1 |
20180341504 | Kissell | Nov 2018 | A1 |
20190004866 | Du et al. | Jan 2019 | A1 |
20190028552 | Johnson, II et al. | Jan 2019 | A1 |
20190043231 | Uzgin et al. | Feb 2019 | A1 |
20190050271 | Marriner et al. | Feb 2019 | A1 |
20190072529 | Andrawes et al. | Mar 2019 | A1 |
20190073234 | Wagner et al. | Mar 2019 | A1 |
20190079751 | Foskett et al. | Mar 2019 | A1 |
20190102231 | Wagner | Apr 2019 | A1 |
20190108058 | Wagner et al. | Apr 2019 | A1 |
20190140831 | De Lima Junior et al. | May 2019 | A1 |
20190147085 | Pal et al. | May 2019 | A1 |
20190155629 | Wagner et al. | May 2019 | A1 |
20190171423 | Mishra et al. | Jun 2019 | A1 |
20190171470 | Wagner | Jun 2019 | A1 |
20190179725 | Mital et al. | Jun 2019 | A1 |
20190180036 | Shukla | Jun 2019 | A1 |
20190188288 | Holm et al. | Jun 2019 | A1 |
20190196884 | Wagner | Jun 2019 | A1 |
20190205171 | Brooker et al. | Jul 2019 | A1 |
20190227849 | Wisniewski et al. | Jul 2019 | A1 |
20190235848 | Swiecki et al. | Aug 2019 | A1 |
20190238590 | Talukdar et al. | Aug 2019 | A1 |
20190250937 | Thomas et al. | Aug 2019 | A1 |
20190286475 | Mani | Sep 2019 | A1 |
20190286492 | Gulsvig Wood et al. | Sep 2019 | A1 |
20190303117 | Kocberber et al. | Oct 2019 | A1 |
20190318312 | Foskett et al. | Oct 2019 | A1 |
20190361802 | Li et al. | Nov 2019 | A1 |
20190363885 | Schiavoni et al. | Nov 2019 | A1 |
20190391834 | Mullen et al. | Dec 2019 | A1 |
20190391841 | Mullen et al. | Dec 2019 | A1 |
20200007456 | Greenstein et al. | Jan 2020 | A1 |
20200026527 | Xu et al. | Jan 2020 | A1 |
20200028936 | Gupta et al. | Jan 2020 | A1 |
20200057680 | Marriner et al. | Feb 2020 | A1 |
20200065079 | Kocberber et al. | Feb 2020 | A1 |
20200073770 | Mortimore, Jr. et al. | Mar 2020 | A1 |
20200073987 | Perumala et al. | Mar 2020 | A1 |
20200081745 | Cybulski et al. | Mar 2020 | A1 |
20200104198 | Hussels et al. | Apr 2020 | A1 |
20200104378 | Wagner et al. | Apr 2020 | A1 |
20200110691 | Bryant et al. | Apr 2020 | A1 |
20200120120 | Cybulski | Apr 2020 | A1 |
20200142724 | Wagner et al. | May 2020 | A1 |
20200153897 | Mestery et al. | May 2020 | A1 |
20200167208 | Floes et al. | May 2020 | A1 |
20200192707 | Brooker et al. | Jun 2020 | A1 |
20200213151 | Srivatsan et al. | Jul 2020 | A1 |
20200341799 | Wagner et al. | Oct 2020 | A1 |
20200366587 | White et al. | Nov 2020 | A1 |
20200412707 | Siefker et al. | Dec 2020 | A1 |
20200412720 | Siefker et al. | Dec 2020 | A1 |
20200412825 | Siefker et al. | Dec 2020 | A1 |
20210081233 | Mullen et al. | Mar 2021 | A1 |
Number | Date | Country |
---|---|---|
2975522 | Aug 2016 | CA |
1341238 | Mar 2002 | CN |
101002170 | Jul 2007 | CN |
101345757 | Jan 2009 | CN |
101496005 | Jul 2009 | CN |
2663052 | Nov 2013 | EP |
3201762 | Aug 2017 | EP |
3254434 | Dec 2017 | EP |
3201768 | Dec 2019 | EP |
2002287974 | Oct 2002 | JP |
2006-107599 | Apr 2006 | JP |
2007-538323 | Dec 2007 | JP |
2010-026562 | Feb 2010 | JP |
2011-065243 | Mar 2011 | JP |
2011-233146 | Nov 2011 | JP |
2011257847 | Dec 2011 | JP |
2013-156996 | Aug 2013 | JP |
2014-525624 | Sep 2014 | JP |
2017-534107 | Nov 2017 | JP |
2017-534967 | Nov 2017 | JP |
2018-503896 | Feb 2018 | JP |
2018-512087 | May 2018 | JP |
2018-536213 | Dec 2018 | JP |
10-357850 | Oct 2002 | KR |
WO 2008114454 | Sep 2008 | WO |
WO 2009137567 | Nov 2009 | WO |
WO 2012039834 | Mar 2012 | WO |
WO 2012050772 | Apr 2012 | WO |
WO 2013106257 | Jul 2013 | WO |
WO 2015078394 | Jun 2015 | WO |
WO 2015108539 | Jul 2015 | WO |
WO 2016053950 | Apr 2016 | WO |
WO 2016053968 | Apr 2016 | WO |
WO 2016053973 | Apr 2016 | WO |
WO 2016090292 | Jun 2016 | WO |
WO 2016126731 | Aug 2016 | WO |
WO 2016164633 | Oct 2016 | WO |
WO 2016164638 | Oct 2016 | WO |
WO 2017059248 | Apr 2017 | WO |
WO 2017112526 | Jun 2017 | WO |
WO 2017172440 | Oct 2017 | WO |
WO 2018005829 | Jan 2018 | WO |
WO 2018098443 | May 2018 | WO |
WO 2018098445 | May 2018 | WO |
WO 2020005764 | Jan 2020 | WO |
WO 2020069104 | Apr 2020 | WO |
Entry |
---|
Anonymous: “Docker run reference”, Dec. 7, 2015, XP055350246, Retrieved from the Internet: URL:https://web.archive.org/web/20151207111702/https:/docs.docker.com/engine/reference/run/ [retrieved on Feb. 28, 2017]. |
Adapter Pattern, Wikipedia, https://en.wikipedia.org/w/index.php?title=Adapter_pattern&oldid=654971255, [retrieved May 26, 2016], 6 pages. |
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, Jun. 26, 2016, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 346 pages. |
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, 2019, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 521 pages. |
Balazinska et al., Moirae: History-Enhanced Monitoring, Published: 2007, 12 pages. |
Ben-Yehuda et al., “Deconstructing Amazon EC2 Spot Instance Pricing”, ACM Transactions on Economics and Computation 1.3, 2013, 15 pages. |
Bhadani et al., Performance evaluation of web servers using central load balancing policy over virtual machines on cloud, Jan. 2010, 4 pages. |
Czajkowski, G., and L. Daynes, Multitasking Without Compromise: A Virtual Machine Evolution 47(4a):60-73, ACM SIGPLAN Notices—Supplemental Issue, Apr. 2012. |
Das et al., Adaptive Stream Processing using Dynamic Batch Sizing, 2014, 13 pages. |
Deis, Container, 2014, 1 page. |
Dombrowski, M., et al., Dynamic Monitor Allocation in the Java Virtual Machine, JTRES '13, Oct. 9-11, 2013, pp. 30-37. |
Dynamic HTML, Wikipedia page from date Mar. 27, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150327215418/https://en.wikipedia.org/wiki/Dynamic_HTML, 2015, 6 pages. |
Espadas, J., et al., A Tenant-Based Resource Allocation Model for Scaling Software-as-a-Service Applications Over Cloud Computing Infrastructures, Future Generation Computer Systems, vol. 29, pp. 273-286, 2013. |
Han et al., Lightweight Resource Scaling for Cloud Applications, 2012, 8 pages. |
Hoffman, Auto scaling your website with Amazon Web Services (AWS)—Part 2, Cardinalpath, Sep. 2015, 15 pages. |
Kamga et al., Extended scheduler for efficient frequency scaling in virtualized systems, Jul. 2012, 8 pages. |
Kato, et al. “Web Service Conversion Architecture of the Web Application and Evaluation”; Research Report from Information Processing Society, Apr. 3, 2006 with Machine Translation. |
Kazempour et al., AASH: an asymmetry-aware scheduler for hypervisors, Jul. 2010, 12 pages. |
Kraft et al., 10 performance prediction in consolidated virtualized environments, Mar. 2011, 12 pages. |
Krsul et al., “VMPlants: Providing and Managing Virtual Machine Execution Environments for Grid Computing”, Supercomputing, 2004. Proceedings of the ACM/IEEESC 2004 Conference Pittsburgh, PA, XP010780332, Nov. 6-12, 2004, 12 pages. |
Meng et al., Efficient resource provisioning in compute clouds via VM multiplexing, Jun. 2010, 10 pages. |
Merkel, “Docker: Lightweight Linux Containers for Consistent Development and Deployment”, Linux Journal, vol. 2014 Issue 239, Mar. 2014, XP055171140, 16 pages. |
Monteil, Coupling profile and historical methods to predict execution time of parallel applications. Parallel and Cloud Computing, 2013, <hal-01228236, pp. 81-89. |
Nakajima, J., et al., Optimizing Virtual Machines Using Hybrid Virtualization, SAC '11, Mar. 21-25, 2011, TaiChung, Taiwan, pp. 573-578. |
Qian, H., and D. Medhi, et al., Estimating Optimal Cost of Allocating Virtualized Resources With Dynamic Demand, ITC 2011, Sep. 2011, pp. 320-321. |
Sakamoto, et al. “Platform for Web Services using Proxy Server”; Research Report from Information Processing Society, Mar. 22, 2002, vol. 2002, No. 31. |
Shim (computing), Wikipedia, https://en.wikipedia.org/w/index.php?title+Shim_(computing)&oldid+654971528, [retrieved on May 26, 2016], 2 pages. |
Stack Overflow, Creating a database connection pool, 2009, 4 pages. |
Tan et al., Provisioning for large scale cloud computing services, Jun. 2012, 2 pages. |
Vaghani, S.B., Virtual Machine File System, ACM SIGOPS Operating Systems Review 44(4):57-70, Dec. 2010. |
Vaquero, L., et al., Dynamically Scaling Applications in the cloud, ACM SIGCOMM Computer Communication Review 41(1):45-52, Jan. 2011. |
Wang et al., “Improving utilization through dynamic VM resource allocation in hybrid cloud environment”, Parallel and Distributed V Systems (ICPADS), IEEE, 2014. Retrieved on Feb. 14, 2019, Retrieved from the internet: URL<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7097814, 8 pages. |
Wu et al., HC-Midware: A Middleware to Enable High Performance Communication System Simulation in Heterogeneous Cloud, Association for Computing Machinery, Oct. 20-22, 2017, 10 pages. |
Yamasaki et al. “Model-based resource selection for efficient virtual cluster deployment”, Virtualization Technology in Distributed Computing, ACM, Nov. 2007, pp. 1-7. |
Yue et al., AC 2012-4107: Using Amazon EC2 in Computer and Network Security Lab Exercises: Design, Results, and Analysis, 2012, American Society for Engineering Education 2012. |
Zheng, C., and D. Thain, Integrating Containers into Workflows: A Case Study Using Makeflow, Work Queue, and Docker, VTDC '15, Jun. 15, 2015, Portland, Oregon, pp. 31-38. |
International Search Report and Written Opinion in PCT/US2015/052810 dated Dec. 17, 2015. |
International Preliminary Report on Patentability in PCT/US2015/052810 dated Apr. 4, 2017. |
Extended Search Report in European Application No. 15846932.0 dated May 3, 2018. |
International Search Report and Written Opinion in PCT/US2015/052838 dated Dec. 18, 2015. |
International Preliminary Report on Patentability in PCT/US2015/052838 dated Apr. 4, 2017. |
Extended Search Report in European Application No. 15847202.7 dated Sep. 9, 2018. |
International Search Report and Written Opinion in PCT/US2015/052833 dated Jan. 13, 2016. |
International Preliminary Report on Patentability in PCT/US2015/052833 dated Apr. 4, 2017. |
Extended Search Report in European Application No. 15846542.7 dated Aug. 27, 2018. |
International Search Report and Written Opinion in PCT/US2015/064071 dated Mar. 16, 2016. |
International Preliminary Report on Patentability in PCT/US2015/064071 dated Jun. 6, 2017. |
International Search Report and Written Opinion in PCT/US2016/016211 dated Apr. 13, 2016. |
International Preliminary Report on Patentability in PCT/US2016/016211 dated Aug. 17, 2017. |
International Search Report and Written Opinion in PCT/US2016/026514 dated Jun. 8, 2016. |
International Preliminary Report on Patentability in PCT/US2016/026514 dated Oct. 10, 2017. |
International Search Report and Written Opinion in PCT/US2016/026520 dated Jul. 5, 2016. |
International Preliminary Report on Patentability in PCT/US2016/026520 dated Oct. 10, 2017. |
International Search Report and Written Opinion in PCT/US2016/054774 dated Dec. 16, 2016. |
International Preliminary Report on Patentability in PCT/US2016/054774 dated Apr. 3, 2018. |
International Search Report and Written Opinion in PCT/US2016/066997 dated Mar. 20, 2017. |
International Preliminary Report on Patentability in PCT/US2016/066997 dated Jun. 26, 2018. |
International Search Report and Written Opinion in PCT/US/2017/023564 dated Jun. 6, 2017. |
International Preliminary Report on Patentability in PCT/US/2017/023564 dated Oct. 2, 2018. |
International Search Report and Written Opinion in PCT/US2017/040054 dated Sep. 21, 2017. |
International Preliminary Report on Patentability in PCT/US2017/040054 dated Jan. 1, 2019. |
International Search Report and Written Opinion in PCT/US2017/039514 dated Oct. 10, 2017. |
International Preliminary Report on Patentability in PCT/US2017/039514 dated Jan. 1, 2019. |
CodeChef ADMIN discussion web page, retrieved from https://discuss.codechef.com/t/what-are-the-memory-limit-and-stack-size-on-codechef/14159, 2019. |
CodeChef IDE web page, Code, Compile & Run, retrieved from https://www.codechef.com/ide, 2019. |
http://discuss.codechef.com discussion web page from date Nov. 11, 2012, retrieved using the WayBackMachine, from https://web.archive.org/web/20121111040051/http://discuss.codechef.com/questions/2881 /why-are-simple-java-programs-using-up-so-much-space, 2012. |
https://www.codechef.com code error help page from Jan. 2014, retrieved from https://www.codechef.com/JAN14/status/ERROR,va123, 2014. |
http://www.codechef.com/ide web page from date Apr. 5, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150405045518/http://www.codechef.com/ide, 2015. |
Wikipedia List_of_HTTP status_codes web page, retrieved from https://en.wikipedia.org/wiki/List_of_HTTP status_codes, 2019. |
Wikipedia Recursion web page from date Mar. 26, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150326230100/https://en .wikipedia.org/wiki/Recursion_(computer_science), 2015. |
Wikipedia subroutine web page, retrieved from https://en.wikipedia.org/wiki/Subroutine, 2019. |
Extended European Search Report in application No. 17776325.7 dated Oct. 23, 2019. |
Tange, “GNU Parallel: The Command-Line Power Tool”, vol. 36, No. 1, Jan. 1, 1942, pp. 42-47. |
Wikipedia “API” pages from date Apr. 7, 2015, retrieved using the WayBackMachine from https://web.archive.org/web/20150407191158/https://en .wikipedia.org/wiki/Application_programming_interface. |
Extended Search Report in European Application No. 19199402.9 dated Mar. 6, 2020. |
Office Action in European Application No. 17743108.7 dated Jan. 14, 2020. |
Ha et al., A Concurrent Trace-based Just-In-Time Compiler for Single-threaded JavaScript, utexas.edu (Year: 2009). |
Bebenita et al., “Trace-Based Compilation in Execution Environments without Interpreters,” ACM, Copyright 2010, 10 pages. |
Bryan Liston, “Ad Hoc Big Data Processing Made Simple with Serverless Map Reduce”, Nov. 4, 2016, Amazon Web Services <https :/laws. amazon .com/bl ogs/compute/ad-hoc-big-data-processi ng-made-si mple-with-serverless-mapred uce >. |
Fan et al., Online Optimization of VM Deployment in IaaS Cloud, 2012, 6 pages. |
Huang, Zhe, Danny HK Tsang, and James She. “A virtual machine consolidation framework for mapreduce enabled computing clouds.” 2012 24th International Teletraffic Congress (ITC 24). IEEE, 2012. (Year: 2012). |
Lagar-Cavilla, H. Andres, et al. “Snowflock: Virtual machine cloning as a first-class cloud primitive.” ACM Transactions on Computer Systems (TOCS) 29.1 (2011): 1-45. (Year: 2011). |
Search Query Report from IP.com, performed Dec. 2, 2020. |
Wood, Timothy, et al. “Cloud Net: dynamic pooling of cloud resources by live WAN migration of virtual machines.” ACM Sigplan Notices 46.7 (2011): 121-132. (Year: 2011). |
Zhang et al., VMThunder: Fast Provisioning of Large-Scale Virtual Machine Clusters, IEEE Transactions on Parallel and Distributed Systems, vol. 25, No. 12, Dec. 2014, pp. 3328-3338. |
Office Action in Canadian Application No. 2,962,633 dated May 21, 2020. |
Office Action in Japanese Application No. 2017-516160 dated Jan. 15, 2018. |
Notice of Allowance in Japanese Application No. 2017-516160 dated May 8, 2018. |
Office Action in Canadian Application No. 2,962,631 dated May 19, 2020. |
Office Action in Indian Application No. 201717013356 dated Jan. 22, 2021. |
Office Action in Japanese Application No. 2017-516168 dated Mar. 26, 2018. |
Office Action in Indian Application No. 201717019903 dated May 18, 2020. |
Office Action in Australian Application No. 2016215438 dated Feb. 26, 2018. |
Notice of Allowance in Australian Application No. 2016215438 dated Nov. 19, 2018. |
Office Action in Canadian Application No. 2,975,522 dated Jun. 5, 2018. |
Notice of Allowance in Canadian Application No. 2,975,522 dated Mar. 13, 2020. |
Office Action in Indian Application No. 201717027369 dated May 21, 2020. |
First Examination Report for Indian Application No. 201717034806 dated Jun. 25 ,2020. |
Office Action in European Application No. 16781265.0 dated Jul. 13, 2020. |
Office Action in European Application No. 201817013748 dated Nov. 20, 2020. |
Office Action in European Application No. 17743108.7 dated Dec. 22, 2020. |
International Search Report and Written Opinion dated Oct. 15, 2019 for International Application No. PCT/US2019/039246 in 16 pages. |
International Preliminary Report on Patentability dated Dec. 29, 2020 for International Application No. PCT/US2019/039246 in 8 pages. |
International Search Report for Application No. PCT/US2019/038520 dated Aug. 14, 2019. |
International Preliminary Report on Patentability for Application No. PCT/US2019/038520 dated Dec. 29, 2020. |
International Preliminary Report on Patentability and Written Opinion in PCT/US2019/053123 dated Mar. 23, 2021. |
International Search Report and Written Opinion in PCT/US2019/053123 dated Jan. 7, 2020. |
International Search Report for Application No. PCT/US2019/065365 dated Mar. 19, 2020. |
International Search Report for Application No. PCT/US2020/039996 dated Oct. 8, 2020. |
International Search Report for Application No. PCT/US2020/062060 dated Mar. 5, 2021. |
Number | Date | Country | |
---|---|---|---|
20190384647 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15396155 | Dec 2016 | US |
Child | 16512063 | US | |
Parent | 14562601 | Dec 2014 | US |
Child | 15396155 | US |