This invention relates generally to a method to enhance drilling and production operations from sub-sea wells. More particularly, this invention relates to a system, apparatus, and associated methods of operating a moored vessel in seas or oceans containing pack ice.
This section is intended to introduce various aspects of the art, which may be associated with exemplary embodiments of the present techniques. This discussion is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present techniques. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
Keeping station in drifting pack ice is a challenging task for an offshore platform. Bottom-founded platforms have been successfully developed for shallower water. In deeper water (notionally in water depth of 75 m or greater), however, bottom-founded platforms become impractical, and floating platforms need to be employed. Such floating platforms may keep station with the help of a mooring system consisting of several mooring lines made of steel (wire or chain) or synthetic materials. Drifting pack ice impacting the floating platform produces loads in the mooring lines. Such loads can become very high when the ice conditions are severe, leading to breakage of the lines.
A ship-shape vessel is attractive as a floating platform in drifting pack ice because: it has a large deck area, it has a large under-deck volume, and ice loads on it from drifting pack ice are relatively low when the vessel is aligned with the ice drift direction.
However, if the ice drift direction changes, a ship-shape vessel could be impacted by the drifting ice on the beam, resulting in significantly higher ice loads than when aligned with the ice drift direction. Such ice loads may exceed the capacity of even the strongest mooring systems that have been designed to date.
If the mooring system is attached to a turret about which the vessel may rotate in the ice, the vessel can eventually align itself with the new ice drift direction (ice-vane), and ice loads can reduce to the original, relatively low, levels. The problem is that pack ice may prevent the rotation of the vessel about the turret. In order for the vessel to rotate, it breaks up and clears ice upstream near the bow and downstream near the stern. This can be a slow process, and while it is happening, mooring loads may significantly increase. To mitigate such increase in the loads, faster and easier break up and clearance of ice is preferred.
A variety of vessels have been designed and/or built to deal with the particular problems associated with subsea oil and gas drilling and production in areas having significant ice incursions. One example is an FPSO (Floating Production Storage and Offloading) in Terra Nova. The Terra Nova FPSO is a turret-moored vessel equipped with a thruster-assisted position mooring system in which the thrusters are automatically controlled. However, the design of the system is primarily driven by the harsh open-water wave and wind conditions at the Terra Nova site. The pack ice design condition for Terra Nova is very mild: 5/10ths ice coverage with 0.3 m ice thickness. The Terra Nova thruster system is, thus, not designed to break up and clear ice or facilitate the ice-vaning of the vessel. The vessel has 5 thrusters (2 at the bow and 3 at the stern) arranged to optimize station-keeping performance in high wave/wind conditions. Moreover, the automatic control system for the thrusters is designed for open water conditions, and does not have any functions for determining ice drift direction or commanding the thrusters to do what is necessary to align the vessel with changing ice drift direction. The vessel is intended to disconnect and leave the field in more severe pack ice conditions, should such conditions ever occur, or in case an iceberg gets too close to it.
One typical solution includes the use of other vessels called “support icebreakers” to break up and clear the ice in the areas necessary for the moored vessel to ice-vane. This is not a satisfactory solution, as it introduces considerable operational complexity and risk. The support icebreakers have to correctly identify the prevailing ice conditions and move through the ice repeatedly to break it up and clear it. On many occasions, they will have to accomplish this in close quarters with the moored vessel and under conditions of poor visibility and other adverse weather conditions (snow, high winds, etc.). Depending on the ice conditions, more than one icebreaker may need to be active in a particular area, which increases the risk for collision between icebreakers and also between an icebreaker and the moored vessel. Because of the uncertainty about the effectiveness of icebreaker operations, this type of solution usually also includes a capability to disconnect the mooring system to avoid breaking it, if the loads due to the ice exceed the capacity of the system. While the capability to disconnect mitigates the risk of breaking mooring lines, it introduces further operational complexity and risk, particularly if the moored vessel has no propulsion and steering of its own. Failure to properly manage the vessel after disconnection may lead to collision and grounding.
Disclosed herein are several examples of vessels designed to solve some of the problems associated with sub-sea oil and gas drilling and production in arctic areas. Kvaerner Masa Yards in the 1990s developed a new type of ship for sailing in ice, named Double-Acting Tanker (DAT), which employs pulling azimuthing thrusters at the end of the ship that first meets the ice for propulsion (see K. Juurmaa, et al. infra. and U.S. Pat. No. 5,218,917). Aker-Finnyards in the 1990s built at least two multi-purpose icebreaker support vessels utilizing azimuthing thrusters, which utilize azimuthing thrusters for propulsion and maneuvering (see P. Lohi, et al. infra). Kvaerner Masa Yards in the 1990s proposed a triangular asymmetric icebreaker with three azimuthing thrusters, called the oblique icebreaker (see M. Arpiainen, et al. infra). The principle of operation is to use the entire side of the vessel to break ice, taking advantage of a special oblique hull form. By operating this way, the oblique icebreaker can break a much wider channel in the ice than ship-shape icebreakers for escorted ships to follow in. Den Norske Stats Oljeselskap has apparently developed a two-part ship for use in oil transport in arctic waters, which consists of a barge part containing a number of loading tanks and a propulsion part, which is adapted for breaking ice and has one or more azimuthing thrusters (U.S. Pat. No. 6,162,105). The propulsion part joins with the barge part for sailing through ice-covered waters (similar to a tug-barge used in open water). Upon arrival at a field location, the barge part connects to a submerged turret buoy, and the propulsion part separates from it. While the barge part is intended to ice-vane about the submerged turret buoy, it is not equipped with any active system to facilitate such ice vaning. Only the propulsion part has azimuthing thrusters.
The Canadian Marine Drilling Company (CANMAR) developed a series of ship-shape drillships, which they used for drilling operations in the Beaufort Sea. The drillships were primarily intended to drill in the open water season (summer), but to be able to withstand occasional incursions of drifting pack ice (see R. M. Hinkel, et al. infra). Frontier Drilling engaged Aker Arctic to conduct initial design and conceptual work for their turret-moored drillship Frontier Discoverer. This work includes development of a modified hull form and protection for the riser from the ice, but it does not include a special thruster arrangement or control system (see K. Bäckström infra).
Statoil and LMG Marin have developed a design for an Arctic DrillShip (ADS) with icebreaker features. The ADS has an icebreaker hull, ice cutters around the hull of the ship, thrusters aft and forward and turret mooring for water depths from 50 meters (m) to 1,000 m (see J. Jorde infra, and Int'l Patent App. WO2007/089152). However, the Statoil design requires the development of new ice cutter technology and fails to consider problems of automatic control.
At a concept level, Sandwell, Inc. conducted a paper study in 1996-97 for Mobil and Texaco, in which Sandwell developed concepts for an in-ice Floating Production, Storage and Offloading Structure (see Sandwell infra). Two of the concepts developed involved a ship-shape hull: 1) a conventional “moveable” icebreaking FPSO, which had an efficient icebreaking hull, bow thrusters for improved maneuvering, and to enhance its ice clearance and station-keeping capabilities in ice and a disconnectable mooring. This FPSO was intended to operate with ice management support of two “very capable” icebreakers, supplemented at times by a third; and 2) an extreme “permanent” FPSO, that had a much more extreme icebreaking hull with large reamers for self-ice management, with a number of azimuthing thrusters for improved maneuvering, and to enhance its ice clearance and station-keeping capabilities in ice. This FPSO was intended to rely primarily on self-ice management, but Sandwell's system included one “capable” icebreaker, supplemented at times by a second. While the mooring system was intended to be permanently connected, the concept included disconnectability in extreme situations. This concept did not include matching thruster pairs, or automatic control of the thrusters.
Also at a concept level, Kulikov and Ruksha (U.S. Pat. App. No. 2006/0096513) proposed a single-point system for tankers to moor at an offshore terminal for the purpose of loading liquids, primarily oil, from an onshore tank farm in ice conditions. This system utilizes a combination loading hose-mooring line attached to a fixed structure at the seabed allowing 360 degree)(°) rotation, and an icebreaker to lead the tanker through ice to the location of the offshore terminal, equipped with a guiding trunk that protects the loading hose from ice action. Although this system is claimed to offer “the possibility of roundabout turning,” it includes no elements specifically designed to facilitate and accelerate ice-vaning. Furthermore, this system addressed the problem of only temporary mooring of tankers in ice for a short-duration operation, with the option of stopping the operation and disconnecting the mooring.
Accordingly, an apparatus, system, and method are needed that effectively breaks up and manages ice incursions on a turret-moored marine vessel, facilitates and accelerates ice-vaning, and is capable of keeping a relative position in pack ice conditions to mitigate the impact of ice on the vessel.
Related material may be found in at least: “Global Analysis of the Terra Nova FPSO Turret Mooring System,” Paper 11914, Proceedings, Offshore Technology Conference, Houston, Tex., May 1-4, 2000; “Terra Nova Vessel Design and Construction,” Paper 11920, Proceedings, Offshore Technology Conference, Houston, Tex., May 1-4, 2000; “Experience with Drilling Operations in the US Beaufort Sea,” R. M. Hinkel, S. L. Thibodeau and A. Hippman, Paper 5685, Proceedings, Offshore Technology Conference, Houston, Texas, May 2-5, 1988; “An Arctic Drilling Campaign in Alaska,” K. Bäckström, 2nd Annual Arctic Passion Seminar, Helsinki, Finland, Mar. 15, 2007; “Arctic Drill Ship—For Year-Round Operations in Arctic Environments,” J. Jorde, 9th Annual INTSOK Conference, Houston, Tex., Mar. 27-28, 2007; “Revolutionary Oblique Icebreaker,” M. Arpiainen, M. Baeckstroem and R-A. Suojanen, Proceedings, POAC 1999, Helsinki, Finland, August 23-27, 1999; “Mobil/Texaco In-Ice Floating Production, Storage and Offloading Structure Feasibility Study,” report by Sandwell, Inc., Vancouver, BC, Canada, August 1997; “New Ice Breaking Tanker Concept for the Arctic (DAT),” K. Juurmaa, G. Wilkman and M. Baeckstroem, Proceedings, 13th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), Murmansk, Russia, Aug. 15-18, 1995; “MSV Fennica, A Novel Icebreaker Concept,” P. Lohi, H. Soininen and A. Keinonen, Proceedings, IceTech '94, Calgary, Alberta, Canada, 1994; Int'l Patent App. WO2007/089152; U.S. Patent App. 2006/0096513; U.S. Pat. Nos. 6,848,382; 6,799,528; 6,162,105; 5,218,917; and 4,747,359.
One embodiment of the present invention discloses a marine vessel. The marine vessel includes a hull, the hull being operatively connected to a mooring turret and at least a portion of the hull being configured to resist ice loads. The vessel further includes at least two matched pairs of azimuthing propulsion devices operatively engaging the hull, wherein each of the at least two matched pairs of propulsion devices are configured to provide a net force on the hull and clear ice away from the hull. A control system is also provided, which is operatively connected to the at least two matched pairs of azimuthing propulsion devices and configured to enable control of the marine vessel via the propulsion devices. The vessel may further be configured to ice-vane or keep station via the propulsion devices, the control system may be automatic, the hull may be ship-shaped, and the vessel may be one of a drillship, a floating production, storage, and offloading vessel (FPSO), a floating production of liquefied natural gas vessel (FLNG), a floating storage and regasification unit for LNG (FSRU), a gas-to-liquids floating production, storage and offloading vessel (GTL), a gas-to-chemicals floating production, storage and offloading vessel (GTC), and a sailing LNG carrier.
Another embodiment of the present invention discloses a control system for a marine vessel. The control system includes at least two matched pairs of azimuthing propulsion devices operatively attached to the marine vessel, wherein each of the at least two matched pairs of propulsion devices are configured to provide a net force on the marine vessel and clear ice away from the marine vessel; a plurality of sensors operatively connected to the marine vessel configured to provide at least one input parameter; and a plurality of azimuthing propulsion device control commands, wherein the control system controls the plurality of azimuthing propulsion devices utilizing the azimuthing propulsion device control commands and the at least one input parameter. The control system may further be configured to ice-vane the vessel or keep station, may be automatic, and may include a feedback loop.
A third embodiment of the present invention discloses a method of producing hydrocarbons. The method includes positioning a vessel in a body of water having pack ice. The vessel includes a hull operatively connected to a mooring turret, wherein at least a portion of the hull is configured to resist ice loads; and at least two matched pairs of azimuthing propulsion devices operatively engaging the hull, wherein each of the at least two matched pairs of propulsion devices are configured to provide a net force on the hull and clear ice away from the hull. The method further includes operatively connecting the vessel to a subsea wellhead, wherein the subsea wellhead is configured to produce hydrocarbons, operating the vessel utilizing the at least two matched pairs of azimuthing propulsion devices, and receiving the hydrocarbons into the vessel.
A fourth embodiment of the present invention discloses a method of manufacturing a marine vessel. The method includes constructing a marine vessel, wherein the vessel comprises a hull operatively connected to a mooring turret, wherein at least a portion of the hull is configured to resist ice loads; and the vessel includes at least two matched pairs of azimuthing propulsion devices operatively engaging the hull, wherein each of the at least two matched pairs of propulsion devices are configured to provide a net force on the hull and clear ice away from the hull.
A fifth embodiment of the present invention discloses a method of drilling a subsea well. The method includes positioning a vessel in a body of water having pack ice. The vessel includes a hull operatively connected to a mooring turret, wherein at least a portion of the hull is configured to resist ice loads; and at least two matched pairs of azimuthing propulsion devices operatively engaging the hull, wherein each of the at least two matched pairs of propulsion devices are configured to provide a net force on the hull and clear ice away from the hull. The drilling method further includes operatively connecting the vessel to a subsea wellhead, wherein the subsea wellhead is configured to enable the drilling of the subsea well; and operating the vessel utilizing the at least two matched pairs of azimuthing propulsion devices.
The foregoing and other advantages of the present techniques may become apparent upon reviewing the following detailed description and drawings in which:
In the following detailed description section, the specific embodiments of the present invention is described in connection with preferred embodiments. However, to the extent that the following description is specific to a particular embodiment or a particular use of the present invention, this is intended to be for exemplary purposes only and simply provides a description of the exemplary embodiments. Accordingly, the invention is not limited to the specific embodiments described below, but rather, it includes all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
The term “ice-vaning” refers to the method of aligning of a turret-moored marine vessel having a substantially oblong hull shape with the prevailing ice drift direction, which may shift dynamically, either continuously or intermittently.
The term “station keeping” refers to the method of maintaining the position of a vessel in a body of water. If the vessel is in a body of water containing pack ice, the term “station keeping” includes mitigating the effect of ice on the vessel while maintaining position.
The term “azimuth” refers to the ability of a propulsion device (e.g. a thruster) or pair of propulsion devices to rotate about an axis. Preferably, the axis is substantially vertical with respect to the deck portion of the vessel and the rotation is preferably at least about 180 degrees)(°), more preferably at least about 270°, or most preferably at least about 360° around the axis.
The phrase “matched pair of azimuthing propulsion devices” means that at least two propulsion devices form a functionally integrated pair rather than operating independently of each other. For example, the propulsion devices may be physically integrated, such as when both propulsion devices rotate about the same physical axis or the propulsion devices may be operationally integrated such as when the motions and actions of the two propulsion devices are connected by a control system and the actions of one propulsion device affect the actions of the other propulsion device. In some cases, the matched pair of azimuthing propulsion devices are both physically integrated and operationally integrated.
When referring to a hull, the term “ship-shape” means a hull with one dimension in the horizontal plane (length) significantly greater than the other dimension (breadth or beam).
In one embodiment of the present invention the apparatus includes a turret-moored marine vessel having an ice-breaking hull and azimuthing propulsion devices in matched pairs. Preferably, the propulsion devices in each matched pair azimuth or rotate about a vertical axis so that they substantially oppose each other.
In another embodiment of the present invention, the matched pairs of azimuthing propulsion devices are operatively connected to a control system to facilitate and accelerate ice-vaning and station keeping and in general for the purpose of reducing ice loads on the moored vessel. The control system may be automatic and include a feedback loop. This system, including the turret-moored vessel and its mooring system, may be referred to as the automatic ice-vaning ship (“AIS”).
In yet another embodiment of the present invention, the AIS is a turret-moored vessel intended to keep station at a particular location in drifting pack ice. The AIS may utilize a computerized system to detect the effect of changing ice drift direction on the mooring line loads, and to generate appropriate commands for the propulsion devices to simultaneously break up and clear ice, rotate the vessel about the turret and reduce mooring line loads. The AIS may further comprise azimuthing propulsion devices in matched pairs, configured to break up ice around the vessel, clear ice in specific areas around the vessel, rotate the vessel to align it (or vane) with a change in ice drift direction, and resist ice loads in order to minimize mooring line loads.
Referring now to the drawings,
One preferred exemplary embodiment shown in
One exemplary embodiment of the present invention comprises a vessel 200 having a ship-shape hull 202. The hull 202 is preferably ice-strengthened to resist ice loads caused by the ice conditions in which the vessel 200 is intended to operate. Exemplary applications include a drillship, as illustrated in
One preferred embodiment includes the propulsion devices 216 in matched pairs as illustrated in
In one exemplary embodiment, as illustrated in
In another exemplary embodiment, as illustrated in
Referring to
Preferably, the number and capacity of the propulsion device pairs 216 is determined on the basis of the capability of the mooring system 212, 218, and of the ice conditions 300 in which the vessel 200 is operating. A sufficient number of propulsion device pairs or sets 216 is included to have the desired redundancy, (e.g. to retain sufficient capability to maintain mooring loads and offsets within allowables following any single-point failure). The power generation and distribution system (not shown) of the present invention should have similar redundancy, (e.g. should be able to provide sufficient power to maintain mooring loads and offsets within allowables following any single point failure). In such a preferred exemplary embodiment, the vessel 200 may not require icebreaker support, thus eliminating the issues associated with icebreaker operations around the vessel 200, including collision hazards.
In one preferred embodiment, the control system 400 is an automatic control system and includes a feedback loop 410 to provide inputs 402 as external conditions change, thereby allowing a user to enter an initial desired result 408 and allow the system 400 to make automatic adjustments or commands 406 until the initial desired result 408 is accomplished. This is preferable to a manual system requiring a user to monitor the system 400 for errors and make adjustments for errors. The system 400 may be designed as a standard feedback control loop, a pre-programmed control, a feed-forward control, and/or a prediction followed by control. See LEIGH, J. R., CONTROL THEORY, 2d Ed., The Institution of Electrical Engineers (2004), which is hereby incorporated by reference.
In one preferred embodiment, the system 400 is configured to monitor the loads on each mooring line 218 to identify the ice drift direction 302, 304. Each mooring line 218 may be equipped with a device to measure the load in it (e.g. a load cell). The system 400 may further identify the ice drift direction 302, 304 using a model of the mooring system 212, 218 and the vessel 200. Qualitatively, the ice drift direction 302, 304 may be approximated by the direction of the most loaded mooring lines 218. By comparing the ice drift direction 302 or 304 to the heading of the vessel 200, the system 400 may determine a preferred direction of rotation of the vessel 200, to align with the changing ice drift direction 302 or 304. The system 400 may then issue commands 406 to the thrusters 216 to produce a net moment 306 about the turret 212 to accomplish the rotation. The system 400 may also monitor the rate of rotation and heading of the vessel 200 via a sensing device. If the rate is slower than preferred, the system 400 may issue a command 406 to the propulsion devices 216 whose wash is used to break up and clear ice. The system 400 may also commensurately command 406 the other propulsion devices 216 to maintain the net moment 306 about the turret 212. Also through monitoring of the mooring line 218 loads, the system 400 may determine how close these loads are to the allowable loads of the mooring lines 218 (defined as the breaking strength divided by a safety factor). If the loads are close to the allowable loads, the system 400 may command 406 the propulsion devices 216 to produce a net force 310 opposing the ice drift direction 302 or 304 to help reduce mooring line 218 loads. Other inputs 402 to the control system 400 may include temperature, precipitation, ice thickness, water salinity, horizontal orientation of the vessel 200, and any other input useful for ice-vaning or station keeping the vessel 200. The outputs 408 may include propulsion device 216 wash, net moment 306 about turret 212, net force 310 opposing ice drift 302 or 304, propulsion device 216 speed, vessel speed, load on a mooring line 218, and any combination thereof.
In one exemplary embodiment, the system 400 may include an input parameter 402 such as, for example, feed-forward of wind loads (measured using anemometers or other wind sensors), the controller 404 may calculate the wind loads on the vessel 200 using a mathematical model, then command 406 the propulsion devices 216 to produce an output 408 such as a force and moment to counteract the wind force and moment. The sensors and other feedback devices may then provide input 402 to the system 400 after the force 408 is applied so the system 400 may make adjustments for the changing conditions and any possible errors encountered.
One exemplary embodiment includes mooring lines 218 (and other equipment connecting the vessel 200 to the seabed 204), which are permanently attached to the vessel 200 via the turret 212. However, the invention also includes an alternate embodiment comprising a vessel 200 with a turret 212 capable of disconnecting, which allows disconnection of the mooring lines 218 and other equipment (e.g. risers 214 or 215), either for operational purposes or for minimizing the risk of damage to the mooring lines 218 and other equipment. In such embodiments, the automatic control system 400 includes modes for controlling the propulsion devices 216 for sailing the vessel 200 through pack ice and/or open water, so that the movement of the vessel 200 remains under control, minimizing the risk of collision and/or grounding following disconnection.
Although the vessel 200 may operate in any sufficiently large body of water, it is preferable to operate the vessel 200 in bodies of water having drifting pack ice such as, for example, the Beaufort Sea, the Chukchi Sea, the Gulf of Finland, the Sea of Okhotsk, the Barents Sea, the Kara Sea, and other Russian Arctic seas.
While the present invention may be susceptible to various modifications and alternative forms, the exemplary embodiments discussed above have been shown only by way of example. However, it should again be understood that the invention is not intended to be limited to the particular embodiments disclosed herein. Indeed, the present invention includes all alternatives, modifications, and equivalents falling within the true spirit and scope of the invention as defined by the following appended claims.
This application claims priority to U.S. provisional application no. 60/928,752 filed on May 11, 2007.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/03823 | 3/24/2008 | WO | 00 | 9/22/2009 |
Number | Date | Country | |
---|---|---|---|
60928752 | May 2007 | US |