FIELD OF THE INVENTION
The present invention relates to an automatic distributor, and more particularly, to an automatic distributor configured to place different electronic components at different positions.
BACKGROUND
Generally, an electronic apparatus, for example, an electrical connector, a fiber optic connector, a relay or the like, comprises a great number of components such as a case, a contact, a spring, a bolt, an insulation block, and other components known to those with ordinary skill in the art. During manufacturing of such an electronic apparatus, the components must be prepared with different shapes and different functions in advance; these components are then selected manually or by a robot according to a preset program and are assembled into the electronic apparatus on a worktable by the robot.
SUMMARY
An object of the invention, among others, is to provide a more efficiently automated component distributor. The automatic distributor comprises a base, a storage device mounted on the base to store a plurality of components with different shapes thereon, a recognition device configured to recognize the components stored on the storage device, and a pickup device configured to pick up the components based on a recognition result of the recognition device.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described by way of example with reference to the accompanying figures, of which:
FIG. 1 is a perspective view of an automatic distributor according to the present invention;
FIG. 2 is a perspective view of the automatic distributor of FIG. 1;
FIG. 3 is a perspective view of the automatic distributor of FIG. 1;
FIG. 4 is an enlarged perspective view of the automatic distributor of FIG. 1;
FIG. 5 is a perspective view of a first transmission device and a storage device of the automatic distributor of FIG. 1;
FIG. 6 is a perspective view of the first transmission device and the storage device of FIG. 5;
FIG. 7 is a perspective view of the first transmission device of FIG. 5;
FIG. 8 is a sectional view of a second support seat and a conveyer belt assembly of the first transmission device of FIG. 5;
FIG. 9 is a sectional view of the second support seat and the conveyer belt assembly of FIG. 8;
FIG. 10 is a perspective view of a loading device of the automatic distributor of FIG. 1;
FIG. 11 is a perspective view of a robot of the automatic distributor of FIG. 1;
FIG. 12 is a perspective view of a second transmission device of the automatic distributor of FIG. 1; and
FIG. 13 is a perspective view of a storage tray of the automatic distributor of FIG. 1.
DETAILED DESCRIPTION OF THE EMBODIMENT(S)
The invention is explained in greater detail below with reference to embodiments of an automatic distributor. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and still fully convey the scope of the invention to those skilled in the art.
The automatic distributor 100 is shown in FIGS. 1-3. The automatic distributor 100 is configured to distribute a variety of components 200 with different shapes. The automatic distributor 100 comprises a base 1 having, for example, a box shape, a storage device 2, a recognition device 3, and a pickup device 4. The storage device 2 is mounted on the base 1 and configured to store a plurality of components 200. The recognition device 3 is configured to recognize the components 200 stored on the storage device 2, for example, recognize the parameters such as the shape, the size or the weight of the components 200. The pickup device 4 is configured to pick up the recognized components 200 based on a recognition result of the recognition device 3, so as to place the picked components 200 on another preset location.
The components 200, as shown in FIG. 5, are assembled into the electronic apparatus, such as an electrical connector, a fiber optic connector, a relay or the like, in a subsequent operation process. These components 200 may be a case, a contact, a spring, a bolt, an insulation block, a wire and the like mixed together. Different types of components 200 have different shapes, sizes, flexibilities, and functions, as would be understood by one with ordinary skill in the art.
The storage device 2, as shown in FIGS. 4-6, comprises a support tray 21 configured to place the components 200 thereon and a first support seat 22 mounted on the base 1. The support tray 21 is mounted on the first support seat 22. In an embodiment, the support tray 21 has a substantially circular shape, and an axis of the support tray 21 is perpendicular to a horizontal plane. As would be understood by one with ordinary skill in the art, the support tray 21 is not limited to a circular shape, and may alternatively have an oval shape, a square shape, a rectangle shape or any other polygon shape, and the support tray 21 may be configured to be unable to rotate.
The storage device 2 further comprises a first motor 27 mounted on the first support seat 22. The first motor 27 is configured to drive the support tray 21 to rotate. A plurality of division plates 26 extending in a radial direction are provided on the support tray 21, so as to divide the support tray 21 into a plurality of storage sections, for example, four storage sections, having a substantially fanlike shape. In this way, one of the storage sections may be used to receive components in a position, and after being rotated by a predetermined angle, for example, 90 degrees, the recognition device 3 recognizes the components, and the pickup device 4 picks up the recognized components.
As shown in FIG. 6, a ring-shaped blocking plate 25 is provided on the periphery of the support tray 21, so as to block the components 200 from falling out from an edge of the support tray 21. A fanlike blocking plate 24 is provided on the support tray 21, the fanlike blocking plate 24 is arranged to block the components 200 from bouncing out of the support tray 21 after the components 200 drops onto the support seat 21. It should be appreciated that the fanlike blocking plate 24 does not cover the storage section which is receiving the components.
The storage device 2, as shown in FIG. 6, further comprises a vibration device 23 mounted on the base 1 under the support tray 21 and configured to vibrate the support tray 21. In another embodiment, the vibration device 23 vibrates the support tray 21. The vibration device 23 comprises a vibration head 231 and an electric excitation mechanism is provided in the vibration device 23. Upon an impulse voltage, the vibration head 231 may be quickly extended or withdrawn, hitting the support tray 21 in the extended state to vibrate the support tray 21, so as to change the posture of the components 200 on the support tray 21, for example, turn over or rotate the components 200 for facilitating the recognition device 3 to recognize the components 200.
The recognition device 3, as shown in FIGS. 1 and 6, comprises a first support frame 31 mounted on the base 1 and a camera 32, for example, a CCD camera, mounted on the first support frame 31 and pointed at one storage section on the support tray 21. The camera 32 captures images of the components 200 stored on the storage device 21. The recognition device 3 further comprises a light source 33 configured to illuminate the components 200 stored on the storage device 21. In an embodiment, the support tray 21 may be made of transparent material, the camera 32 is mounted above the support tray 21, and the light source 33 is mounted below the support tray 21. In this way, it may increase the definition of the components 200, so as to obtain a clear image of the components 200. In an alternative embodiment, the camera 32 may be mounted below the support tray 21, and the light source 33 may be mounted above the support tray 21. In another embodiment, the camera 32 and the light source 33 may be both mounted above or below the support tray 21. The image signal of the components 200 obtained by the camera 32 is transferred to a controller, and the controller analyzes and compares the image signal to recognize a position and a type of a component 200, and controls the pickup device 4 to pick up the recognized component 200.
The automatic distributor 100, as shown in FIGS. 1 and 5-9, may further comprise a first transmission device 6 configured to transmit the components 200 onto the storage device 2. The first transmission device 6 comprises a second support seat 63 mounted on the base 1, a conveyer belt assembly 61 mounted on the second support seat 63 in a longitudinal direction and comprising a receiving end 611 for receiving the components 200 and a releasing end 612 for releasing the components 200, and a second motor 62 mounted on the second support seat 63 and configured to drive a conveyer belt 614 of the conveyer belt assembly 61 to move. In this way, the conveyer belt assembly 61 transmits the components 200 received from the receiving end 611 to the releasing end 612, and drops the components 200 onto the support tray 21. As an alternative to the conveyer belt assembly 61, the first transmission device 65 may have a conveyer guide rail consisting of a plurality of rolling shafts.
The automatic distributor 100, as shown in FIGS. 1-4 and 10, may further comprise a loading device 7 configured to load the components 200 onto the receiving end 611 of the conveyer belt assembly 61. The loading device 7 comprises a rolling drum 71 orientated in a substantially horizontal direction, into which the receiving end 611 of the conveyer belt assembly 61 is inserted in a substantially horizontal direction, a driving device 73 configured to drive the rolling drum 71 to rotate, and at least one scraping plate 72 mounted on an inner wall of the rolling drum 71 in an axial direction.
As shown in FIG. 10, a surface of the scraping plate 72 extends in the radial direction of the rolling drum 71. In another embodiment, a surface of the scraping plate 72 defines an angle with respect to the radial direction of the rolling drum 71. In this way, when the scraping plate 72 is located at the lowest position, the component 200 is located at the lowest position of the rolling drum 71 by gravity. During rotating the rolling drum 71, some of the components are held on the inner wall of the rolling drum 71 under the push of the scraping plate 72 and rotate with the rolling drum 71. After the rolling drum 71 is rotated by a predetermined angle, for example, an angle larger than 90 degrees, the components 200 drop from the scraping plate 72 onto the receiving end 611 of the conveyer belt assembly 61 and are transmitted to the releasing end 612 by the conveyer belt 614 of the conveyer belt assembly 61. With the rotating of the rolling drum 71, the components 200 repeatedly rise and fall in the rolling drum, which may prevent the components 200 from being entangled with each other.
The loading device 7, as shown in FIGS. 1-5 and 10, further comprises an input device 74 communicated with an inner space of the rolling drum 71 at an end of the rolling drum opposite an end of the rolling drum receiving the receiving end 611 of the conveyer belt assembly 61, so as to input the components 200 into the rolling drum 71. The input device 74 comprises a second support frame 741 mounted on the base 1, a funnel portion 742 supported on the second support frame 741 and configured to receive the components 200, and a bending portion 743 located under the funnel portion 742 and communicated with the inner space of the rolling drum 71. In this way, the components 200 input into the funnel portion 742 may slide down and enter the rolling drum 71 through the bending portion 743 by gravity.
The driving device 73, as shown in FIG. 10, comprises a third support seat 731 mounted on the base 1, a third motor mounted on the third support seat 731, and a plurality of rolling shafts 732 mounted on the third support seat and rotatably engaged with an outer surface of the rolling drum 71, so as to rotate the rolling drum 71 under the driving of the third motor. During rotating the rolling drum 71, some of the components 200 are raised by the scraping plate 72 and fall down onto the conveyer belt 614 of the conveyer belt assembly 61.
As shown in FIGS. 7-9, an angle of a surface of the conveyer belt assembly 61 with respect to a horizontal plane is adjustable in a lateral direction (the left and right direction in FIGS. 8 and 9) perpendicular to a transmitting direction of the conveyer belt 614. The second support seat 63 comprises at least two arcuate brackets 631 each comprising an arcuate groove 634, a plurality of passageways 633 arranged in an arcuate shape along the periphery of the arcuate groove 634, and a lateral bracket 632 on which the conveyer belt assembly 61 is mounted. Both ends of the lateral bracket 632 are selectively engaged in two passageways of the plurality of passageways 633 by, for example, bolts, so that the lateral bracket 632 moves on a portion of the arcuate groove 634 and has a changeable posture. In order to facilitate the operation, the passageways 633 comprise a slot 635 formed at both sides of the arcuate groove 634.
As shown in FIG. 8, both ends of the lateral bracket 632 are mounted in two slots 635 in the horizontal plane by means of bolts 636, so that the lateral bracket 632 is oriented in the horizontal direction. As shown in FIG. 9, one end (left end) of the lateral bracket 632 is mounted in the slot 635 by a bolt 636, and the other end (right end) of the lateral bracket 632 is mounted in the passageway 633 by a bolt 636, so that the surface of the lateral bracket 632 is oblique with respect to the horizontal plane in the lateral direction perpendicular to the transmitting direction of the conveyer belt 614. It should be appreciated that the posture of the lateral bracket 632 is changeable by mounting the two ends of the lateral bracket 632 in different passageways. In this way, by obliquely mounting the lateral bracket 632, it may prevent the components 200 on the conveyer belt assembly 61 from being stacked on the receiving end 611, and prevent the components 200 from falling outside the rolling drum 71 from the conveyer belt 614 before arriving at the releasing end 612 during transmitting the components 200 by the conveyer belt 614. It may also be possible to adjust the number of the components 200 transmitted from the rolling drum 71 to the storage device 5 by changing the obliquity of the lateral bracket 632. In addition, at least one side of the receiving end 611 of the conveyer belt assembly 61 in a lateral direction is provided with a blocking plate 613, so as to prevent the components 200, falling onto the receiving end 611 from the scraping plate 72, from falling back into the rolling drum 71 due to bouncing.
As shown in FIG. 4, a guide device 64, 65 is provided under the releasing end 612 of the conveyer belt assembly 61, and the guide device is configured to guide the components from the conveyer belt assembly 61 toward the support tray 21 of the storage device 2. The guide device comprises a plurality of support rods 64 pivotally mounted on the second support seat 63 and a guide plate 65 mounted on upper ends of the support rods 64 and obliquely extending from the lower portion of the releasing end 612 to the storage device 2. The guide device 64, 65 guides the components 200 to slide along the guide plate 65 from the releasing end 612 to the storage device 2, decreasing the tendency of the components 200 to fall out of the storage device 2 due to bouncing. In another embodiment, the plurality of support rods 64 comprises at least one telescoping rod 66.
The pickup device 4, as shown in FIGS. 1-3 and 11, is a robot and comprises a plurality of grippers 41-43 adapted to pick up the components 200 with different shapes. In an embodiment, the robot includes may be a four-axis robot, a six-axis robot, or any other type of robot with multiple degrees of freedom. The robot may recognize the images of the components 200 captured by the camera 32 according to a preset program, so as to control the grippers 41-43 to grip the respective components 200. In the embodiment shown in FIG. 11, the gripper 41 has a large sucking disc adapted to grip a contact, the gripper 42 has a small sucking disc adapted to grip a wire, the gripper 42 has a plurality of arms adapted to grip a large component 200, for example, a case of the electrical connector. One or more different types of grippers 41-43 may be mounted on the robot according to actual requirements.
One of the plurality of storage trays 5 is shown in FIG. 13. The storage tray 5 comprises a plurality of holding portions 51-53 configured to hold components 200 with different shapes. In the shown embodiment, the holding portion 51 is configured to hold a contact, the holding portion 52 is configured to hold a connector case, and the holding portion 53 is configured to hold a spring. The holding portion 51-53 is formed with a recess, and the recess is shaped to match with the external contour of the respective component 200, so that the component 200 held in the holding portion 51 does not move or fall out due to vibration. The robot, as the pickup device 4, is further configured to place the picked components 200 on the respective holding portions 51-53 of the storage tray 5 according to a preset program. For example, a group or a plurality of groups of components 200 for assembling one or more electrical connectors are placed on each storage tray 5, so as to assemble these components 200 into the electrical connector in a subsequent operation process.
The automatic distributor 100 further comprises a second transmission device. The second transmission device comprises, as shown in FIG. 12, a fourth support seat 54 mounted on the base 1 and a transmission chain 541 mounted on the fourth support seat 54. The storage tray 5 is placed on the transmission chain 541, and is moved onto a next worktable by the transmission chain 541.
The base 1 is shown in FIGS. 1-3. The base 1 comprises a plurality of wheels 11 mounted on a bottom of the base 1 and a plurality of support legs 12 telescopically mounted on the bottom of the base 1. The storage device 2, the recognition device 3, the pickup device 4, the support tray 5, the first transmission device 6, the second transmission device 54 and the loading device 7 may be all mounted on the base 1. The base 1 may be moved by the wheels 11, so as to move the automatic distributor 100 according to embodiments of the present invention to a predetermined position. When the automatic distributor 100 is moved to the predetermined position, the support legs 12 may be stretched out to suspend the wheels 11, increasing the support strength of the base 1, and preventing the base 1 from being moved. According to actual requirements, it may be possible to mount one or more of the storage device 2, the recognition device 3, the pickup device 4, the support tray 5, the first transmission device 6, the second transmission device 54 and the loading device 7 on the base 1.
Advantageously, the automatic distributor 100 according to the present invention recognizes components 200 to be distributed, picks up the components 200 based on a recognition result, and regularly places the picked components 200 on a storage tray 5, so as to prepare components 200 of an electronic apparatus to be assembled in advance thereby increasing the automation level of manufacturing the electronic apparatus. From the funnel portion 742 to the storage device 2, the above respective devices continuously operate, which avoids causing the automatic distributor 100 to stop due to a lack of initially supplied components 200.