This application claims priority of Taiwanese Application No. 095145981, filed on Dec. 8, 2006.
1. Field of the Invention
This invention relates to an automatic document feeder for electric equipment, and more particularly to an automatic document feeder including an improved blocking mechanism.
2. Description of the Related Art
When the shaft 121 is rotated in a counterclockwise direction shown by the arrow in
The aforesaid conventional automatic document feeder 1 has the following disadvantages:
The object of this invention is to provide an automatic document feeder that can overcome the above-mentioned disadvantages associated with the prior art.
According to an aspect of this invention, an automatic document feeder for electric equipment comprises:
an input tray having a receiving end, a discharge end, and a first path extending from the receiving end to the discharge end;
a driving mechanism including a separating-roller shaft disposed above the input tray and in proximity to the discharge end, and a separating roller sleeved fixedly on the shaft; and
a blocking mechanism including
Since the driven arm is connected to the separating-roller shaft, the blocking mechanism can be assembled and replaced with ease. Furthermore, the space located in the automatic document feeder under the input tray and occupied by the blocking mechanism is reduced.
According to another aspect of this invention, electric equipment comprises:
a base; and
an automatic document feeder disposed on the base and including
These and other features and advantages of this invention will become apparent in the following detailed description of the preferred embodiments of this invention, with reference to the accompanying drawings, in which:
Before the present invention is described in greater detail in connection with the preferred embodiments, it should be noted that similar elements and structures are designated by like reference numerals throughout the entire disclosure.
Referring to
Referring to
The automatic document feeder 400 further includes a second path (II) and a third path (III). The second path (II) is disposed under the input tray 4, and has an inlet end 201 disposed under and in spatial communication with the discharge end 412 of the input tray 4, and an outlet end 202 disposed in proximity to the receiving end 411 of the input tray 4. The third path (III) is disposed under the first path (I) and above the second path (II), and has an inlet end 301 in spatial communication with the outlet end 202 of the second path (II), and an outlet end 302 in spatial communication with an intermediate portion of the second path (II) at a position under the discharge end 412 of the input tray 4. The third path (III) cooperates with the first and second paths (I, II) so as to constitute a document path allowing one of the documents 40 to be moved therealong.
The driving mechanism 5 includes a separating-roller shaft 51 disposed directly above the paper dam 42 between two side plates 43, a pivot shaft 52 disposed in front of the separating-roller shaft 51, and a separating roller 53 sleeved fixedly on the separating-roller shaft 51. A follower roller 54 is disposed pivotally on the paper dam 42, and is aligned with the separating roller 53. A swing arm 55 is sleeved on the pivot shaft 52, and is provided with a pickup roller 56 at a free end thereof for moving one of the documents 40 along the first path (I). The driving mechanism 5 further includes a housing 57 attached to the separating-roller shaft 51 and the pivot shaft 52 and disposed in proximity to and located at the right side of the separating roller 53 and the swing arm 55. The housing 57 is formed with integral first and second pivot pins 571, 572. A gear unit (not shown) is disposed within the housing 57 and the swing arm 55 for transferring rotation from the separating roller 53 to the pickup roller 56. The separating roller 53 cooperates with the follower roller 54 so as to allow only one of the documents 40 to pass therethrough.
The blocking mechanism 6 is disposed in proximity to the discharge end 412 of the input tray 4, and includes two washers 61 sleeved fixedly on the separating-roller shaft 51 and located at the right side of the housing 57, as well as a driven arm 62 and a resilient member 63 that are sleeved on the separating-roller shaft 51 between the washers 61. The resilient member 63 is configured as a coiled compression spring. Alternatively, the resilient member 63 may be configured as a disc spring. The driven arm 62 has a pivot portion 621, a first arm portion 622, and a second arm portion 623. The pivot portion 621 is sleeved on the separating-roller shaft 51, and has two ends abutting respectively against the resilient member 63 and one of the washers 61. The resilient member 63 presses the driven arm 62 against the one of the washers 61 so as to allow co-rotation of the driven arm 62 with the separating-roller shaft 51. The first and second arm portions 622, 623 are connected integrally to and pivotable about the pivot portion 621, and are spaced apart from each other along an axial direction of the separating-roller shaft 51. The first arm portion 622 is longer than the second arm portion 623.
The blocking member 6 further includes a blocking member 64 and a position-limiting member 65 that are disposed pivotally on the housing 57 and that are located at the right side of the housing 57. The first pivot pin 571 of the housing 57 extends through a first pivot hole 641 in the blocking member 64. The blocking member 64 includes a pair of first and second strip portions 642, 643. The second strip portion 643 is heavier than the first strip portion 642. The second strip portion 643 has an inner strip section 644 and an outer strip section 645 that form an angle therebetween. The first strip portion 642 has an inner strip section 646 and an outer strip section 647 that form an angle therebetween. The inner strip sections 644, 646 are interconnected integrally, and form an angle therebetween. The outer strip sections 645, 647 extend respectively from outer ends of the inner strip sections 644, 646. The blocking member 64 is pivotable relative to the input tray 4 between a blocking position shown in
In the case where the blocking member 64 is in the non-blocking position, upon actuation of the electric equipment 200, if a sensor (not shown) detects an absence of the documents 40 from the input tray 4, it will emit a corresponding signal to a controller (not shown). When the controller receives the signal, it drives the separating-roller shaft 51 and, thus, the driven arm 62 to rotate clockwise by a small angle, as shown in
In the case where the blocking member 64 is in the blocking position, upon actuation of the electric equipment 200, if the sensor detects the presence of the documents 40 on the input tray 4, it will emit a corresponding signal to the controller. When the controller receives the signal, it drives the separating-roller shaft 51 and, thus, the driven arm 62 to rotate counterclockwise by a small angle, as shown in
Since the driven arm 62 is connected to the separating-roller shaft 51, and is disposed above the input tray 4, it can be easily assembled and repaired. Furthermore, the total length of the first, second, and third paths (I, II, III) is short. Thus, the object of this invention is achieved.
The modified blocking mechanism 6 includes a driven arm 66 and a blocking member 67. The driven arm 66 has a pivot portion 661 sleeved movably on the separating-roller shaft 51, and an arm portion 662 connected integrally to and pivotable about the pivot portion 661. The blocking member 67 has a pivot shaft portion 671 disposed pivotally on the input tray 4 and in proximity to the discharge end 412 of the input tray 4, a first strip portion 672 extending radially from the pivot shaft portion 671, and a second strip portion 673 extending radially from the pivot shaft 671 away from the first strip portion 672 and disposed under the first strip portion 672. The first and second strip portions 672, 673 form an angle therebetween. The second strip portion 673 is heavier than the first strip portion 672. The blocking member 67 is pivotable relative to the input tray 4 between a blocking position shown in
In the case where the blocking member 67 is in the non-blocking position, upon actuation of the electric equipment, if the sensor detects an absence of the documents 40 from the input tray 4, it emits a corresponding signal to the controller. When the controller receives the signal, it drives the separating-roller shaft 51 and, thus, the driven arm 66 to rotate clockwise by a small angle, as shown in
In the case where the blocking member 67 is in the blocking position, upon actuation of the electric equipment, if the sensor detects the presence of the documents 40 on the input tray 4, it emits a corresponding signal to the controller. When the controller receives the signal, it drives the separating-roller shaft 51 and, thus, the driven arm 66 to rotate counterclockwise by a small angle, as shown in
With this invention thus explained, it is apparent that numerous modifications and variations can be made without departing from the scope and spirit of this invention. It is therefore intended that this invention be limited only as indicated by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
95145981 A | Dec 2006 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4791457 | Shida | Dec 1988 | A |
5289206 | Ishikawa et al. | Feb 1994 | A |
5316285 | Olson et al. | May 1994 | A |
5909872 | Takahashi | Jun 1999 | A |
6168154 | Asahara et al. | Jan 2001 | B1 |
6199855 | Choeng et al. | Mar 2001 | B1 |
6349931 | Kuo et al. | Feb 2002 | B1 |
6390463 | Iwago | May 2002 | B1 |
6598873 | Takisawa et al. | Jul 2003 | B2 |
6651972 | Hsiao et al. | Nov 2003 | B2 |
6893013 | Spitz et al. | May 2005 | B2 |
7048271 | Sheng et al. | May 2006 | B2 |
7255339 | Hung et al. | Aug 2007 | B2 |
7410161 | Yamamoto | Aug 2008 | B2 |
20020020960 | Waragai et al. | Feb 2002 | A1 |
20020030321 | Sugiyama et al. | Mar 2002 | A1 |
20020074711 | Higaki | Jun 2002 | A1 |
20020175462 | Sonoda et al. | Nov 2002 | A1 |
20040188918 | Morimoto et al. | Sep 2004 | A1 |
20040251595 | Sheng et al. | Dec 2004 | A1 |
20070080495 | Tu | Apr 2007 | A1 |
20070158898 | Hung et al. | Jul 2007 | A1 |
20080197560 | Lee et al. | Aug 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080136084 A1 | Jun 2008 | US |