The embodiments described herein relate to a door opening/closing apparatus, which facilitates the easy opening and closing of a door.
Generally, people use their hands to open and close doors. The typical doors that may be opened and closed are car doors, house doors, refrigerator doors, etc. These standard doors require a certain amount of physical strength to open and close them so some elderly and handicapped people may not be able to easily open and close them. In addition, if a person has a lot of groceries it is cumbersome for her to open the doors and hold the groceries at the same time.
There were several patents developed to address the problem of opening and closing the doors, such as U.S. Pat. Nos. 5,988,709 and 5,522,656. The inventions described in these patents enable people to easily use their hands to open and close doors by using gears, cams, springs and mechanical linkage to aid in door movement. However, these inventions were not useful for elderly or handicapped people that could not use their hands to open and close the doors.
Next, there were several U.S. Pat. Nos. 6,270,175 and 4,911,508 developed that did not require the use of hands to open and close doors. Nevertheless, there were still problems with these inventions because they required a user to utilize his feet to open and close the doors, which was not useful to those who could not use their feet.
Further, there was another U.S. Pat. No. 6,230,137 that was developed that did not require the use of hands or feet to open and close the door. However, this invention does not simply and efficiently open and close a door.
Therefore, there is a need for a device that enables a user to effortlessly open and close a door across a surface while expending a minimum amount of energy.
The novel features of the described embodiments are set forth with particularity in the appended claims. These embodiments, both as to their organization and manner of operation, together with further advantages thereof, may be best understood with reference to the following description, taken in connection with the accompanying drawings in which:
Motion detector circuit 219 comprises a passive I/R motion detector that uses a PIR sensor and is configured to send a signal on line 250 to an input of voice recognizer controller 207 once it has been triggered. Its detection range is about 20 feet. Detectors such as this are commonplace within industry and are familiar to those of ordinary skill in the art.
Microphone 205 is an omni-directional electric condenser type microphone that operates on a frequency range of 20 Hz to 16 KHz. It transmits sound signals on line 210 to a microphone input on voice recognizer controller 207. Microphones such as this are commonplace within industry and are familiar to those of ordinary skill in the art.
Motor relay circuit 221 utilizes a DPDT relay to transmit power from DC power line 270 to line 202, which conveys power to gearmotor 201 via drivetrain cable 230. It is activated by outputs from voice recognizer controller 207 on either line 260 or 261. Each line corresponds to opposing current polarities created by motor relay circuit 221, which can either energize gearmotor 201, to run clockwise or counter-clockwise. Relay circuits such as this are commonplace within industry and are familiar to those of ordinary skill in the art.
Clutch relay circuit 223 utilizes a SPST relay to transmit power from DC power line 270 to line 204, which conveys power to cable 230. It is activated by an output from voice recognizer controller 207 on line 263.
DC power supply 218 is a typical internal power supply that converts 120 VAC to 24 VDC. It has sufficient amperage to provide power to gearmotor 201, clutch 203, voice recognizer 207 and other components via DC power line 270. It receives AC power via AC power line 235.
Hall effect sensor 240, which operates as a feedback device, has a switching speed of 10 KHz and is rated for 24 VDC. Once triggered by sensor magnet 502 (see
In one embodiment, there may be five distinct operating states for the automatic door control system. These states include, but are not limited to, a Default state, a Listening state, an Opening state, a Waiting state, and a closing state. Referring to
As a potential user approaches the door (Block 802) and enters the range of the control module assembly's detection device 219, it will send a signal to voice recognizer controller 207 and the automatic door control system will enter the listening state (Block 804). Immediately, the voice recognizer controller 207 will activate blue LED indicator light 236 and begin listening via microphone 205 for a preset voice command for opening the door. Voice recognizer controller 207 will listen and wait a predetermined amount of time for the user to say the preset command (Block 806). If the user fails to speak the preset command within the allotted time (Blocks 808 and 810), the voice recognizer controller 207 will turn off the blue LED 236 and return to the automatic door control system to its default state (Block 800).
If the user does speak the open command within the predetermined amount of time (Blocks 808 and 812), the automatic door control system will enter the opening state, wherein the voice recognizer controller 207 will activate the motor relay circuit 221 and clutch relay circuit 223 (Block 814). Upon activation, these relay circuits will transmit power from DC power supply 218 to drivetrain assembly 115 via drivetrain cable 230 for a preprogrammed amount of time.
Activation of drivetrain assembly 115 causes gearmotor 201 to energize and clutch 203 to engage, driving wheel 311 to spin, pulling the refrigerator door 107 open. As refrigerator door 107 moves from the closed position, hall effect sensor 240 will signal voice recognizer controller 207 that refrigerator door 107 is open. At this point, the blue LED 236 will turn off and yellow LED 237—indicating that the door is open—will turn on.
At the conclusion of a preprogrammed amount of time, control module assembly 111 will switch off power to drivetrain assembly 115 and refrigerator door 107 will come to a stop in a wide-open position. The automatic door control system will then enter the waiting state (Block 816). During the waiting state the user is free to access the refrigerator for as long as the user wishes. If a preprogrammed amount of time elapses without any detection of the presence of a user (Block 818), the automatic door control system will enter the closing state (Block 820), wherein control module assembly 111 will activate drivetrain assembly 115 to operate in a reverse manner by relaying current with a reversed polarity to gearmotor 201 of drivetrain assembly 115, causing the refrigerator door 107 to move towards the closed position. Once refrigerator door 107 reaches the closed position, hall effect sensor 240 will transmit a signal to voice recognizer controller 207 indicating that the door is in the closed position. The control module assembly 111 will then deactivate the drivetrain assembly 115, turn off the yellow led 237 and the automatic door control system will return to its default state.
If the user approaches the refrigerator and chooses to open refrigerator door 107 by hand, the automatic door control system will not activate drivetrain assembly 115 and will immediately skip to the waiting state (Block 816). Again, if the user leaves refrigerator door 107 open for a preprogrammed amount of time, and if motion detector 219 does not detect the presence of a user, control module assembly 111 will activate the drivetrain assembly 115 to close refrigerator door 107 and the automatic door control system will return to its default state (Block 800).
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.
This application is a continuation-in-part of U.S. application Ser. No. 10/722,999 filed Nov. 24, 2003, which, in turn, claims the benefit of U.S. provisional application Ser. No. 60/428,471 filed Nov. 22, 2002.
Number | Date | Country | |
---|---|---|---|
60428471 | Nov 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10722999 | Nov 2003 | US |
Child | 11685320 | Mar 2007 | US |