The present invention generally relates to systems and methods for automatically taxiing aircraft around an airport. More particularly, the present invention relates to systems and methods for dynamically determining taxiing routes for aircraft around an airport.
Airports are becoming more congested. Also, costs associated with operation of airports (e.g., ground crews), and costs associated with operation of aircrafts (e.g., fuel), are increasing.
As aircraft begin to be fitted with systems that enable engine off taxiing (e.g., engines-off taxiing systems) by, for example, directly driving associated landing gear wheels, there is an opportunity to automate airport taxiing processes, terminal gate in procedures, and terminal gate out procedures, to provide workload reduction, human error prevention, and more efficient airport ground operations.
Thus, there is an ongoing need to provide automatic aircraft taxiing route determination on the ground at an airport.
In one aspect of the present invention, a system for dynamically determining aircraft route data associated with taxiing aircraft around an airport includes an aircraft location data receiving module stored in a memory that, when executed by a processor, causes the processor to receive aircraft location data, wherein the aircraft location data is representative of respective real-time locations of a plurality of aircraft; an airport geographic map data receiving module stored on a memory that, when executed by a processor, causes the processor to receive airport geographic map data, wherein the airport geographic map data is representative of real-time available aircraft taxiing routes; and an aircraft route data determination module stored on a memory that, when executed by a processor, cause the processor to dynamically determine aircraft route data based, at least in part, on the aircraft location data and the airport geographic map data, during a time period that the plurality of aircraft are taxiing around the airport.
In another aspect of the present invention, a non-transitory computer-readable medium storing computer-executable instructions that, when executed by a processor, cause the processor to dynamically determining aircraft route data associated with taxiing aircraft around an airport includes an aircraft location data receiving module that, when executed by a processor, causes the processor to receive aircraft location data, wherein the aircraft location data is representative of respective real-time locations of a plurality of aircraft and a plurality of ground vehicles proximate the plurality of aircraft; an airport geographic map data receiving module that, when executed by a processor, causes the processor to receive airport geographic map data, wherein the airport geographic map data is representative of real-time available aircraft taxiing routes, real-time availability of runways, and real-time terminal gate/aircraft assignments; and an aircraft route data determination module that, when executed by a processor, cause the processor to dynamically determine aircraft route data based, at least in part, on the aircraft location data and the airport geographic map data.
In yet another aspect of the present invention, a method for dynamically determining aircraft route data associated with taxiing aircraft around an airport includes receiving aircraft location data, wherein the aircraft location data is representative of respective real-time locations of a plurality of aircraft; receiving airport geographic map data, wherein the airport geographic map data is representative of real-time available aircraft taxiing routes; receiving aircraft anti-collision data, wherein the aircraft anti-collision data is representative of obstacles proximate the plurality of aircraft, and wherein the aircraft route data is further based on the aircraft anti-collision data; and an aircraft route data determination module stored on a memory that, when executed by a processor, cause the processor to dynamically determine aircraft route data based, at least in part, on the aircraft location data, the airport geographic map data, and the aircraft anti-collision data.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
The following detailed description is of the best currently contemplated modes of carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
Various inventive features are described below that can each be used independently of one another or in combination with other features. However, any single inventive feature may not address any of the problems discussed above or may only address one of the problems discussed above. Further, one or more of the problems discussed above may not be fully addressed by any of the features described below.
The systems and methods of the present disclosure generally provide a plurality of onboard and off board positioning, anti-collision, and/or path following systems that may provide an accurate picture of where each aircraft, proximate a given airport, is located at any given moment in time. The systems and methods may also include determining what obstacles are around each aircraft, and what path the aircraft should follow while taxiing around the airport. Any given aircraft may be automatically navigated along a determined route using at least one engines-off taxiing system and/or a customary aircraft engine propelled approach. Such automated systems may avoid common problems associated with airports, such as runway incursions, ground collisions, and marshalling errors.
Referring now to
A processor (e.g., processor 220a of
The airport terminal 110 (e.g., a control tower, airport control authority, etc.) may include an airport terminal server computer 150 (e.g., a computing device 200a of
A processor (e.g., processor 220a of
The plurality of onboard and off board positioning, anti-collision, and/or path following systems may provide one or more of an accurate picture of where each aircraft is located proximate an associated airport, what obstacles are around each aircraft, and what path the aircraft should follow while taxiing around an airport. A combination of systems may be installed on any given aircraft, such as the anti-collision system, the engine off taxiing system, and/or the positioning/location system, as well as systems installed in an airport facility, similar to a ground control tower which may, for example, direct and give path assignments to autonomous taxi compatible aircraft. An automatic communications/data transmission system, for communication between associated aircraft systems, ground systems, and an airport tower, may be incorporated.
A system installed in an associated airport ground tower may communicate with one or more aircraft equipped with compatible aircraft systems; and corresponding servers may coordinate, calculate optimal traffic flow patterns, and/or communicate route assignments to aircraft and/or ground equipment. The aircraft and/or ground equipment may automatically navigate a received route assignment based on, for example, autonomous systems on the respective aircraft and/or ground equipment.
In emergency circumstances, airport control tower servers may exercise direct control over connected aircraft, commanding, for example, an engine off taxiing system to mitigate an onboard failure of an autonomous system, or an unexpected condition. Alternatively, or additionally, an aircraft pilot may be provided with an emergency override which may disable the autonomous taxi components entirely, returning the aircraft to manual control.
Referring now to
Referring now to
Referring now to
The processor 220a may further execute an airport/terminal geographic map data receiving module 240b that, for example, may cause the processor 220a to receive airport/terminal geographic map data (block 241c). The airport/terminal geographic map data may be representative of a geographic layout of aircraft in/out terminal gates, airport runways, and airport taxiing paths. Additionally, the airport/terminal geographic map data may be, for example, representative of airport runways that are currently available, airport runways that are currently unavailable, airport taxiing paths that are currently available, and/or airport taxiing paths that are currently unavailable. An aircraft path may be dynamically determined based on taxiways that are opening and closing due to, for example, taxiway maintenance, disabled aircraft, airport/runway congestion, runway crossing avoidance. A dynamic aircraft path determination may include taxiways, runways, and closed runways being used as taxiways.
The processor 220a may also execute, for example, an aircraft anti-collision data receiving module 245b that may cause the processor 220a to receive aircraft anti-collision data from, for example, an aircraft anti-collision system (e.g., aircraft anti-collision system 137 of
The processor 220a may, for example, execute an aircraft route data determination module 250b that may cause the processor 220a to determine aircraft route data based on, for example, the aircraft location data, the airport/terminal geographic map data and/or the aircraft anti-collision data (block 251c). The processor 220a may, for example, execute an aircraft route data transmission module 255b that may cause the processor 220a to transmit aircraft route data to a plurality of aircraft (e.g., aircraft 105 of
Aircraft route data may be determined dynamically throughout a period of time that an aircraft is navigating between a landing runway and a terminal gate and/or while the aircraft is navigating between a terminal gate and a takeoff runway based on, for example, whether an associated taxiing path becomes unavailable or available, whether a particular runway becomes unavailable or available, whether a terminal gate change occurs, etc. In any event, aircraft route data may be dynamically determined, for example, prior to any given aircraft reaching a point along a path where the aircraft is able to turn in at least two directions.
Processor 220a may dynamically determine aircraft route data based on an optimum criteria (e.g., least amount of time for a given aircraft to navigate a determined path, least amount of total time for all aircrafts proximate a given airport terminal to navigate respective paths, a least amount of potential collisions between associated aircraft, a least number of active runway crossings, etc.). In any event aircraft route data may be dynamically optimized, such that the aircraft route data may be updated any time any aircraft has an opportunity to turn in two or more directions along a respective path.
Referring now to
The method 300 may, for example, include two levels of decisions: 1) a routing determination (e.g., generate path); and 2) an optimum route calculation to develop a projected path. The routing determination may be based on current aircraft position, an aircraft destination runway, intersection points on way to runway, taxiways available, and an airport map. Optimum route calculation, to develop a projected path may include aircraft movement and dynamic monitoring of an environment (e.g., aircraft movement), monitoring an aircraft's own projected path, monitoring taxiway/runway status, a GPS position input (e.g., a GPS input of an own aircraft location), position of service vehicles, speed and direction vectors of aircraft and/or service vehicles, position input of other aircraft (e.g., an ATSB or a Radar), constraints for routing of aircraft, aircraft mobility constraints, one direction path segments, limited aircraft agility, aircraft speed and acceleration limitations, passenger comfort, airport constraints, limited routes, closed taxiways/runways, weight limited runways/taxi, decision points, dynamic decision points based on aircraft being at a terminal gate prior to movement, ramp area (e.g., exits to taxiways), route intersections (e.g., taxiway intersections and runway intersections)
Decision points may also be dynamic based on momentum of an aircraft, turn angle to a new route path and/or distance to a new route path. System actions between decision points (e.g., aircraft movement to a runway) may include monitoring an environment proximate at least one aircraft, performing anti-collision calculations and/or performing potential re-routing calculations.
It should be understood, of course, that the foregoing relates to exemplary embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.