1. Field of Invention
The present invention relates to automatic injectors, and more particularly, to automatic injectors that reduce the likelihood of coring a sealing member.
2. Discussion of Related Art
Automatic injectors are well known. Basically an automatic injector is a device for enabling an individual to self-administer, or administer to another, a dosage of a liquid medicament. An advantage of automatic injectors is that they contain a measured dosage of a liquid medicament in a sealed sterile condition capable of storage in such condition for an extensive period of non-use, during which period immediate injection of the stored dosage may be accomplished at any time under severe emergency conditions. Another advantage of automatic injectors is the administration of the self-contained dosage of liquid medicament is accomplished without the necessity of the user initially seeing the hypodermic needle through which the liquid medicament is injected or of manually penetrating such visible needle into the user's or another person's tissue.
As stated above, automatic injectors are particularly suited for use under emergency conditions. For example many tens of millions of such automatic injectors have been manufactured and sold containing nerve gas antidotes for use under emergency chemical warfare conditions. Typical units which have been utilized for this purpose are disclosed in U.S. Pat. Nos. 2,832,339, 3,882,863, and 4,031,893. In addition units of this type have been manufactured and used in administering anti-arrhythmic medicaments under emergency conditions relating to hart attack medical situations. The use of an auto injector has also been proposed to provide other medicaments useful in treating heart attack symptoms such as clot selective thrombolic agents (for example, tPA) and related medicaments. See for example, U.S. Pat. Nos. 4,689,042, 4,755,169, and 4,795,433. In addition, automatic injectors have been widely marketed containing a dosage of epinephrine as an antidote for counteracting severe allergic reactions, as for example, to bee stings, and the like.
In all of these instances, the auto-injector is specifically structured so that in its normal operation the needle extends into the tissue of the individual and a specified amount of liquid medicament stored in a cartridge within the injector is injected into the tissue of the individual.
The hypodermic needle of an autoinjector has a forward end adapted to penetrate the clothing and flesh of an individual and a rearward end adapted to communicate with a liquid medicament source so that the medicament is permitted to flow from the source, through the central longitudinal bore or lumen in the needle, and into the flesh of the individual. In some embodiments, the needle is contained inside the cartridge containing the liquid medicament. For example one application exists in the field of automatic injection devices, wherein the liquid medicament is sealed within a tubular container or cartridge, generally made of glass, plastic or metal, having a rubber seal closing off at the forward end and a rubber plunger at the rearward end. For example see U.S. Pat. No. 5,354,286. During an injection operation, a stressed spring assembly is released moving a push rod against the plunger. The plunger pushes against the hub-end of the needle causing the needle to puncture the forward end seal of the cartridge and penetrates into the flesh of an individual. The liquid medicament is pushed at the same time through the needle, thus releasing the medicament into the individual's flesh.
In another type of automatic injector, the needle is connected to the forward end of the cartridge. See U.S. Pat. No. 5,102,393. During an injection operation, the needle is forced through a resilient seal at the forward end of the outer housing or through an elongated rubber sheath surrounding the needle. In either case the needle is kept sterile by a seal disposed toward a forward end of the housing while the injector is stored. After the needle punctures the seal or sheath, it then is forced into the flesh of the individual.
An issue that must be dealt with in each of the mentioned arrangements is that the forward end of the needle must perforate a rubber or other type of seal, and it is possible for the forward end of the needle to core out or dislodge a small particle of material from the seal and potentially block the needle orifice/lumen or be forced into the individual's flesh.
To overcome these problems and others, it is proposed to provide an automatic injector in which the amount of coring by the needle is substantially reduced or eliminated.
Therefore, in one embodiment of the present invention is to provide an automatic injector that comprises: a housing; a seal structure disposed toward a forward end of the housing; a cartridge contained within the housing; a charge of medicament contained in the cartridge; a plunger normally disposed in a generally rearward end of the cartridge and movable through the cartridge toward a generally forward end thereof in response to an actuating procedure. The movable plunger rearwardly confines said medicament within said cartridge. A needle is normally disposed within the housing, the needle being projectable from a forward end of said housing through said seal structure. The needle is communicable with the medicament so that movement of the plunger through the cartridge forces the medicament through the needle and into the flesh of an individual, in response to the predetermined actuating procedure. A releasable energy source is releasable in response to the predetermined actuating procedure to project the needle from the forward end of the housing and slidingly drive the plunger through the cartridge in sealed relation to expel the medicament through the needle and into the flesh of an individual. The cartridge has an increased friction region so as to slow the motion of the plunger as the forward end of the needle travels through the seal.
In another embodiment, the needle carries a damping structure for reducing the rate of acceleration of the needle by the resistance created when said damping structure moves within said medicament.
In addition, the present invention is directed to several automatic injection devices comprising novel needle structures that reduce coring of an elastic, plastic or rubber based structure at the forward end of the injector.
These and other objects and advantages of the invention will become more apparent and more readily appreciated from the following detailed description of the presently preferred exemplary embodiments of the invention, taken in conjunction with the accompanying drawings, of which:
In the following description, for purposes of explanation and not limitation, specific details are set forth such as particular shapes and materials, mechanical components, techniques, etc. in order to facilitate a thorough understanding of the present invention. However, the invention may be practiced in other embodiments that depart from these specific details. The terms “damping structure”, “friction area”, “speed bump” and “narrowed diameter portion” are used interchangeably in this description to illustrate a feature that is used as a way to reduce the rate of acceleration thus decrease the speed at which the hypodermic needle punctures or pierces the forward seal in comparison with prior art auto-injectors. Also, for the purpose of this disclosure, the portions of the injector on the right side of
Referring, more particularly, to the drawings in detail, there is shown in
The housing assembly 102, medicament cartridge assembly 104, and stress spring assembly 106 are generally constructed in accordance with the teaching of U.S. Pat. No. 2,832,339, hereby incorporated by reference. As shown in
The forward end of the container or cartridge 116 is closed by a stopper or seal 118, preferably, of suitable rubber or compliant plastic material. The cartridge assembly 104 is retained in closing relation with the forward end of the inner housing member 114 by a housing end cap member 120 of molded plastic material. The cap 120 is preferably retained on the inner housing member 114 by inter-engagement of a pair of ridges 122 formed on the exterior periphery of the tubular member 114 with an annular groove 124 formed on the interior periphery of the cap member 120. The rearward end of the cartridge 116 is closed by a rubber or plastic plunger 126 which is slidably, sealingly engaged with the inner surface of cartridge 116 so as to enclose within the cartridge a dosage 128 of a liquid medicament.
A hypodermic needle 130 is disposed within the cartridge 116. It thus can be appreciated that the cartridge assembly 104 includes cartridge 116, seal 118, needle 130 and disc 132. As can be discerned from
In the present embodiment, the needle 130 has its pointed end disposed within a recess formed in the seal 118. A disc 132 of plastic is disposed within the forward end of the cartridge 116 in surrounding, securing and guiding relation with the hypodermic needle 130 and in abutting engagement with the seal 118. The disc 132 serves to releasably hold the needle in its storage position to provide peripheral centering therefore during the dosage injecting stroke of the plunger 126. The rearward end of the hypodermic needle 130 is enlarged for engagement by the plunger and has a slot 134 formed in its side wall adjacent the enlarged end for communicating the dosage 128 with the hollow interior of the hypodermic needle 130 when the plunger 126 is in engagement therewith. The inner housing member 114 is mounted within the outer housing member 110 for limited reciprocating movement as determined by a pair of ridges 136 formed on the exterior periphery of the tubular inner housing member 114 at a position spaced rearwardly from the pair of ridges 122. The pair of ridges 136 is adapted to engage with an elongated annular groove 138 formed on the interior periphery of the outer housing member 110.
The stressed spring assembly 106 includes a normally compressed but releasable coil spring 142 and an elongated collet member 140. The collet member is disposed within the rearward portion of the housing member 114 and has its forward end disposed adjacent to the plunger 126. The forward end of the collet member 140 has a flange 141 configured to engage the forward end of the stressed coil spring 142, which surrounds the central portion of the elongated collet member 140. The collet 140 has its rearward end engaged with a locking ring 152 sitting on an annular end flange 144 formed integrally on the rearward end of the inner housing member 114.
The rearward end of the elongated collet member 140 are split to provide a plurality (e.g., four) flexible spring fingers 146, the rearward extremities of which are formed with rearwardly and outwardly facing cam releasing surfaces 148. Extending inwardly from the rearward end of each cam surface 148 is locking shoulder 150 adapted to engage a locking ring 152 seated on the rear surface of flange 144. The forward portion of the apertured cylindrical wall portion 112 is formed with a complementary cam surface 154, which is disposed in engagement with the cam surfaces 148 so as to effect a laterally inward movement of the spring fingers 146 toward one another to disengage locking shoulders 150 from locking ring 152 in response to a relative forward actuating movement of the outer housing member 110 with respect to the inner housing member 114. This inward action of the spring fingers 146 is permitted only after the safety cap 108 is removed, as will be described.
The operation of the injector will now be described. In the first step of operation, releasable end cap 108 is removed from the injector 100. This removal is accomplished simply by gripping the exterior periphery of the end cap 108 and moving it rearwardly while gripping and holding the outer housing member 110. The cap member 108 carries with it a safety pin portion 160. With the safety pin portion 160 removed from its safety position, which normally prevents the laterally inward movement of the spring fingers 146, the user can now complete the operation by moving the forward cap member 120 into contact with the tissue of a person to be injected. By applying a continued forward force on the exterior periphery of the outer housing member 110, cam surfaces 154 thereof are moved forwardly. This forward movement in cooperation with the cam surfaces 148 on the spring fingers 146 causes the locking surfaces 150 of the latter to move inwardly off of the locking ring 152, thus releasing the stressed spring 142. The spring 142 acts through the collet member 140 to move the same forwardly which has the effect of moving the plunger 126 with it. As the plunger moves forwardly, it carries with it the needle 130. The pointed forward end of the needle pierces through the seal 118 and into the tissue of the patient. At the same time, the dosage 128 of liquid medicament within the cartridge 116 is caused to move inwardly into the slot 134 of the needle and outwardly of the pointed forward end thereof as the same moves into the tissue of the user.
Referring more particularly to
Seal 214 is made of a flexible material, such as but not limited to, rubber. It is known that polymers behave in a ductile manner when strained at low speed and behave in a brittle manner when strained at high speed.
In order to substantially reduce or eliminate coring, the needle 202 is arranged to penetrate in a “gentle” manner into the rubber seal 214 by reducing the thrust of the needle. Cartridge 104 has a friction region 215 for slowing the motion of plunger 204 thus reducing the rate of acceleration of needle 202 when perforating seal 214. The acceleration rate is reduced so that the speed of the needle is less than 680 inches/s when the needle pierces the seal. The reduction in acceleration rate is intended specifically to reduce the speed to a level at which coring will not occur. Preferably, the speed at which the seal is pierced is also greater than 150 inches/s so that the injection operation is not delayed more than what is desirable. The friction region in this embodiment is a narrowed diameter portion or localized narrowed diameter portion 222 in the wall 224 of cartridge 212. The narrowed diameter portion 222 also referred to as speed bump is arranged between seal 214 and plunger 204. The narrowed diameter portion 222 is arranged and configured to reduce acceleration of plunger 204, thus reducing the speed at which the needle 202 would otherwise travel when the needle tip 208 travels through seal 214. The narrowed diameter portion 222 is created on the wall of the cartridge 212 with a pressure forming method, for example with a clamshell die. The die or a rolling process can be used to imprint a selected shape to the stainless wall of cartridge 212. For example cylindrical rounded narrowed diameter portion around the cylindrical wall of the cartridge can be imprinted.
The localized narrowed diameter portion 222 in the wall 224 of cartridge 212 acts as a “speed bump” by slowing down the motion of plunger 204. Indeed, the narrowed diameter portion 222 increases the normal force between the plunger periphery and the wall 224 of cartridge 212, thus creating a frictional force counter to the plunger's movement. The narrowed diameter portion 222 increases the diametrical interference thereby increasing the friction and retarding plunger 204 movement. This slowed movement causes the needle 202 to strain the seal 214 in a more ductile mode, thus leading to a substantial reduction in coring.
The speed bump is arranged to be only effective along a partial length of the cartridge 212. This allows the plunger to receive the full spring force at the beginning of operation helping to overcome static friction between the plunger 204 and the cartridge 212. The speed bump then takes effect immediately prior to the front end of the needle contacts the seal 214. After the needle tip 208 completes its penetration of the seal 214, the speed bump disengages making the full spring force available to ensure completeness of the injection process.
The plunger 204 meets increased resistance when the plunger 204 reaches the narrowed diameter portion 222. Plunger 204 has a plurality of ribs 230 as shown in
In another embodiment, illustrated in
It is to be understood however, that friction region 300 can be any structure of the cartridge that slows plunger 304. While in the embodiments shown it is the wall of the cartridge itself that performs this function, it should be appreciated that the cartridge may employ a separate structure inserted therein. The plunger 304 meets increased resistance when the plunger's leading rib crosses the friction region leading edge. The rippled shape of friction region 300 illustrated in
To demonstrate the effectiveness of the present invention in substantially reducing formation of cores, a series of tests are implemented and data is acquired.
Data is also acquired to demonstrate that the introduction of the speed bump reduces coring.
In the case of a cartridge with a speed bump, a softer spring for pushing the plunger, may be used if desired to allow a smoother transition from the diameter of cartridge without the bump to the diameter of the cartridge at the bump.
In addition to coring frequency, the diameter of the particles generated by coring are also measured and reported in
These tests are carried out for a straight tip needle such as shown in
The hard C-tip needle is manufactured according to the following process: Two-meter length of tubes are bundled and are cut to the cannula blank length. The ends of the tubes are de-burred and the tubes cleaned. The tubes are then automatically fed and automatically taped onto 18 inch grinding fixtures. The tubes on the grinding fixtures are placed on a grinding machine where a primary grind facet is applied. The tubes are then inclined and rotated to grind a second facet and inclined and rotated again to grind a third facet. The second and third facets are preferably symmetrical to one another. The cannula needle tip are rolled over to produce the curved hard “C” tip. The cannula are de-burred again and an anti-coring micro-blast is applied to the heel. The micro-blast may alternately be applied before bending. The cannula are electro or chemically polished then cleaned, dried, passivated and inspected before packaging. The cannula are packaged with the points/tips oriented in the same direction and wrapped in non-shedding paper to be placed in a polyethylene bag and into a foam line carton for distribution.
All hypodermic needles have primary and secondary facets. The secondary facets are called lancets.
Tests show that the hard C-tip needle configuration can substantially eliminate coring when used in conjunction with softer springs that allow the tip of the needle to “flow” more easily inside the seal material. Combination of geometry elements for the C-tip such as back-ground geometry and hard C-tip configuration in conjunction with the use of softer springs, having a K spring constant between 1.5 lb/in and 6.5 lb/in, more preferably between 3 lb/in and 5 lb/in, provides enhanced performance of the needle in reducing coring.
Parylene coating is applied at various thicknesses ranging from 0.0001 to 0.001 inch. Data collected in the study of effect of Parylene coating thickness on coring is summarized in graph shown in
The Table below shows examples of geometries for various embodiments of the tip of the needle. The primary angle is selected between 13 to 18 degrees. The bend angle, that is the angle between a tangent to a curvature of the outer surface of the end tip of the needle and a longitudinal axis of the needle, is selected to be between 51° and 100°, preferably between 85° and 95°, most preferably 90° (
While the invention has been described in connection with particular embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but on the contrary it is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention as defined by the claims, which follow.
Number | Name | Date | Kind |
---|---|---|---|
648858 | Dolge | May 1900 | A |
2590895 | Scarpellino | Apr 1952 | A |
2634726 | Hanson | Apr 1953 | A |
2711733 | Jacoby, Jr. | Jun 1955 | A |
2737948 | Brown | Mar 1956 | A |
2745403 | Goldberg | Apr 1956 | A |
2746454 | Sorensen | May 1956 | A |
2748769 | Huber | Jun 1956 | A |
2936756 | Gabriel | May 1960 | A |
3492992 | Kurtz | Feb 1970 | A |
3788119 | Arrigo | Jan 1974 | A |
3924617 | Ferro | Dec 1975 | A |
4381779 | Margulies | May 1983 | A |
4394863 | Bartner | Jul 1983 | A |
4413993 | Guttman | Nov 1983 | A |
4490139 | Huizenga et al. | Dec 1984 | A |
4537593 | Alchas | Aug 1985 | A |
4661098 | Bekkering et al. | Apr 1987 | A |
4808170 | Thornton et al. | Feb 1989 | A |
4826489 | Haber et al. | May 1989 | A |
4889529 | Haindl | Dec 1989 | A |
4968302 | Schluter et al. | Nov 1990 | A |
4969877 | Kornberg | Nov 1990 | A |
5102393 | Sarnoff et al. | Apr 1992 | A |
5290267 | Zimmermann | Mar 1994 | A |
5354286 | Mesa et al. | Oct 1994 | A |
5391151 | Wilmot | Feb 1995 | A |
5533993 | Maier | Jul 1996 | A |
5575780 | Saito | Nov 1996 | A |
5709668 | Wacks | Jan 1998 | A |
5716348 | Marinacci et al. | Feb 1998 | A |
5820609 | Saito | Oct 1998 | A |
5968022 | Saito | Oct 1999 | A |
6004300 | Butcher et al. | Dec 1999 | A |
6213989 | Utterberg | Apr 2001 | B1 |
6626887 | Wu | Sep 2003 | B1 |
6702791 | Hilgers et al. | Mar 2004 | B1 |
7070583 | Higuchi et al. | Jul 2006 | B1 |
20080154217 | Carrez et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
42 26 476 | Aug 1993 | DE |
1 090 651 | Apr 2001 | EP |
1225009 | Jun 1960 | FR |
WO 9220388 | Nov 1992 | WO |
WO9639213 | Dec 1996 | WO |
WO 0123020 | Apr 2001 | WO |