Automatic fluid flow system with retractable connection

Information

  • Patent Grant
  • 12055249
  • Patent Number
    12,055,249
  • Date Filed
    Monday, July 12, 2021
    3 years ago
  • Date Issued
    Tuesday, August 6, 2024
    4 months ago
Abstract
Embodiments disclosed herein are directed to apparatus and methods for automatic fluid flow system connectors. The system generally includes a load cell interface coupled to a console and a ring connector coupled to a fluid collection system. The ring connector can be releasably engaged with the load cell using a bayonet locking mechanism. One of the ring connector or the load cell can include a plate transitionable along a transverse axis between an engaged position and a disengaged as the ring connector rotates about a transverse axis. The plate can include electrical contacts configured to engage along the transverse axis and mitigate wear and damage to the electrical contacts, extending the usable life of the system.
Description
SUMMARY

Briefly summarized, embodiments disclosed herein are directed to automatic fluid flow system connectors and the like. In order to maintain a high accuracy of fluid flow monitoring, automatic fluid flow systems can determine a change in fluid volume by detecting a change in weight of a fluid collection system, over time. These detection systems rely on precise weight measurements to provide high accuracy of fluid flow in low-flow situations. As such, interface mechanisms configured to engage the fluid collection system with the automatic fluid flow system require a secure fit to ensure the downward forces, or changes thereof, are accurately transferred to the automatic fluid flow system. Further, the interface mechanisms must sustain repeated engagements and disengagements as different fluid collection systems are coupled/uncoupled to the automatic fluid flow system.


Disclosed herein is an automatic fluid flow measuring system including, a load cell having a first electrical contact disposed on a front surface of a plate, and transitionable along a transverse axis between an engaged position and a disengaged position, the transverse axis extending perpendicular to the front surface of the plate, and a ring connector configured to be coupled to a fluid collection system and including a second electrical contact disposed on a rear surface and configured to engage the first electrical contact in the engaged position, the ring connector configured to be releasably coupled to the load cell and transitionable between an unlocked position and a locked position.


In some embodiments, the load cell includes a biasing member configured to bias the plate towards the engaged position. In some embodiments, the ring connector engages the load cell along the transverse axis in the unlocked position and rotates about the transverse axis to the locked position. In some embodiments, one of the plate or the ring connector includes an alignment pin extending therefrom and configured to transition the plate from an engaged position to a disengaged position when the ring connector is coupled with the load cell in the unlocked position. In some embodiments, one of the ring connector or the load cell includes an alignment groove configured to receive the alignment pin in the locked position and to allow the plate to transition from the disengaged position to the engaged position.


In some embodiments, the load cell includes a flange extending radially and defining a first diameter, the ring connector including a recess configured to receive the flange therein. In some embodiments, the ring connector includes a tab extending radially inward from a rim of the recess to define a second diameter less than the first diameter, the flange including a slot configured to receive the tab therethrough in the unlocked position. In some embodiments, the tab is configured to rotate about the transverse axis to engage the flange in the locked position. In some embodiments, the automatic fluid flow measuring system further includes an O-ring extending annularly around one of the first electrical contact or the second electrical contact and configured to engage the ring connector and load cell in a locked position to provide a fluid tight seal therebetween. In some embodiments, the automatic fluid flow measuring system further includes a magnetic locking system configured to releasably couple the ring connector to the load cell.


Also disclosed is a method of measuring a fluid flow including, providing a load cell having a first electrical contact disposed on a plate, transitionable between a disengaged position and an engaged position, and a ring connector coupled to a fluid collection system and including a second electrical contact disposed within a recess, urging the ring connector along a transverse axis until the plate is disposed within the recess, rotating the ring connector about the transverse axis, transitioning the plate from a disengaged position to an engaged position, transferring a force from the ring connector to the load cell, and determining a fluid flow by determining a change in force over time.


In some embodiments, the force is transferred from the ring connector to the load cell along a second axis extending perpendicular to the transverse axis. In some embodiments, the first electrical contact engages the second electrical contact in the engaged position. In some embodiments, the first electrical contact engages the second electrical along the transverse axis. In some embodiments, the recess includes a tab extending radially inward and the load cell includes a flange extending radially outward, the flange including a slot configured to receive with the tab therethrough to allow the flange to be received within the recess along the transverse axis in an unlocked position. In some embodiments, rotating the ring connector engages the tab with the flange to releasably couple the ring connector to the load cell in a locked position. In some embodiments, the method further includes engaging an alignment pin with a surface of one of the recess or the plate to transition the plate from the engaged position to the disengaged position, the alignment pin extending from one of the plate or the recess. In some embodiments, the method further includes aligning the alignment pin with an alignment groove to transition the plate from the disengaged position to the engaged position. In some embodiments, the method further includes a biasing member configured to bias the plate to the engaged position.





DRAWINGS

A more particular description of the present disclosure will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. Example embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1A shows a perspective view of an exemplary automatic fluid flow system including a fluid collection system, in accordance with embodiments disclosed herein.



FIGS. 1B-1C show perspective views of a load cell interface and a ring connector of an exemplary automatic fluid flow system, in accordance with embodiments disclosed herein.



FIG. 2A shows a perspective view of a load cell interface, in accordance with embodiments disclosed herein.



FIG. 2B shows a perspective view of a ring connector, in accordance with embodiments disclosed herein.



FIG. 2C shows a cross-section view of a ring connector and a load cell interface in an uncoupled position, in accordance with embodiments disclosed herein.



FIG. 2D shows a cross-section view of a ring connector coupled to a load cell interface in an unlocked position, in accordance with embodiments disclosed herein.



FIG. 2E shows a cross-section view of a ring connector coupled to a load cell interface in a locked position, in accordance with embodiments disclosed herein.



FIG. 2F shows a cross-section view of a ring connector coupled with a load cell interface in an unlocked position, in accordance with embodiments disclosed herein.



FIG. 2G shows a cross-section view of a ring connector coupled with a load cell interface in a locked position, in accordance with embodiments disclosed herein.





DESCRIPTION

Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.


Terminology


Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.


In the following description, certain terminology is used to describe aspects of the invention. For example, in certain situations, the term “logic” is representative of hardware, firmware or software that is configured to perform one or more functions. As hardware, logic may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a hardware processor (e.g., microprocessor with one or more processor cores, a digital signal processor, a programmable gate array, a microcontroller, an application specific integrated circuit “ASIC,” etc.), a semiconductor memory, or combinatorial elements.


Alternatively, logic may be software, such as executable code in the form of an executable application, an Application Programming Interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. The software may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); or persistent storage such as non-volatile memory (e.g., read-only memory “ROM,” power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code may be stored in persistent storage.


The term “computing device” should be construed as electronics with the data processing capability and/or a capability of connecting to any type of network, such as a public network (e.g., Internet), a private network (e.g., a wireless data telecommunication network, a local area network “LAN”, etc.), or a combination of networks. Examples of a computing device may include, but are not limited or restricted to, the following: a server, an endpoint device (e.g., a laptop, a smartphone, a tablet, a “wearable” device such as a smart watch, augmented or virtual reality viewer, or the like, a desktop computer, a netbook, a medical device, or any general-purpose or special-purpose, user-controlled electronic device), a mainframe, internet server, a router; or the like.


A “message” generally refers to information transmitted in one or more electrical signals that collectively represent electrically stored data in a prescribed format. Each message may be in the form of one or more packets, frames, HTTP-based transmissions, or any other series of bits having the prescribed format.


The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware.


Labels such as “left,” “right,” “upper”, “lower,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. To assist in the description of embodiments described herein, the “top,” “bottom,” “left,” “right,” “front” and “back” directions are in reference to the orientation of the device as shown in FIG. 1A. A vertical axis extends between a top direction and a bottom direction. A lateral axis extends horizontally between a left direction and a right direction, substantially normal to the vertical axis. A transverse axis extends horizontally between a front direction and a back direction, substantially normal to both the vertical and lateral axes. A horizontal plane is defined by the lateral and transverse axes. A median plane is defined by the vertical and transverse axes. A frontal plane is defined by the vertical and lateral axes.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.



FIGS. 1A-1C show details of an exemplary automatic fluid flow measuring system (“system”) 100 including a fluid collection system 150 coupled thereto, in accordance with embodiments disclosed herein. The automatic fluid flow system 100 generally includes a console 110 including a load cell interface (“load cell”) 112 configured to engage a ring connector (“ring”) 120. The ring connector 120 can include a loop 122, peg, hook, or similar structure from which a fluid collection system 150 can be suspended. The fluid collection system 150 can generally include one or more collection containers 154 in fluid communication with a catheter 152 or similar device configured to drain a fluid from a cavity of a patient. Optionally, the console 110 can be supported by a stand 108, or similar structure configured to support the console 110, ring 120, fluid collection system 150, and the like.


In an embodiment, the catheter 152 can be an internal catheter or an external catheter. Exemplary catheters can include external urinary catheter, internal urinary catheter, Foley catheter, balloon catheter, peritoneal catheters, or the like. Exemplary fluids collected can include urine, blood, peritoneal fluid, interstitial fluid, or the like. In an embodiment, the catheter 152 can be a Foley catheter configured to drain a fluid, e.g. urine, from a bladder of a patient.


As shown in FIG. 1B, the load cell interface 112 can be configured to detect a change in vertical movement relative to the console 110. In an embodiment, the load cell interface 112 can be configured to detect a force applied thereto, along an axis extending parallel to a front surface of the load cell 112, or perpendicular to a central transverse axis (x) of the load cell. For example, as shown in FIG. 1C, a ring connector 120 can be coupled to the load cell interface 112 by engaging the load cell 112 along the central transverse axis (x). The ring connector 120 can then be locked to the load cell 112 by rotating the ring connector 120 about the central transverse axis (x). In an embodiment, the ring connector 120 can be rotated between 5° and 360°. In an embodiment, the ring connector 120 can be rotated substantially 180°.


A fluid collection system 150 can then be coupled to the loop 122 of the ring connector 120. A change in fluid volume within the fluid collection system 150, and thereby a change in weight thereof, causes a change in force applied to the load cell interface 112. The change in force can be substantially along a vertical axis, however it will be appreciated that the load cell interface 112 can detect force changes along other axes in three-dimensional space, as well. The change in force applied to the load cell interface 112 can be detected by the console 110 to determine a change in fluid volume within the fluid collection system 150. This information can then be stored, analyzed, displayed, or communicated to one or more external computing devices or networks, e.g. an Electronic Health Record (EHR) system, network, or the like.


In an embodiment, the load cell interface 112 can include a locking mechanism 114 and an electrical contact interface 116. The locking mechanism 114 can be configured to engage a corresponding locking mechanism disposed on the ring connector 120 to secure the ring connector 120 to the load cell interface 112, as described in more detail herein. As noted, the locking mechanism 114 can be a rotational locking mechanism 114 where the ring connector 120 is rotated through a frontal plane by substantially 180° to transition the ring connector between a locked configuration (FIG. 1A) and an unlocked configuration (FIG. 1C).


In an embodiment, the electrical contact interface 116 can be configured to engage a corresponding electrical contact interface 126 disposed on the ring connector 120 to communicatively couple the ring connector 120 to the load cell interface 112 of the console 110. In an embodiment, the ring connector electrical contact interface 126 engages the load cell electrical contact interface 116 in one of the locked configuration or the unlocked configuration.


In an embodiment, the ring connector 120 can include one or more processors, memory, storage logic, communication logic, or the like, configured to store information and communicate with the console 110 by way of the ring connector electrical contact interface 126 and the load cell electrical contact interface 116. For example, the ring connector 120 can store fluid flow information, system information, patient information, or the like. Fluid flow information can include current or historical fluid volume information, fluid flow information (i.e. change in volume over time), combinations thereof or the like. System information can include the make, model, serial number, etc. of the ring connector 120, fluid collection system 150, the console 110, components thereof, or the like. Patient information can include height, weight, blood pressure, etc. of the patient, or similar health record information.


Advantageously, the fluid flow information, system information, patient information, and the like, can be stored to the ring connector 120 and transported with the collection system 150 and patient. The ring connector 120 and collection system 150 assembly can then be coupled to a different console 110, e.g. during transport or console malfunction, and continue to measure fluid flow without losing the historical data, or transferring the data separately. As such, the data remains with the patient and the collection system 150 and is not lost.



FIGS. 2A-2G show embodiments of a load cell interface 212 and a ring connector 220 including a retractable plate locking mechanism 214 configured to releasably engage the ring connector 220 with the load cell 212. The load cell 212 can define a front surface, a rear surface and a side surface extending therebetween. The ring connector 220 can define a front surface, a rear surface and a side surface extending therebetween. To note, while one of the load cell 212 or the ring connector 220 can define a circular shaped front surface or rear surface, it will be appreciated that other closed curve, regular or irregular polygonal shapes are also contemplated including triangular, square, hexagonal, or the like.


In an embodiment, the retractable plate locking mechanism 214 can include a bayonet engagement mechanism having a movable plate 260 transitionable between an unlocked position (FIG. 2D) and a locked position (FIG. 2E). As shown in FIGS. 2A and 2C, the load cell 212 can include a flange 230 extending radially from a central transverse axis (x), substantially parallel to a front surface of the load cell 212, and extending annularly about the front surface of the load cell 212. The flange 230 can define a track 232 extending annularly, between the flange 230 and a body 218 of the load cell 212. The flange 230 can define a first diameter (D1), and the track 232 can define a second diameter (D2) which is less than the first diameter (D1). The flange 230 can include one or more slots 234 extending transversely through the flange 230 and configured to allow access to the track 232, as described in more detail herein.


In an embodiment, the rear surface of the ring connector 220 can include a recess 240 configured to receive the flange 230 therein. The recess 240 can define a diameter that is substantially equal to, or greater than, the first diameter (D1). The recess 240 can further include one or more tabs 242 extending radially inward from a rim of the recess 240. A diametric distance between the inner edge of the tabs 242 can be equal to, or slightly larger than, the second diameter (D2) of the track 232 and can be less than the first diameter (D1). In an embodiment, the tab(s) 242 can align with the slot(s) 234 along a transverse axis to allow the flange 230 to be received within the recess 240 (FIG. 2D). The ring connector 220 can then be rotated about the central transverse axis (x) until the tab 242 engages the flange 230 in a bayonet fit engagement, securing the ring connector 220 to the load cell 212 in a locked position (FIG. 2E).


As such, the load cell 212 includes a male bayonet connection and the ring connector 220 includes a female bayonet connection. It will be appreciated, however, that embodiments can further include the load cell 212 with a female bayonet connection and the ring connector 220 with a male bayonet connection without departing from the spirit of the invention.


In an embodiment, as shown in FIGS. 2C-2G, the load cell 212 includes a retractable plate (“plate”) 260 that is slidably engaged with the load cell 212 along a transverse axis between an engaged position (FIGS. 2C, 2E, 2G) and a disengaged position (FIGS. 2D, 2F). As noted, while embodiments as shown include the load cell 212 having the plate 260 it will be appreciated that embodiments can include the ring connector 220 having the retractable plate 260 without departing from the spirit of the invention.


In an embodiment, the load cell 212 can further include a biasing member 262, e.g. a compression spring or the like, configured to bias the plate 260 towards an engaged position (FIGS. 2C, 2E, 2G). In an embodiment, the load cell 212 can include an electrical contact 116 disposed on the front surface of the plate 260. The plate 260 can further include one or more alignment pins 264 extending from the front surface of the plate 260. The ring connector 220 can include one or more alignment grooves 266 disposed in a rear surface of the ring connector 220, e.g. within the recess 240, and each configured to receive an alignment pin 264 therein. The alignment grooves 266 can further include a chamfered edge to facilitate engagement or disengagement of the alignment pin 264 therefrom.


The alignment grooves 266 can be configured to align with the alignment pins 264 when the ring connector 220 is in the locked position (FIGS. 2E, 2G). Similarly, the alignment grooves 266 can be configured to be misaligned with the alignment pins 264 when the ring connector 220 is in the unlocked position (FIGS. 2D, 2F). In an embodiment, the tab(s) 242 can align with the slot(s) 234 to allow the flange 230 to be received within the recess 240 in an unlocked position. As such, the alignment pins 264, which are misaligned with the alignment grooves 266 in this position, engage with a surface of the ring connector 220, e.g. a surface of the recess 240 and transition the plate 260 from the engaged position (FIG. 2C) to the disengaged position (FIG. 2D). The ring connector 220 can then be rotated about the central transverse axis (x) from the unlocked position (FIGS. 2D, 2F) where the tabs 242 align with the slots 234, to a locked position (FIGS. 2E, 2G) where the tabs 242 engage the flange 230. In the locked position, the alignment pins 264 align with the alignment grooves 266 to allow the biasing member 262 to transition the plate 260 from the disengaged position (FIGS. 2D, 2F) to the engaged position (FIGS. 2E, 2G). This allows the load cell electrical contacts 116 to engage the ring connector electrical contacts 226 along a transverse axis as the ring connector 220 is rotated to the locked position.


In like manner, to disengage the ring connector 220 from the load cell 212, the ring connector 220 can be rotated about the central transverse axis (x) from the locked position (FIGS. 2E, 2G) where the tabs 242 engage the flange 230, to the unlocked position (FIGS. 2D, 2G), where the tabs 242 align with the slots 234. As the ring connector 220 is rotated, the alignment pins 264 disengage the alignment grooves 266 and transition the plate 260 from the engaged position to the disengaged position, disengaging the load cell electrical contacts 116 from the ring connector electrical contacts 126 along the transverse axis. The ring connector 220 can then be uncoupled from the load cell 212 by withdrawing the ring connector 220 along the central transverse axis (x). The biasing member 262 can then reset the plate 260, transitioning the plate 260 to the engaged the position.


Advantageously, the retractable plate locking mechanism 214 prevents the electrical contacts 116, 226 from dragging over each other, i.e. along an axis extending perpendicular to the transverse axis, as the ring connector 220 is rotated between the locked position and the unlocked position. Instead the electrical contacts 116, 226 engage along the transverse axis that extends perpendicular to the front surface of the load cell 212, or the rear surface of the ring connector 220 on which the electrical contacts 116, 226 are disposed. Worded differently, the electrical contacts 116, 226 engage along the transverse axis that extends perpendicular to a direction of rotation and mitigates wear and damage to the electrical contacts 116, 226 extending the usable life of the system 100.


In an embodiment, one of the ring connector 220 or the load cell 212 can include an O-ring 268 or similar grommet extending annularly along an edge of the plate 260 or recess 240 and configured to encircle the electrical contacts 116, 226 when in the locked position. In an embodiment, the O-ring 268 extends annularly along a front surface of the plate 260 and can engage a surface of the recess 240 of the ring connector 220 when in the locked configuration. However, it will be appreciated that other configurations of the O-ring 268 are also contemplated. Advantageously, the O-ring 268 can engage the ring connector 220 and the load cell 212 in the locked position and provide a fluid-tight seal therebetween. This prevents any fluid from accessing the electrical contacts 116, 226, and causing a short-circuit, or similar damage to the system 100.


While embodiments disclosed herein show a retractable plate locking mechanism 214 including a bayonet locking mechanism, it will be appreciated that the retractable plate locking mechanism 214 can include other locking mechanisms configured to secure the ring connector 220 to the load cell 212 without departing from the spirit of the invention. For example, the ring connector 220 can be secured to the load cell 212 by a magnetic system, e.g. permanent magnet, electromagnet, or the like and rotated as described herein to engage or disengage the plate 260. These and similar locking mechanisms are contemplated to fall within the scope of the present invention.


In an exemplary method of use, a load cell 212 and a ring connector 220 including a retractable plate locking mechanism 214 can be provided, as described herein. A user can align the tabs 242 of the ring connector 220 with the slots 234 of the flange 230 and urge the ring connector 220 along a central transverse axis (x) to couple the ring connector 220 with the load cell 212. As the flange 230 is received into the recess 240, the alignment pins 264, which are misaligned with the alignment grooves 266, engage the rear surface of the ring connector 220 and transition the plate 260 from the engaged position to the disengaged position. Advantageously this prevents the load cell electrical contacts 116 from engaging a rear surface of the ring connector 220, recess 240, or the like, and being dragged thereover as the ring connector 220 is rotated. This prevents damage and wear to the load cell electrical contacts 116 prolonging the usable life of the system 100.


The ring connector 220 can then be rotated to a locked position, by rotating the ring connector about the central transverse axis (x) until a tab 242 engages the flange 230 and an alignment pin 264 aligns with an alignment groove 266 allowing the biasing member 262 to transition the plate 260 from the disengaged position to the engaged position. This allows the load cell electrical contacts 116 to engage the ring connector electrical contacts 226 along the transverse axis communicatively coupling the ring connector 220 with the load cell 212.


While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.

Claims
  • 1. An automatic fluid flow measuring system configured to detect a change in weight of a fluid collection system over time, comprising: a load cell extending from a front surface of a console and configured to detect a downward force applied thereto, the load cell including a first electrical contact disposed on a front surface of a plate of the load cell, the plate transitionable relative to the load cell along a transverse axis between an engaged position and a disengaged position, the transverse axis extending perpendicular to the front surface of the plate; anda ring connector configured to be coupled to the fluid collection system and including a second electrical contact disposed on a rear surface and configured to engage the first electrical contact in the engaged position, the ring connector configured to be releasably coupled to the load cell and rotatable between an unlocked position and a locked position.
  • 2. The automatic fluid flow measuring system according to claim 1, wherein the load cell includes a biasing member configured to bias the plate towards the engaged position.
  • 3. The automatic fluid flow measuring system according to claim 1, wherein the ring connector engages the load cell along the transverse axis in the unlocked position and rotates about the transverse axis to the locked position.
  • 4. The automatic fluid flow measuring system according to claim 1, wherein one of the plate or the ring connector includes an alignment pin extending therefrom and configured to transition the plate from the engaged position to the disengaged position when the ring connector is coupled with the load cell in the unlocked position.
  • 5. The automatic fluid flow measuring system according to claim 4, wherein one of the ring connector or the load cell includes an alignment groove configured to receive the alignment pin in the locked position and to allow the plate to transition from the disengaged position to the engaged position.
  • 6. The automatic fluid flow measuring system according to claim 1, wherein the load cell includes a flange extending radially and defining a first diameter, the ring connector including a recess configured to receive the flange therein.
  • 7. The automatic fluid flow measuring system according to claim 6, wherein the ring connector includes a tab extending radially inward from a rim of the recess to define a second diameter less than the first diameter, the flange including a slot configured to receive the tab therethrough in the unlocked position.
  • 8. The automatic fluid flow measuring system according to claim 7, wherein the tab is configured to rotate about the transverse axis to engage the flange in the locked position.
  • 9. The automatic fluid flow measuring system according to claim 1, further including an O-ring extending annularly around one of the first electrical contact or the second electrical contact and configured to engage the ring connector and the load cell in the locked position to provide a fluid tight seal therebetween.
  • 10. The automatic fluid flow measuring system according to claim 1, further including a magnetic locking system configured to releasably couple the ring connector to the load cell.
  • 11. A method of measuring a fluid flow by detecting a change in weight of a fluid collection system, over time, and comprising: providing a load cell configured to detect a downward force applied thereto and including a first electrical contact disposed on a plate of the load cell, the plate transitionable relative to the load cell between a disengaged position and an engaged position, and a ring connector coupled to the fluid collection system and including a second electrical contact disposed within a recess;urging the ring connector along a transverse axis until the plate is disposed within the recess;rotating the ring connector about the transverse axis to engage the load cell;transitioning the plate from the disengaged position to the engaged position;transferring the downward force from the ring connector to the load cell; anddetermining the fluid flow by determining a change in the downward force over time.
  • 12. The method according to claim 11, wherein the downward force is transferred from the ring connector to the load cell along a second axis extending perpendicular to the transverse axis.
  • 13. The method according to claim 11, wherein the first electrical contact engages the second electrical contact in the engaged position.
  • 14. The method according to claim 11, wherein the first electrical contact engages the second electrical contact along the transverse axis.
  • 15. The method according to claim 11, wherein the recess includes a tab extending radially inward and the load cell includes a flange extending radially outward, the flange including a slot configured to receive the tab therethrough to allow the flange to be received within the recess along the transverse axis in an unlocked position.
  • 16. The method according to claim 15, wherein rotating the ring connector engages the tab with the flange to releasably couple the ring connector to the load cell in a locked position.
  • 17. The method according to claim 11, further including engaging an alignment pin with a surface of one of the recess or the plate to transition the plate from the engaged position to the disengaged position, the alignment pin extending from one of the plate or the recess.
  • 18. The method according to claim 17, further including aligning the alignment pin with an alignment groove to transition the plate from the disengaged position to the engaged position.
  • 19. The method according to claim 11, further including a biasing member configured to bias the plate to the engaged position.
PRIORITY

This application claims the benefit of priority to U.S. Provisional Application No. 63/054,694, filed Jul. 21, 2020, which is incorporated by reference in its entirety into this application.

US Referenced Citations (199)
Number Name Date Kind
3661143 Henkin May 1972 A
3781920 Browne et al. Jan 1974 A
3851650 Darling Dec 1974 A
3919455 Sigdell et al. Nov 1975 A
4276889 Kuntz et al. Jul 1981 A
4286590 Murase Sep 1981 A
4291692 Bowman et al. Sep 1981 A
4296749 Pontifex Oct 1981 A
4305405 Meisch Dec 1981 A
4312352 Meisch et al. Jan 1982 A
4343316 Jespersen Aug 1982 A
4443219 Meisch et al. Apr 1984 A
4448207 Parrish May 1984 A
4509366 Matsushita et al. Apr 1985 A
4532936 LeVeen et al. Aug 1985 A
4658834 Blankenship et al. Apr 1987 A
4723950 Lee Feb 1988 A
4834706 Beck et al. May 1989 A
4850375 Rosenberg Jul 1989 A
4889532 Metz et al. Dec 1989 A
5002541 Conkling et al. Mar 1991 A
5409014 Napoli et al. Apr 1995 A
5586085 Lichte Dec 1996 A
5725515 Propp Mar 1998 A
5733319 Neilson et al. Mar 1998 A
5738656 Wagner Apr 1998 A
5747824 Jung et al. May 1998 A
5769087 Westphal et al. Jun 1998 A
5807278 McRae Sep 1998 A
5823972 McRae Oct 1998 A
5891051 Han et al. Apr 1999 A
5911786 Nielsen et al. Jun 1999 A
6129684 Sippel et al. Oct 2000 A
6132407 Genese et al. Oct 2000 A
6250152 Klein et al. Jun 2001 B1
6256532 Cha Jul 2001 B1
6261254 Baron et al. Jul 2001 B1
6434418 Neal et al. Aug 2002 B1
6579247 Abramovitch et al. Jun 2003 B1
6592612 Samson et al. Jul 2003 B1
6709420 Lincoln et al. Mar 2004 B1
6716200 Bracken et al. Apr 2004 B2
7011634 Paasch et al. Mar 2006 B2
7161484 Tsoukalis Jan 2007 B2
7211037 Briggs May 2007 B2
7437945 Feller Oct 2008 B1
7442754 Tepper et al. Oct 2008 B2
7739907 Boiarski Jun 2010 B2
7871385 Levinson Jan 2011 B2
7931630 Nishtala et al. Apr 2011 B2
7976533 Larsson Jul 2011 B2
7998126 Fernandez Aug 2011 B1
8295933 Gerber et al. Oct 2012 B2
8328733 Forte et al. Dec 2012 B2
8328734 Salvadori et al. Dec 2012 B2
8337476 Greenwald et al. Dec 2012 B2
8374688 Libbus et al. Feb 2013 B2
8403884 Nishtala Mar 2013 B2
8471231 Paz Jun 2013 B2
8663128 Paz et al. Mar 2014 B2
8773259 Judy et al. Jul 2014 B2
8790277 Elliott et al. Jul 2014 B2
8790320 Christensen Jul 2014 B2
8790577 Mizumoto et al. Jul 2014 B2
8813551 Boiarski Aug 2014 B2
8827924 Paz et al. Sep 2014 B2
8832558 Cardarelli et al. Sep 2014 B2
8900196 Andino Dec 2014 B2
9045887 O'Malley Jun 2015 B2
9050046 Elliott et al. Jun 2015 B2
9074920 Mendels et al. Jul 2015 B2
9216242 Nishtala et al. Dec 2015 B2
9480821 Ciccone et al. Nov 2016 B2
9592034 Hall et al. Mar 2017 B2
9642987 Bierman et al. May 2017 B2
9731097 Andino et al. Aug 2017 B2
9895095 Chen Feb 2018 B2
9962516 Lampotang et al. May 2018 B2
10182747 Charlez et al. Jan 2019 B2
10245008 Paige Apr 2019 B2
10362981 Paz et al. Jul 2019 B2
10383606 McCord et al. Aug 2019 B1
10448875 Holt et al. Oct 2019 B2
10881778 Scarpaci Jan 2021 B2
11703365 Tourchak Jul 2023 B2
20010056226 Zodnik et al. Dec 2001 A1
20020016719 Nemeth et al. Feb 2002 A1
20020161314 Sarajarvi Oct 2002 A1
20020193760 Thompson Dec 2002 A1
20030000303 Livingston et al. Jan 2003 A1
20030163183 Carson Aug 2003 A1
20030163287 Vock et al. Aug 2003 A1
20040267086 Anstadt et al. Dec 2004 A1
20050020958 Paolini et al. Jan 2005 A1
20050065583 Voorhees et al. Mar 2005 A1
20050172712 Nyce Aug 2005 A1
20050247121 Pelster Nov 2005 A1
20060100743 Townsend et al. May 2006 A1
20070010797 Nishtala et al. Jan 2007 A1
20070145137 Mrowiec Jun 2007 A1
20070252714 Rondoni et al. Nov 2007 A1
20080312556 Dijkman Dec 2008 A1
20090056020 Caminade et al. Mar 2009 A1
20090099629 Carson et al. Apr 2009 A1
20090157430 Rule et al. Jun 2009 A1
20090287170 Otto Nov 2009 A1
20090315684 Sacco et al. Dec 2009 A1
20100094204 Nishtala Apr 2010 A1
20100130949 Garcia May 2010 A1
20100137743 Nishtala et al. Jun 2010 A1
20110113540 Plate et al. May 2011 A1
20110120219 Barlesi et al. May 2011 A1
20110178425 Nishtala et al. Jul 2011 A1
20110224636 Keisic Sep 2011 A1
20110238042 Davis et al. Sep 2011 A1
20110251572 Nishtala et al. Oct 2011 A1
20110263952 Bergman et al. Oct 2011 A1
20120029408 Beaudin Feb 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120078137 Mendels et al. Mar 2012 A1
20120078235 Martin et al. Mar 2012 A1
20120095304 Biondi Apr 2012 A1
20120109008 Charlez et al. May 2012 A1
20120123233 Cohen May 2012 A1
20120127103 Qualey et al. May 2012 A1
20120226196 DiMino et al. Sep 2012 A1
20120234434 Woodruff et al. Sep 2012 A1
20120302917 Fitzgerald et al. Nov 2012 A1
20120323144 Coston et al. Dec 2012 A1
20120323502 Tanoura et al. Dec 2012 A1
20130066166 Burnett et al. Mar 2013 A1
20130109927 Menzel May 2013 A1
20130109928 Menzel May 2013 A1
20130131610 Dewaele et al. May 2013 A1
20130218106 Coston et al. Aug 2013 A1
20130245498 Delaney et al. Sep 2013 A1
20130267871 Delaney et al. Oct 2013 A1
20140039348 Bullington et al. Feb 2014 A1
20140155781 Bullington et al. Jun 2014 A1
20140155782 Bullington et al. Jun 2014 A1
20140159921 Qualey et al. Jun 2014 A1
20140207085 Brandt et al. Jul 2014 A1
20140243635 Arefieg Aug 2014 A1
20140335490 Baarman et al. Nov 2014 A1
20150343173 Tobescu et al. Dec 2015 A1
20150359522 Recht et al. Dec 2015 A1
20150362351 Joshi et al. Dec 2015 A1
20160051176 Ramos et al. Feb 2016 A1
20160183819 Burnett et al. Jun 2016 A1
20170100068 Kostov Apr 2017 A1
20170136209 Burnett et al. May 2017 A1
20170196478 Hunter Jul 2017 A1
20170202698 Zani et al. Jul 2017 A1
20170249445 Devries et al. Aug 2017 A1
20170290540 Franco Oct 2017 A1
20170291012 Iglesias Oct 2017 A1
20170307423 Pahwa et al. Oct 2017 A1
20180015251 Lampotang et al. Jan 2018 A1
20180280236 Ludin et al. Oct 2018 A1
20180344234 Mckinney et al. Dec 2018 A1
20190046102 Kushnir Feb 2019 A1
20190069829 Bulut Mar 2019 A1
20190069830 Holt et al. Mar 2019 A1
20190126006 Rehm et al. May 2019 A1
20190201596 Luxon et al. Jul 2019 A1
20190223844 Aboagye et al. Jul 2019 A1
20190247236 Sides et al. Aug 2019 A1
20190321588 Burnett et al. Oct 2019 A1
20190328945 Analytis et al. Oct 2019 A1
20190358387 Elbadry et al. Nov 2019 A1
20190365308 Laing et al. Dec 2019 A1
20190381223 Culbert et al. Dec 2019 A1
20200022637 Kurzrock et al. Jan 2020 A1
20200085378 Burnett et al. Mar 2020 A1
20200268303 Oliva Aug 2020 A1
20200289749 Odashima et al. Sep 2020 A1
20200405524 Gill Dec 2020 A1
20210077007 Jouret et al. Mar 2021 A1
20210299353 Mannu et al. Sep 2021 A1
20220018692 Tourchak et al. Jan 2022 A1
20220026261 Funnell Jan 2022 A1
20220192564 Kriscovich et al. Jun 2022 A1
20220192565 Cheng et al. Jun 2022 A1
20220192566 Cheng et al. Jun 2022 A1
20220193375 Rehm et al. Jun 2022 A1
20220233120 Beuret et al. Jul 2022 A1
20220296140 Nguyen et al. Sep 2022 A1
20220386917 Mann et al. Dec 2022 A1
20230022547 Cho et al. Jan 2023 A1
20230025333 Patel et al. Jan 2023 A1
20230028966 Franano Jan 2023 A1
20230035669 Raja et al. Feb 2023 A1
20230040915 Compton et al. Feb 2023 A1
20230058553 Fallows et al. Feb 2023 A1
20230060232 Patel et al. Mar 2023 A1
20230084476 Robichaud et al. Mar 2023 A1
20240042120 Cheng et al. Feb 2024 A1
20240081708 Kelly et al. Mar 2024 A1
20240108268 Woodard et al. Apr 2024 A1
Foreign Referenced Citations (49)
Number Date Country
2882654 Oct 2007 CA
2445749 Sep 2001 CN
200951235 Sep 2007 CN
201492414 Jun 2010 CN
102647939 Aug 2012 CN
109498013 Mar 2019 CN
110859636 Mar 2020 CN
112426156 Mar 2021 CN
0342028 Nov 1989 EP
2760470 May 2020 ES
2576743 Mar 2020 GB
S49-75171 Jul 1974 JP
S54-147066 Nov 1979 JP
S58-190719 Nov 1983 JP
S60-219517 Nov 1985 JP
H02-057240 Dec 1990 JP
H08-271301 Oct 1996 JP
H10-104041 Apr 1998 JP
2007-303982 Nov 2007 JP
2008-524618 Jul 2008 JP
2009-068959 Apr 2009 JP
2010-121950 Jun 2010 JP
2010-530978 Sep 2010 JP
2012-105947 Jun 2012 JP
2012-225790 Nov 2012 JP
1981003427 Dec 1981 WO
2004045410 Jun 2004 WO
2013013782 Jan 2013 WO
20130178742 Dec 2013 WO
2014043650 Mar 2014 WO
2014108690 Jul 2014 WO
2014135856 Sep 2014 WO
2014151068 Sep 2014 WO
2014145971 Sep 2014 WO
201511402 Jan 2015 WO
2015105916 Jul 2015 WO
2015127390 Aug 2015 WO
2015191125 Dec 2015 WO
2016177901 Nov 2016 WO
2017023794 Feb 2017 WO
2018156624 Aug 2018 WO
2019066357 Apr 2019 WO
2019226697 Nov 2019 WO
2020033752 Feb 2020 WO
2020154370 Jul 2020 WO
2022108589 May 2022 WO
2022182794 Sep 2022 WO
2023022895 Feb 2023 WO
2023027871 Mar 2023 WO
Non-Patent Literature Citations (46)
Entry
Bard Medical, Criticore Disposables—Non I.C., 3 pages, www.bardmedical.com/products/patienl-moniloring-,ystems/criticore®-system/criticore®-disposables-non-ic/ Jan. 30, 2015.
Bard Medical, Criticore Infection Control Disposables, 3 pages, www.bardmedical.com/patienl-moniloring-,ystems/criticore®-system/criticore®-infection-control-disposables/ Jan. 30, 2015.
Bard Medical, Criticore Monitor, 11 pages, www.bardmedical.com/products/patient-monitoring-systems/criticore®-monitor/ Jan. 30, 2015.
Bard Medical, Urine Meiers, 3 pages, www.bardmedical.com/products/urological-drainage/urine-collection/urinemeters/Jan. 30, 2015.
Biometrix, Urimetrix, 4 pages, www.biometrixmedical.com/Products/56/Urimetrix%E2%84%A2 Oct. 29, 2014.
Observe Medical, sippi, 3 pages, www.observemedical.com/products.html Oct. 29, 2014.
PCT/US19/33389 filed May 21, 2019 International Search Report and Written Opinion dated Aug. 2, 2019.
PCT/US2016/044835 filed Jul. 20, 2016 International Search Report and Written Opinion dated Dec. 16, 2016.
U.S. Appl. No. 17/054,493, filed Nov. 10, 2020 Final Office Action dated May 31, 2022.
U.S. Appl. No. 15/748,107, filed Jan. 26, 2018 Final Office Action dated Dec. 23, 2020.
U.S. Appl. No. 15/748,107, filed Jan. 26, 2018 Final Office Action dated Feb. 7, 2022.
U.S. Appl. No. 15/748,107, filed Jan. 26, 2018 Non-Final Office Action dated Sep. 3, 2021.
U.S. Appl. No. 15/748,107, filed Jan. 26, 2018 Non-Final Office Action dated Sep. 4, 2020.
U.S. Appl. No. 17/054,493, filed Nov. 10, 2020 Non-Final Office Action dated Nov. 24, 2021.
U.S. Appl. No. 15/748,107, filed Jan. 26, 2018 Notice of Allowance dated Dec. 12, 2022.
U.S. Appl. No. 17/054,493, filed Nov. 10, 2020 Non-Final Office Action dated Jan. 27, 2023.
U.S. Appl. No. 17/3026,821, filed May 3, 2021 Non-Final Office Action dated Jan. 10, 2023.
U.S. Appl. No. 17/373,535, filed Jul. 12, 2021 Non-Final Office Action dated Nov. 9, 2022.
U.S. Appl. No. 17/262,080, filed Jan. 21, 2021 Non-Final Office Action dated Apr. 6, 2023.
U.S. Appl. No. 17/373,535, filed Jul. 12, 2021 Notice of Allowance dated Feb. 23. 2023.
U.S. Appl. No. 17/556,907, filed Dec. 20, 2021 Restriction Requirement dated May 12, 2023.
PCT/US2019/045787 filed Aug. 8, 2019 International Preliminary Report on Patentability dated Feb. 16, 2021.
PCT/US2019/045787 filed Aug. 8, 2019 International Search Report and Written Opinion dated Oct. 2, 2019.
DFree Personal—Consumer Product Brochure, 2019.
DFree Pro Brochure 2019.
EP 23188337.2 filed May 21, 2019 Extended European Search Report dated Dec. 4, 2023.
Leonhäuser, D et al., “Evaluation of electrical impedance tomography for determination of urinary bladder volume: comparison with standard ultrasound methods in healthy volunteers.”—BioMed Engr On-line; 17:95; 2018.
Li, R., et al., “Design of a Noninvasive Bladder Urinary Volume Monitoring System Based on Bio-Impedance.”—Engineering; vol. 5; pp. 321-325; 2013.
PCT/US20/61367 filed Nov. 19, 2020 International Search Report and Written Opinion dated Feb. 22, 2021.
PCT/US2019/033389 filed Nov. 26, 2020 Extended European Search Report dated Jun. 4, 2021.
PCT/US2022/017574 filed Feb. 23, 2022 Internation Search Report and Written Opinion dated Jun. 8, 2022.
Reichmuth, M., et al., “A Non-invasive Wearable Bioimpedance System to Wirelessly Monitor Bladder Filling.”—Dep. of Health Sciences and Technology—Department of Information Technology and Electrical Engineering ETH Zurich, Zurich, Switzerland—Conference Paper; Mar. 2020.
Schlebusch, T. et al., “Bladder vol. estimation from electrical impedance tomography” Physiological Measurement, Institute of Physics, Bristol, GB. vol. 35 No. 9 Aug. 20, 2014. (Aug. 20, 2014).
SECA product catalog, https://us.secashop.com/products/seca-mbca/seca-mbca-514/5141321139, last accessed Sep. 11, 2020.
U.S. Appl. No. 17/054,493, filed Nov. 10, 2020 Final Office Action dated Oct. 4, 2023.
U.S. Appl. No. 17/054,493, filed Nov. 10, 2020 Notice of Allowance dated Jan. 4, 2024.
U.S. Appl. No. 17/262,080, filed Jan. 21, 2021 Final Office Action dated Sep. 11, 2023.
U.S. Appl. No. 17/262,080, filed Jan. 21, 2021 Notice of Allowance dated Oct. 13, 2023.
U.S. Appl. No. 17/306,821, filed May 3, 2021 Advisory Action dated Oct. 3, 2023.
U.S. Appl. No. 17/306,821, filed May 3, 2021 Final Office Action dated Jul. 19, 2023.
U.S. Appl. No. 17/556,907, filed Dec. 20, 2021 Non-Final Office Action dated Aug. 17, 2023.
U.S. Appl. No. 17/556,907, filed Dec. 20, 2021 Notice of Allowance dated Dec. 6, 2023.
EP 20962628.2 filed May 31, 2023 Extended European Search Report dated Apr. 20, 2024.
U.S. Appl. No. 17/306,821, filed May 3, 2021 Notice of Allowance dated Apr. 23, 2024.
U.S. Appl. No. 17/556,931, filed Dec. 20, 2021 Non-Final Office Action dated Mar. 27, 2024.
U.S. Appl. No. 17/556,931, filed Dec. 20, 2021 Restriction Requirement dated Feb. 22, 2024.
Related Publications (1)
Number Date Country
20220026001 A1 Jan 2022 US
Provisional Applications (1)
Number Date Country
63054694 Jul 2020 US