The invention is generally related to squeeze bottles, and more particularly to automatic dispensing caps.
The squeezable tube and the squeezable bottle are common containers for products such as creams, lotions, and soaps. The most common devices for opening and closing these squeezable containers are removable caps that are threaded to the container or flip cap dispensing closures. In either case, a two handed effort is required to open the cap before the products can be dispensed and also to close the cap to seal the container. Quite often the cap is not replaced or flipped down, thereby leaving the container unsealed.
To overcome the necessity of a two handed effort to both open and close the containers, a self opening and closing device or automatic dispensing cap is described below.
In one embodiment, an automatic dispensing cap for use with a container includes a body and a retainer cap. The body, which may be connected to the container, includes a protrusion. The retainer cap is connected to the body and includes a chamber and a dispensing aperture. The retainer cap can move relative to the body between a closed position wherein the protrusion is seated in the dispensing aperture to prevent fluid flow through the dispensing aperture, and an open position wherein the protrusion is unseated from the dispensing aperture to allow fluid flow through the dispensing aperture.
The retainer cap may be resiliently biased toward the closed position. The body may further include a sealing lip that is resiliently biased against the retainer cap. The sealing lip acts as a one-way valve to prevent fluid from exiting the chamber and to allow air to enter the chamber. The sealing lip may be a plastic membrane less than approximately 0.5 mm in thickness. The dispensing cap may also include a spring member that resiliently biases the retainer cap toward the closed position. The body may have a plurality of spring members and may be positioned in the interior of the retainer cap with the spring members contacting an inner surface of the retainer cap. The retainer cap may also be rotatable between a locked position where the retainer cap is constrained from moving into the open position, and unlocked position where the retainer cap is not constrained from moving into the open position.
In another embodiment, a valve member for an automatic dispensing cap includes a cylindrical body having a longitudinal axis defining upward and downward directions and a circumferential outer wall having upper and lower edges. The valve also includes a protrusion disposed upwardly along the longitudinal axis. A plurality of openings are disposed radially between the protrusion and the circumferential outer wall and are suitable for the passage of fluid upwardly through the cylindrical body. The valve also includes a plurality of spring members disposed radially outward from the outer circumferential wall and spaced to allow air to pass upwardly between the spring members and along the outer circumferential wall. The valve also includes a circumferential sealing lip having inner and outer surfaces extending upwardly from the upper edge of the wall, the lip sufficiently flexible to bend radially inward as a result of a difference in air pressure between inner and outer surfaces thereof.
In another embodiment, the automatic dispensing cap may include the aforementioned valve member in conjunction with a retaining cap that has an upper surface with an aperture sized and positioned to receive the protrusion and an annular outer wall with an inner surface positioned around the cylindrical body such that the circumferential sealing lip presses against the inner surface forming a one-way seal that prevents fluid from exiting the cap but permits air to enter the cap. The inner surface of the outer wall of the retaining cap also engages the spring members to resiliently bias the retaining cap against the valve member such that the protrusion is seated in the aperture.
The retaining cap may be responsive to upward pressure on its upper surface such that when the cap is attached to a squeeze bottle, squeezing the bottle results in sufficient pressure to move the retaining cap against the resilient bias of the spring members and unseat the protrusion, allowing product to dispense through the aperture.
In another embodiment, an automatic dispensing cap for use with a container includes a body connected to the container and a retainer cap connected the body. A pressure chamber within the retainer cap is in fluid communication with the interior of the container. A dispensing hole exits the pressure chamber. The dispensing cap has a closed position where a protrusion seals the dispensing hole and an open position where the dispensing hole is open. A spring member biases the automatic dispensing cap in the closed position. A sealing lip is configured to contact the interior surface of the retainer cap, the sealing lip further configured to permit air to enter the pressure chamber in order to vent the container.
In another embodiment, a squeeze container include the aforementioned dispensing cap and a resiliently deformable container having liquid therein. The container is coupled to the automatic dispensing cap such that squeezing the container results in the automatic dispensing cap moving from a closed position to an open position. Liquid then dispenses from the container through the dispensing hole, the automatic dispensing cap moves back from an open position to a closed position, and air vents past the sealing lip into the container.
To operate the automatic dispensing cap, the consumer squeezes the container until the desired amount of product has been dispensed. When the squeezing ceases the consumer merely wipes off the flush surface of the automatic dispensing cap with a finger or washcloth. In some cases, an automatic dispensing cap, having a side outlet dispensing spout is used, which dispenses the product directly into the consumers hand or in some cases an automatic dispensing cap with a nozzle to dispense a product on a surface can be used.
There are two types of automatic dispensing caps, vented and non-vented. The non-vented automatic dispensing cap is used with tubes that remain collapsed and do not revert back to their original shape after being squeezed. It can operate under severe moisture conditions, such as in a shower, without inhaling or sucking in ambient moisture or other matter that may contaminate or dilute the product remaining in the container. In addition to shower use, an automatic dispensing cap having a floatation collar incorporated for bathtub use, allows the consumer to have one or more floating tubes of soap, body lotion, shampoo, etc. at the tip of their fingers while in the bathtub, whirlpool tub, or hot tub.
The vented automatic dispensing cap is used with squeezable containers or bottles that revert back to their original shape after squeezing. These types of containers require a closure that will permit atmospheric pressure to introduce air into the container to replace the product that was removed during dispensing.
There are two orientations of vented automatic dispensing caps. The first orientation requires that the bottle be stored and/or operated in the inverted position with the cap down, this allows fluid like products to flow to the automatic dispensing cap for dispensing, also referred to herein as class 1 caps. Existing closures that have a self-opening and self-closing feature also have this requirement. The second orientation of vented automatic dispensing cap is an important departure from this requirement. It is designed to dispense the product with the container stored and operated in the upright position with the cap up, also referred to herein as class 2 caps. In some cases the upright, vented automatic dispensing cap can be used in place of a counter top pump type dispenser, especially if it has a side outlet dispensing spout.
At certain times, it is desirable to disable the dispensing mechanism of the automatic dispensing cap. For this purpose the automatic dispensing cap is provided with a disabled or locked position that prevents the product from being dispensed when the container is squeezed.
The non-vented automatic dispensing cap is generally formed of a body, a two diameter piston having a hollow rod and an integral valve, a coil spring and a retainer cap. The body is threadably secured to a squeezable tube and has a hole in which the smaller diameter of the piston operates. The retainer cap is threaded to the body, which forms a cylinder in which the large diameter of the piston operates. The coil spring operates between the lower side of the large diameter of the piston and the body and biases the piston toward the retainer cap, which has a dispensing hole in which the integral piston valve is seated. The portion of the cylinder between the top of the large diameter of the piston and the retainer cap is referred to as the pressure chamber. The portion of the cylinder between the lower side of larger diameter of the piston and the body is vented to atmosphere.
When the tube is squeezed, the product is forced through the hollow rod of the piston into the pressure chamber. The product pressure will cause the piston to compress the spring and move the valve away from the dispensing hole in the retainer cap, thus allowing the product to be dispensed. When the container is released, the product pressure drops and the spring returns the piston and integral valve to the sealing position preventing any air or foreign matter from entering. Since there is no venting of the tube, the tube volume will be reduced by the amount of the product dispensed, this causes the tube to collapse. It will continue to collapse with each dispensing cycle.
The class 1 (inverted), vented automatic dispensing cap is similar to the non-vented automatic dispensing cap described above with the exception of adding venting holes and a shallow venting groove on the pressure side of the large piston face that would port the pressure chamber to the vented area.
In order to maintain pressure in the pressure chamber, a flat donut shaped highly flexible and elastic flapper valve is used. The lower face of flapper valve near the outside diameter is secured to the pressure side of the piston. The lower face of the flapper valve near its inside diameter is seated against and is stretched over a shallow conical shaped portion of the pressure side of the piston, thus sealing the shallow venting groove.
Containers that require venting are made of a resilient material that returns to the original shape or volume prior to squeezing. When the inverted container is squeezed, the product is forced through the hollow rod of the piston into the pressure chamber. Since the flapper valve is stretched over the conical face of the piston thus forming a seal against the piston face, the product cannot enter the vented area under the piston, therefore, the product pressure will cause the piston to compress the spring and move the integral valve away front the dispensing hole in the retainer cap, thus allowing the product to be dispensed.
When the container is released the product pressure drops and the spring returns the piston and valve to the sealing position. As the container tries to return to its original volume, it must make up for the amount of product dispensed. This causes a slight vacuum to occur in the container which in turn will cause atmospheric pressure, present in the vented side of the piston, to enter the venting ports on the face of the large diameter of the piston and unseat the flexible flapper valve, thus allowing air to enter the pressure chamber, flow through the hollow piston rod and into the container, thereby making up the volume lost during dispensing. After the replacement air volume is introduced in the container, the flapper valve reseals the pressure side of the piston.
The class 2 (upright) vented automatic dispensing cap is a variation of the class 1 vented automatic dispensing cap. The class 2 vented automatic dispensing cap moves the flapper valve from the top side of the piston to the container side of the body. The same principle of a highly elastic flat donut shape valve stretched over and sealing against a conical shaped surface applies. The venting in the case brings replacement air directly into the container instead of the pressure chamber. In addition to relocating the flapper valve, a tube is secured to the body and extends to the lower part of the container.
When the container is squeezed, the pressure in the container forces the product through the tube and the hollow rod of the piston into the pressure chamber. The product pressure will cause the piston to compress the spring and move the valve away from the dispensing hole in the retainer cap, thus allowing the product to be dispensed. When the container is released, the product pressure drops and the spring returns the piston and valve to the sealing position. As the container tries to return to its original volume, it must make up for the amount of product dispensed. This causes a slight vacuum to occur in the container. Since the dispensing hole is closed and there is no venting in the pressure chamber, the container will cause atmospheric pressure present in the vented area between the lower side of the piston and the upper face of the body to unseat the flapper valve secured to the container side of the body, thereby allowing replacement air to enter the container directly. Having the air enter the container directly prevents any belching. Belching occurs when air is trapped in the pressure chamber and is expelled during the next dispensing cycle.
To lock out the automatic dispensing feature, the retainer cap is rotated to the locked position. This will move the piston and valve, compressing the spring until the large diameter piston is seated against the body. This will cause the dispensing hole in the retainer cap to be sealed by the valve, and will prevent any product pressure caused by squeezing the container to move the piston and unseat the valve. When the retainer cap is rotated in the opposite direction, a rotation limiter stops the retainer cap at the operating position.
Another group of non-vented automatic dispensing caps, also for use with tubes are formed of two pieces: a body and a cap. The cap is a two diameter cup shaped part, having a dispensing hole, two integral cantilever springs spaced equally and extending from the inside diameter and at the open edge of the walls of the cup. The springs are formed as though they are two partial inside diameter flanges approximately ninety degrees in length and are disconnected from the walls of the cup for most of their length to permit the flanges to flex when a force is applied to the disconnected ends. The springs are molded to be at an angle to the open face of the cup.
The body is threadably secured to a squeezable tube and formed to have a lip seal at the upper end that engages inside the smaller diameter of the cap. The body has an integral valve that engages and seals the dispensing hole in the cap. A port in the end of the body permits the product in the tube to flow into a pressure chamber formed by the inside of the cap and the seal of the body.
Extending from the body are two horizontal lugs spaced equally and two primary vertical lugs spaced equally and at ninety degrees out of phase with the horizontal lugs. Two secondary vertical lugs are adjacent to the primary vertical lugs. The body also has a flange used to tighten it onto the thread of the tube. The horizontal lugs have an angled end, a stepped and notched portion followed by an angled surface. The primary vertical lugs have a rectangular outer surface. The secondary vertical lugs have a rectangular outer surface and are somewhat shorter than the primary vertical lugs.
When the cap is initially assembled to the body, it is first aligned so the spring portion falls between the vertical and horizontal lugs of the body, then it is advanced onto the body and rotated until the attached ends of the cantilever springs on the cap engage the bottom of the primary vertical lugs of the body. The automatic dispensing cap will then be in the locked or disabled position with the valve of the body sealing the dispensing hole in the cap. The rotation will also cause the detached ends of the cantilever springs to be deflected becoming engaged with the horizontal lugs. The ends of the cantilever springs will be in contact with the angled portion of the horizontal lugs, which provide some resistance to rotating the cap from the locked position.
To dispense the product in the tube, the consumer sets the automatic dispensing cap to the automatic dispensing position by reversing the rotation of the cap until it reaches a positive stop. At this point the cantilever springs will still be engaged with the horizontal lugs and limited from further rotation by the ends of the cantilever springs being against the stepped portion of the horizontal lugs. Slightly raised bumps on the ends of the cantilever springs are seated in the notches of the horizontal lugs to prevent accidental rotation of the cap from the automatic dispensing position. With the cap in the automatic dispensing position the force from the cantilever springs of the cap on the horizontal lugs of the body will provide sufficient force on the dispensing hole in the cap on the valve of the body to seal the dispensing hole in the cap. The secondary vertical lugs will contact the attached ends of the cantilever springs to prevent any excess strain that might cause the springs to fail if an accidental separating force is applied to the cap when in the automatic dispensing position.
When the tube is squeezed with the automatic dispensing cap in the automatic dispensing position, the product is forced through the port in the body to the pressure chamber. The product pressure will cause the cap to move away from the body, which will deflect the cantilever springs and move the dispensing hole away from the valve thus allowing the product to be dispensed.
When the tube is released, the product pressure drops and the cantilever springs return the cap so that the dispensing hole in the cap is sealed by the valve of the body. Since a positive pressure in the pressure chamber exists, both before the cap moves during dispensing and for a short time after the cap is sealed, when the tube is released, there is no opportunity for air, foreign matter or water to enter the automatic dispensing cap during dispensing. This makes it an ideal device to use in the shower or even in the bathtub. It can operate under water with no product contamination. Since there is no venting of the tube, the tube volume will be reduced by the amount of product dispensed. This causes the tube to collapse. It will continue to collapse with each dispensing cycle.
The class 1, or inverted, vented automatic dispensing cap is similar to the non-vented automatic dispensing cap described above with the exception of adding a side entry venting port connected to a groove on the bottle side of the body, just above the bottle neck. The port allows replacement air to enter directly into the bottle.
In order to pressurize the bottle and pressure chamber when the bottle is squeezed, a flat donut shaped highly flexible and elastic flapper valve is used to seal the venting groove. The outside diameter of the flapper valve is retained by and sealed against the bottle side of the body by a combination valve retainer and bottle seal. The upper face of the flapper valve near its inside diameter is seated against and is stretched over a shallow conical shaped portion of the container side of the body, thus sealing the shallow groove.
Bottles that require venting are made of a resilient material that returns to the original shape or volume prior to squeezing. When the inverted bottle is squeezed, the product is forced through the port of the body and into the pressure chamber. Since the flapper valve is sealed against the body, the product cannot enter the venting groove of the body, therefore, the product pressure will cause the cap to move way front the body which will deflect the cantilever springs and move the dispensing hole away from the valve, thus allowing the product to be dispensed.
When the bottle is released, the product pressure drops and the cantilever springs return the cap to its original position so the dispensing hole in the cap is sealed by the valve of the body. As the bottle attempts to return to its original volume it must make up for the amount of product dispensed. This causes a slight vacuum to occur in the bottle. Since the dispensing hole is sealed, and there is no venting in the pressure chamber, the vacuum in the bottle will cause atmospheric pressure present on the vented side of the body to enter the venting port and groove and unseat the flapper valve secured to the bottle side of the body, thereby allowing replacement air to enter the container directly. After the replacement air is introduced in the bottle, the flapper valve reseals the pressure side of the body.
The class 2 (upright) vented automatic dispensing cap is identical to the class 1 (inverted) vented automatic dispensing cap with the exception of adding a pressure tube that is secured into the port on the bottle side of the body and extends to the lower part of the bottle. When the upright bottle is squeezed, the pressure in the bottle forces the product through the tube and the port in the body and into the pressure chamber. All functions relating to the dispensing cycle and the introduction of replacement air back into the bottle are the same as the class 1, vented automatic dispensing cap. Belching is prevented because the replacement air must come directly into the bottle as previously described and cannot enter the pressure chamber because the tube isolates the pressure chamber from the air in the bottle.
Several variations of the above are described in the following text and drawings. They include a nozzle type retainer cap for applying product to a specific area, a non-vented automatic dispensing cap having a flotation collar that causes the tube to float when used in a bath tub for such products as soap, shampoo and body lotion, and a side outlet dispensing spout for use when the automatic dispensing cap can be operated with the container in the vertical or near vertical position such as the non-vented automatic dispensing cap or the class 2, vented automatic dispensing cap.
Now turning to the Drawings,
When tube 5 is squeezed, a pressure develops causing the product in tube 5 to flow through port 7 of piston 2 into pressure chamber 9 formed by piston 2 and retainer cap 1. As the pressure increases on piston 2 in chamber 9, the preset biasing force of coil spring 3 is exceeded, causing piston 2 and valve 6 to move away from the position that seals dispensing hole 8, thus allowing the product to flow through dispensing hole 8 until the squeezing action on tube 5 ceases.
When the squeezing action ceases, the pressure will drop and the force from coil spring 3 will cause piston 2 and valve 6 to return to the sealing position. As this occurs, any product at dispensing hole 8 will be expelled as valve 6 seals hole 8, therefore preventing any opportunity for ambient material or air to enter hole 8. After the squeezing action ceases, the consumer merely wipes the product from the flat surface of retainer cap 1 and the nearly flush surface of valve 6.
To return the automatic dispensing cap to the operating position, as shown in
The operation of the automatic dispensing cap 4 is identical to the operation of the automatic dispensing cap in
The automatic dispensing cap in
The operation of the automatic dispensing cap in
Generally the class 1 (inverted), vented automatic dispensing cap is used with a squeezable bottle that is stored in the inverted position. When the inverted bottle 59 is squeezed, a pressure develops causing the product in bottle 59 to flow through port 52 of piston 47 into pressure chamber 54 formed by piston 47 and retainer cap 45. As the pressure increases on piston 47 in chamber 54, the preset biasing force of coil spring 49 is exceeded, causing piston 47 and valve 51 to move away from the position that seals dispensing hole 56, thus allowing the product to flow through dispensing hole 56 until the squeezing action on bottle 59 ceases.
When the squeezing action ceases on bottle 59, the pressure will drop and the force from coil spring 49 will cause piston 47 and valve 51 to return to a position that seals hole 56. After the squeezing action ceases, the consumer merely wipes the product from the flat surface of retainer cap 48 and the nearly flush surface of valve 51. Since the vented automatic dispensing cap is generally used with a bottle that is stored with the cap down, a shallow concave surface for retainer cap 45 may benefit the stability for storing and provide a slight clearance at dispensing hole 56. As bottle 59 tries to return to its original volume it must make up for the amount of product dispensed. This causes a vacuum to occur in container 59 and in chamber 54, which in turn will cause atmospheric pressure present in the vented side of piston 47 by means of vent hole 53 in body 46 to enter venting port 57 and shallow venting groove 58 of piston 47 and unseat flapper valve 48 as shown in
The class 2 (upright), vented automatic dispensing cap is used with a squeezable bottle that is stored in the upright position. When the upright bottle 78 is squeezed, a pressure develops causing the product in bottle 78 to flow through tube 85 and port 82 of piston 73 into pressure chamber 71 formed by piston 73 and retainer cap 70. As the pressure increases on piston 73 in chamber 71, the preset biasing force of coil spring 79 is exceeded, causing piston 73 and valve 72 to move away from the position that seals dispensing hole 81, thus allowing the product to flow through dispensing hole 81 until the squeezing action on bottle 78 ceases.
When the squeezing action ceases on bottle 78, the pressure will drop and the force from coil spring 79 will cause piston 73 and valve 72 to return to a position that seals hole 81. After the squeezing ceases, the consumer merely wipes the product from the flat surface of retainer cap 70 and nearly flush surface of valve 72.
As bottle 78 tries to return to its original volume, it must make up for the amount of product dispensed. This causes a vacuum to occur in container 78, which in turn will cause atmospheric pressure present in chamber 74 to enter venting hole 84 and shallow venting groove 80 of body 75 and unseat flapper valve 77, as shown in
The class 2 (upright), vented automatic dispensing cap shown in
When the upright bottle 78 is squeezed, the product will flow through dispensing hole 92 as described previously for class 2 (upright), vented automatic dispensing cap shown in
A side outlet retainer similar to the one shown in
After cap 101 is assembled to body 102 and rotated to the locked position of
To set the automatic dispensing cap to the automatic dispensing positioning,
The engagement of knob 113 in notch 114 provides a detent to prevent cap 101 from accidentally being rotated from the automatic dispensing position. With the automatic dispensing cap in the auto position, secondary vertical lugs 111 will limit the vertical travel of cap 101 contacting area 110 of cantilever spring 109 if an accidental separating force is applied to cap 101.
When tube 103 is squeezed, while the automatic dispensing cap is in the automatic dispensing position, a pressure develops causing the product in tube 103 to flow through port 117 into pressure chamber 116. As the pressure increases on cap 101 in pressure chamber 116, the biasing force of cantilever springs 109 is exceeded, causing cap 101 to move away from the position that seals dispensing hole 104 with valve 106,
When the squeezing ceases, the pressure will drop and the force from cantilever springs 109 will cause valve 106 to return into dispensing hole 104 of cap 101. As this occurs, any product at dispensing hole 104 will be expelled as valve 106 seals dispensing hole 104, therefore, preventing any opportunity for ambient material or air to enter hole 104. After squeezing action ceases, the consumer merely wipes the product from the flat surface of cap 101 and the flush surface of valve 106.
When the squeezing ceases, the pressure will drop and the force from cantilever springs 109 will cause valve 106 to return into dispensing hole 104 of cap 101. As this occurs, any product at dispensing hole 104 will be expelled as valve 106 seals dispensing hole 104, therefore, preventing any opportunity for ambient material or air to enter hole 104. After squeezing action ceases, the consumer merely wipes the product from the flat surface of cap 101 and the flush surface of valve 106.
It should also be noted that the elements and function shown in
Generally the Class 1 vented automatic dispensing cap is used with a squeezable bottle that is stored in the inverted position. When the inverted bottle 124 with the automatic dispensing cap in the automatic dispensing position (
When the squeezing action ceases, the pressure drops and the force from cantilever springs 135 will cause cap 120 to return dispensing hole 130 to seal against valve 128. As this occurs, any product at dispensing hole 130 will be expelled as valve 128 seals dispensing hole 130. At this point, the consumer merely wipes off the product from the flat surface of cap 120.
As bottle 124 tries to return to its original volume to make up for the amount of product dispensed, a vacuum occurs in container 124, which in turn causes atmospheric pressure to enter venting port 125 and venting groove 131 of body 121 and unseat flapper valve 126 as shown in
The class 2 (upright) vented automatic dispensing cap is shown in
When upright bottle 124 is squeezed with the automatic dispensing cap in the automatic dispensing position, the pressure in bottle 124 forces the product through tube 140 and port 133 into pressure chamber 134. All functions relating to the dispensing cycle and the introduction of replacement air back into bottle 124 are the same as the class 1 automatic dispensing cap described above and shown in
The class 2 vented automatic dispensing cap shown in
When the upright bottle 124 is squeezed, the product will flow through dispensing hole 142 as described previously for class 2 vented automatic dispensing cap shown in
The automatic dispensing cap in
The valve that is integral with the piston or body can be configured to suit the application. The drawings disclose a flat face seal, a spherical faced seal and a tapered seal.
The dispensing cap 200 is removably secured to the neck 240 of the squeeze bottle 250, which includes a set of locking threads 242 around its outside surface which interface with the retaining cap 202, as further described below, and an upper lip 244 upon which the body 220 rests, as further described and shown. The primary design constraints of the bottle neck 240 are that it form a suitable component of the squeeze bottle 250, and that the placement of the locking threads 242 are the correct distance from the upper lip 244 to correctly limit the motion of the retaining cap 202 relative to the body 220 as shown.
As shown in
From the exterior of the body 220 protrudes a plurality of cantilever spring members 224. Surrounding the body 220 in the assembled configuration is the retaining cap 202, which includes an internal lip 204 positioned to interface with the spring members 224. The spring members 224 bias the retaining cap 202 downward onto the body 220. The retaining cap 202 includes a central aperture 206, and the body includes a valve member 226 which is sized to fit the central aperture 206 and create a seal therebetween. When the dispensing cap 200 is in the closed position, as illustrated by
The relative dimensions of the body 220 and the retaining cap 202 are important for proper operation of the dispensing cap 200, particularly the configuration of the springs 224 for providing an appropriate biasing force. In one exemplary embodiment, the springs 224 may each be a plastic spring member of approximately 0.25 mm thickness and approximately 1.25 mm in length to provide the appropriate strength and flexibility to perform as necessary.
The body 220 further includes a flexible annular lip seal 228 which presses against the internal surface of the cap 202 as shown in
In
In another embodiment, shown in
While dispensing cap 200 has been shown and described herein as interfacing directly with a neck 240 integral with the squeeze bottle 250, it will be appreciated that a separate bottle neck adapter 240′, shown in
It should be noted that all configurations of the automatic dispensing cap could alternatively use either the coil spring or the leaf spring design and the associated locking arrangement shown and described above. It should also be noted that a class 2 vented automatic dispensing cap could be used as a class 1 (inverted), vented automatic dispensing cap by eliminating tube 85.
A resilient material such as plastic may be used to create the automatic dispensing cap. The material selected preferably has the necessary stress relaxation times and rates to perform as described herein.
Many features have been listed with particular configurations, options, and embodiments. Any one or more of the features described may be added to or combined with any of the other embodiments or other standard devices to create alternate combinations and embodiments.
Although the examples given include many specificities, they are intended as illustrative of only one possible embodiment of the invention. Other embodiments and modifications will be apparent to those skilled in the art. Thus, the examples given should only be interpreted as illustrations of some of the preferred embodiments of the invention, and the full scope of the invention should be determined by the appended claims and their legal equivalents.
This application is a Continuation-in-Part of U.S. patent application Ser. No. 12/800,965, filed May 25, 2010, which is a Continuation of U.S. patent application Ser. No. 11/220,760, filed Sep. 6, 2005 and issued May 25, 2010 as U.S. Pat. No. 7,721,918, which is a Continuation of U.S. patent application Ser. No. 10/856,337, filed May 28, 2004 and issued Sep. 6, 2005 as U.S. Pat. No. 6,938,800, which claims priority to U.S. Provisional Application Nos. 60/474,079 and 60/473,991, filed on May 28, 2003. Each of these applications is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60474079 | May 2003 | US | |
60473991 | May 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11220760 | Sep 2005 | US |
Child | 12800965 | US | |
Parent | 10856337 | May 2004 | US |
Child | 11220760 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12800965 | May 2010 | US |
Child | 13325150 | US |