1. Field of the Invention
The present invention relates to an automatic icemaker which is provided in a refrigerator, and designed such that it repeatedly carries out a water feeding operation, an ice making operation and an ice discharging operation according to a predetermined sequence, and automatically makes ice cubes.
2. Description of the Prior Art
In a conventional automatic icemaker, a groove-shaped water-passage channels are formed in partitions between respective adjacent small ice-making compartments of an ice-making tray in order that water supplied to the ice-making tray from above the ice-making tray can be equally spread into respective small ice-making compartments of the ice-making tray. However, when ice cubes formed in the small ice-making compartments are to be discharged from the ice-making tray, adjacent ice cubes in the small ice-making compartments are freezingly connected to each other through ice formed in the water passage channels. This contributes to falling of the dischargeability of the ice cubes and users' convenience.
For this reason, it is conceivable that the groove-shaped water passage channels are formed in portions of the partitions between the respective adjacent small ice-making compartments which are offset from centers of the partitions, and the ice-making tray is inclined at a predetermined angle, which allows the water to be equally spread into the respective small ice-making compartments, namely, at a water filling angle, and the supply of the water to the ice-making tray is then carried out.
However, when the supply of the water is carried out in the condition where the ice-making tray is inclined at the water filling angle, the water runs along walls of the small ice-making compartments and spills out of the ice-making tray.
It is an object of the present invention to provide an automatic icemaker which is capable of causing water supplied to an ice-making tray from above the ice-making tray to be equally spread into respective small ice-making compartments of the ice-making tray, does not allow adjacent ice cubes formed in the small ice-making compartments to be freezingly connected to each other through ice formed in water passage channels when the ice cubes are to be discharged from the ice-making tray, and does not allow the water to spill out of the ice-making tray at the time of the water supply.
In accordance with one aspect of the present invention, there is provided an automatic icemaker which is capable of being installed in a freezing compartment and automatically making and discharging ice cubes, the automatic icemaker comprising at least one ice-making tray having a plurality of small ice-making compartments, partitions disposed between respective adjacent small ice-making compartments, and groove-shaped water-passage channels formed in portions of the partitions which are offset from centers of the partitions, and a rotating device for rotating the ice-making tray, wherein water is supplied after the ice-making tray is inclined at a water supply angle less than a water filling angle in such a direction that the water passage channels face downward.
According to an another aspect of the present invention, there is provided an automatic icemaker which is capable of being installed in a freezing compartment and automatically making and discharging ice cubes, the automatic icemaker comprising at least one ice-making tray having a plurality of small ice-making compartments, partitions disposed between respective adjacent small ice-making compartments, and groove-shaped water-passage channels formed in portions of the partitions which are offset from centers of the partitions, and a rotating device for rotating the ice-making tray, wherein water is supplied while the ice-making tray is rotated in such a direction that the water-passage channels face downward, according to a quantity of the water stored in the small ice-making compartments by the supply of the water.
In these automatic icemakers, the groove-shaped water-passage channels are formed in the portions of the partitions between the respective small ice-making compartments which are offset from the centers of the partitions, so that the water can be equally spread into the respective small ice-making compartments and adjacent ice cubes formed in the small ice-making compartments are not freezingly connected to one another through ice formed in the water passage channels when the ice cubes are to be discharged from the ice-making tray. Moreover, the ice-making tray is inclined at the water supply angle in such a direction that the water passage channels face downward, and the supply of the water to the ice-making tray is then carried out, or the supply of the water is carried out while causing the ice-making tray to be rotated in such a direction that the water passage channels face downward, according to the quantity of the water stored in the small ice-making compartments by the supply of the water, so that even if the flow of the water is strong, it is possible to supply the water to the ice-making tray without allowing the water to spill out of the ice-making tray.
Referring to
A microprocessor 28 containing an AD converter and a counter is provided in the control box 2. A temperature detecting sensor 22 is designed such that it successively outputs a temperature signal voltage corresponding to a temperature of the ice-making tray 4. A position detecting sensor 24 is designed such that it outputs a position signal voltage corresponding to a rotational position of the ice-making tray 4. An ice-fullness detecting sensor 30 is designed such that it outputs a signal voltage corresponding to amounts of ice cubes stored in an ice storage box (not shown), according to the movement of the ice-fullness detecting arm 26. A motor drive circuit 32 is designed such that it drives the motor 6. A valve drive circuit 34 is designed such that it drives the water supply solenoid valve 14. The microprocessor 28 is designed such that it gradually inputs the temperature signal voltage outputted from the temperature detecting sensor 22, and carries out an AD conversion, to thereby detect the temperature of the ice-making tray 4. Also, the microprocessor 28 is designed such that it detects from the signal voltage from the position detecting sensor 24 that the ice-making tray 4 is in a horizontal position with an opening portion of the ice-making tray 4 facing the water supply port 12. Moreover, the microprocessor 28 is designed such that it receives the signal voltage from the ice-fullness detecting sensor 30 and then detects that predetermined amounts of ice cubes have been stored in the ice storage box. Furthermore, the microprocessor 28 is designed such that it controls the motor drive circuit 32 and the valve drive circuit 34.
This automatic icemaker is fixed through a bracket (not shown) to a fixing part which is provided in advance in a freezing compartment of a refrigerator. In the automatic icemaker, water supplied to the ice-making tray 4 from the water supply port 12 is frozen by the cold in an interior of the freezing compartment, and the ice-making tray 4 is rotated by the motor 6, whereby formed ice cubes are released and discharged from the ice-making tray 4, and the discharged ice cubes are adapted to be dropped into the ice storage box. Moreover, a temperature detecting sensor (not shown) for detecting the temperature of the interior of the freezing compartment is provided and adapted to successively detect the temperature of the interior of the freezing compartment.
Referring now to
Subsequently, when the microprocessor 28 detects from the output of the position detecting sensor 24 that the ice-making tray 4 is in the horizontal position, the microprocessor 28 detects the temperature of the ice-making tray 4 from the output of the temperature detecting sensor 22, and stands by until a predetermined time elapses in a condition where the temperature of the ice-making tray 4 becomes a temperature less than a preset temperature. Then, the water supplied to the respective small ice-making compartments 16 is cooled by the cold in the freezing compartment of the refrigerator and then frozen. Subsequently, when the microprocessor 28 detects that a predetermined time has elapsed in the condition where the temperature of the ice-making tray 4 is lower than the preset temperature, the microprocessor 28 controls the motor drive circuit 32 to drive the motor 6, whereby the ice-making tray 4 is rotated, and formed ice cubes are released from the ice-making tray 4 by twisting of the ice-making tray 4, or the like and dropped into the ice storage box. After the respective small ice-making compartments 16 are positively emptied, the ice-making tray 4 is returned to the horizontal position.
In this way, the water supply, ice-making and discharge of the ice cubes are repeatedly carried out according to the predetermined sequence, thus automatically making ice cubes.
When this ice-making cycle is successively carried out, the ice storage box is filled with the discharged ice cubes. When the ice-fullness detecting sensor 30 detects that the amount of the ice cubes stored in the ice storage box exceeds a predetermined amount and the microprocessor 28 detects the signal from the ice-fullness detecting sensor 30, the microprocessor 28 causes the ice-making cycle to be temporarily stopped. When the microprocessor 28 detects that the amount of the ice cubes in the ice storage box becomes less than the predetermined amount by removal of the ice cubes from the ice storage box by a user, the microprocessor 28 causes the ice-making cycle to be resumed. During the above series of the ice-making cycle, the microprocessor 28 monitors the temperature detected by the temperature detecting sensor 22. When any operation such as opening of a door of the refrigerator is carried out during the operation of the automatic icemaker, whereby the temperature becomes different from an original value of the temperature, the microprocessor 28 judges the situation as an abnormality, and then carries out abnormal-situation processing which is predetermined per each stage.
In the automatic icemaker constructed as discussed above, when the supply of the water to the ice-making tray 4 is to be started, the ice-making tray 4 is adapted to be inclined at the water supply angle, so that even if the flow of the water is strong, the water can be supplied to the ice-making tray 4 without spilling out of the ice-making tray 4. Moreover, after the supply of the water to the ice-making tray 4 is completed, the ice-making tray 4 is inclined at the water filling angle, so that the water 36 can be spread evenly into the respective small ice-making compartments 16. In addition, in the condition where the ice-making tray 4 is made to become horizontal, the surface of the water 36 supplied to the small ice-making compartments 16 does not reach the bottom surfaces of the water passage channels 20, so that the waters in the respective small ice-making compartments 16 can be made to be independent from one another and, therefore, when the ice cubes are to be discharged from the ice-making tray 4, adjacent ice cubes are not freezingly connected to each other via ice formed in the water passage channels 20. Therefore, it is possible to positively cause respective ice cubes to be independent from one another, thus improving users' convenience. Moreover, the rotation of the ice-making tray 4 allows the independence of the ice cubes from one another to be realized, so that torque to be required in order to twist the ice-making tray 4 at the time of the discharge of the ice cubes can be reduced. It is unnecessary to provide a heater or the like, so that the number of parts is not increased, the ice-making tray 4 is not large-sized, and ice cubes which are uniform in size can be made.
Referring now to
In the automatic icemaker constructed as discussed above, the supply of the water is carried out while causing the ice-making tray 4 to be rotated according to the quantity of the water stored in the small ice-making compartments by the supply of the water, so that even if the flow of the water is strong, it is possible to supply the water to the ice-making tray 4, without allowing the water to spill out of the ice-making tray 4. Moreover, the ice-making tray 4 is kept in the condition where it is inclined at the water filling angle after the supply of the water to the ice-making tray 4 is completed, so that the water can be spread evenly into the respective small ice-making compartments 16. In addition, in the same manner as in the automatic icemaker shown in
Incidentally, while the embodiments of the present invention have been described in connection with the automatic icemaker having the single ice-making tray, the present invention may be applied to an automatic icemaker having two ice-making trays combined together back-to-back, namely, two ice-making trays combined together with bottom surfaces of small ice-making compartments 16 being opposed to each other. Moreover, while the water supply angle is set to a value equivalent to 20-30% of the water filling angle in the above-mentioned embodiments, a value of the water supply angle which is less than a value of the water filling angle is sufficient. In addition, while the temperature detecting sensor 22 which is designed such that it outputs the temperature signal voltage corresponding to the temperature of the ice-making tray 4 is employed in the above-mentioned embodiments, a temperature detecting sensor which is designed such that it outputs a temperature signal voltage corresponding to the temperature of the water poured into the respective small ice-making compartments 16 of the ice-making tray 4 (or the temperature of ice), may be employed. Moreover, while in the above-mentioned embodiments, the supplied water is made to be evenly spread into the respective small ice-making compartments 16 by causing the ice-making tray 4 to be returned to the horizontal position after the predetermined time has elapsed since the ice-making tray 4 is inclined at the water filling angle, or by causing the ice-making tray 4 to be returned to the horizontal position after the predetermined time has elapsed since the water supply solenoid valve 14 is closed and the tilt angle of the ice-making tray 4 is kept at the water filling angle, the even spreading of the water into the respective small ice-making compartments 16 may be confirmed by variation in the temperature signal voltage which is detected by the temperature detecting sensor 22 provided at the ice-making tray 4. Moreover, while the microprocessor 28 having the AD converter and the counter contained therein is employed in the above-mentioned embodiments, a microprocessor having a counter contained therein and an AD converter may be employed. In addition, while in the above-mentioned embodiments, the supply of the water to the ice-making tray 4 is carried out while causing the ice-making tray 4 to be successively rotated, the supply of the water to the ice-making tray 4 may be carried out while causing the ice-making tray 4 to be rotated step by step.
The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described, or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed.
Number | Date | Country | Kind |
---|---|---|---|
2006-102649 | Apr 2006 | JP | national |
This application is a Divisional of co-pending application Ser. No. 11/724,254 filed on Mar. 15, 2007, which claims priority to Application No. 2006-102649 filed in Japan on Apr. 4, 2006. The entire contents of all of the above applications are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11724254 | Mar 2007 | US |
Child | 12899388 | US |