Automatic location identification (ALI) service requests steering, connection sharing and protocol translation

Information

  • Patent Grant
  • 9282451
  • Patent Number
    9,282,451
  • Date Filed
    Tuesday, December 13, 2005
    18 years ago
  • Date Issued
    Tuesday, March 8, 2016
    8 years ago
Abstract
An ALI/ESME steering gateway bridges the nationwide ALI/ESME network notes (or PSAPs) with the GMLC/MPCs of various different XPC networks. The steering gateway provides a unified interface between the PSAP/ALI network and positioning centers (GMLC/MPC/VPCs). Using the steering gateway, an E911 service provider accesses positioning centers (GMLC/MPC/VPC) of any XPC network. This access by the ALI to the positioning center is accomplished with any type of interface, irregardless of the protocol type. The connectivity of each virtual communication path between ALIs and PSAPs is managed. The ALI/ESME steering gateway also provides translation of the protocols between the two ALI-MPC interface sets (inbound and outbound). The ALI/ESME steering gateway also consolidates (or “de-duplicates”) any/all duplicated requests from a same ALI or PSAP for the same emergency call so that only one request is then sent to the destined positioning center within the relevant network.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates generally to wireless telecommunication. More particularly, it relates to the delivery of location information to PSAP/ALI systems in a non-landline environment i.e. cellular, VoIP etc in an emergency services call flow.


2. Background of Related Art


9-1-1 is a phone number widely recognized in North America as an emergency phone number that is used to contact emergency dispatch personnel. Enhanced 9-1-1 (E9-1-1) is defined by the transmission of callback number and location information when 9-1-1 is used. E9-1-1 may be implemented for landline, cellular or VoIP networks. A Public Service Answering Point (PSAP) is a dispatch office that receives 9-1-1 calls from the public. A PSAP may be a local, fire or police department, an ambulance service or a regional office covering all services.


Regardless of the network type, a 9-1-1 service becomes E-9-1-1 when automatic number identification and automatic location information related to the call is provided to the 9-1-1 operator at the PSAP. A primary challenge results from the fact that calls may arrive at the PSAP without callback number or location information displayed at the emergency operators terminal.


A PSAP is connected to one Automatic Location Identifier (ALI). An ALI is a database that accepts a PSAP query with telephone number, relates the telephone number to an address and provides that address (location information) back to the PSAP in a manner that works for the customer premise equipment (CPE) display. An ALI is typically owned by a LEC or a PSAP, and may be regional (i.e. connected to many PSAPs) or standalone (i.e. connected to only one PSAP). There is no one single standard interface protocol for PSAP-ALI connection/communication.


Most PSAPs are publicly funded and maintain only one outside ALI connection for both landline and non-landline networks. Some ALIs are able to support only one outside connection to a positioning center. This is problematic for non-landline networks, which have users who are inherently mobile and may be in a particular PSAP-ALI jurisdiction, but their provider does not maintain a connection to the PSAP/ALI.



FIG. 7 shows a conventional landline public safety access point (PSAP) to automatic location identifier (ALI) connection.


In particular, upon receiving a 9-1-1 call, the PSAP queries their ALI for location data. As shown in FIG. 7 in landline telephony, an ALI 401 accepts a PSAP 400 query for location and returns location based on pre-provisioned data for the telephone number.



FIG. 8 shows a context diagram for a conventional non-landline XPC network.


In particular, as shown in FIG. 8 in non-landline telephony, PSAPs 400a, 400b query the same ALI 401a, 401b for location information. However, the ALI 401a, 401b is not pre-provisioned with location data for non-landline calls (e.g. cellular, VoIP etc) and must communicate with other network entities to obtain and deliver location data to the PSAP 400a, 400b.


Non-landline telephony standards (e.g. cellular, VoIP etc) have mandated that ALIs 401, 401a, 401b maintain connectivity to positioning centers 402a, 402b, 402c that are able to provide current location data for a non-landline call. In the current state of technology the positioning center 402 provides the caller's location and the callback number to the ALI, which passes it to the requesting PSAP. As can be seen in FIG. 8, an ALI may maintain connectivity to more than one positioning center via an multiple interface types 403a, 403b, 403c, . . . , etc.—both standard and non-standard (e.g. NENA ESP, PAM, E2+etc).


As used herein, the generic term “XPC” refers interchangeably to any standards-based positioning center.


A positioning center 402 may be any one of the following types used in non-landline networks:

    • GMLC (Gateway Mobile Location Center): The positioning center that retrieves, forwards, stores and controls emergency position data within the GSM location network.
    • MPC (Mobile Position Center): The positioning center that retrieves, forwards, stores and controls emergency position data within the ANSI location network.
    • VPC (VoIP Positioning Center): The positioning center which retrieves, forwards, stores and controls emergency position data within the VoIP location network.


The term “XPC network” is used herein when appropriate to refer to any non-landline network where a positioning center 402 responds to ALI 401a, 401b queries for location i.e. cellular, VoIP etc.


The term “PSAP” refers herein to either a public safety access point (PSAP), or to an Emergency Call Center (ECC), a VoIP term.


There is no uniformity among the thousands of different PSAPs with regard to how they request location data delivery (e.g. there are many different protocol interfaces), or as to how that data displayed on the PSAP customer premise equipment (CPE) varies, because the technology for connecting calls varies between the many manufacturers of, and carriers using, ALI devices. Moreover, some PSAPs are not enhanced, and thus do not receive the callback or location information at all from any phone, be it landline, cellular or VoIP.


Multiple implementations of ALI-XPC interface types are possible. Conventional ALI networks are overly complex because ALI networks nationwide must support multiple and varied ALI-XPC interfaces with different configurations.


Each carrier selects a single XPC to provide location data for its callers—not all XPCs have connectivity with all the ESME/ALI servers associated with the corresponding PSAPs that may be requesting location. Conventional XPCs for a non-landline service provider are required to handle many aspects in the emergency services call flow—from routing an emergency E9-1-1 call to the relevant PSAP; to providing ALI information to the PSAP. This creates a highly complex architecture.


There is a need for an architecture and methodology that both simplifies the complexity of the national PSAP and/or ALI network, and which also increases system efficiencies by reducing required system elements.


SUMMARY OF THE INVENTION

In accordance with the principles of the invention, a new E9-1-1 element called an “ALI/ESME Steering Gateway” is introduced. The concept of ALI/ESME Steering Gateway 100 is illustrated in FIG. 1. The “ALI/ESME Steering Gateway” 100 appears as an XPC to the ALI/ESME requesting location data delivery; and as an ESME/ALI to the XPC that possesses the location information for the caller.


ALI/ESME Steering Gateway addresses the complexity of supporting various ALI-XPC interfaces with different configurations and interface protocols; and the fact that not every carrier's XPC has connectivity with all the ESME/ALI servers associated with the corresponding PSAPs. ALI/ESME Steering Gateway provides nationwide connectivity between XPCs and regional and standalone ALI (SALI) databases through a single contact point. ALI/ESME Steering Gateway takes over the burden from the XPC of delivering ALI information to the PSAP via whatever technology or interface protocol the PSAP's ALI requires.


ALI/ESME Steering Gateway provides the following added functionality to the non-landline network:

    • Manages the connectivity for each individual ALI-XPC interface, freeing the each from having to maintain multiple connections;
    • Provides protocol translation between ALI-XPC interface sets (inbound and outbound), freeing each from having to support multiple interface protocols;
    • Consolidates (de-duplicates) duplicated requests from the same PSAP for the same emergency call: sending only one request if required to the XPC


In accordance with the principles of the present invention, an ALI/ESME Steering Gateway comprises a plurality of protocol agents for communicating with respective ALI systems each having a different communication protocols for communicating with an XPC. An inbound ALI interface to ALI/ESME Steering Gateway connects each of the plurality of protocol agents to the respective ALI systems. An outbound ALI interface to ALI/ESME Steering Gateway connects each of the plurality of protocol agents to respective XPCs (positioning centers).


A method of translating and properly formatting automatic location identification (ALI) requests of one type interface protocol to an XPC of another type interface protocol in accordance with another aspect of the invention comprises receiving an ALI request of an inbound ALI interface using a first type interface protocol. The ALI request is converted into a second type interface protocol different from the first type. The converted ALI request is transmitted over an outbound ALI interface using the second type interface protocol, wherein an ALI request of one type IP protocol is able to access an MPC using a different type IP protocol.





BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the drawings, in which:



FIG. 1 shows an exemplary ALI network including an ALI/ESME Steering Gateway, in accordance with the principles of the present invention.



FIG. 2 shows an exemplary ALI/ESME steering gateway, in accordance with the principles of the present invention.



FIGS. 3A through 3B are a table showing possible ALI-MPC interface steering types, in accordance with an exemplary embodiment of the present invention.



FIG. 4 depicts ALI-XPC interface steering from a network context, in accordance with the principles of the present invention.



FIGS. 5A through 5B are an exemplary call flow diagram showing a successful E2 ALISA (Fully Connected Redundant Node, Both Mode) to SR/ALI-E2+ Steering, in accordance with the principles of the present invention.



FIG. 6 is an exemplary call flow diagram showing a successful PAM to SR/ALI-E2 Steering, in accordance with the principles of the present invention.



FIG. 7 shows a conventional landline public safety access point (PSAP) to automatic location identifier (ALI) connection.



FIG. 8 shows a context diagram for a conventional XPC network (non-landline).





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The present invention provides connectivity, protocol translation and data delivery between PSAP/ALI systems and XPCs. The method and mechanism described and shown is referred to herein as “ALI/ESME Steering Gateway”.



FIG. 1 shows an exemplary ALI network including an ALI/ESME Steering Gateway 100, in accordance with the principles of the present invention.


In particular, as shown in FIG. 1 the ALI/ESME Steering Gateway 100 provides a unified interface between each PSAP/ALI in the national PSAP/ALI network, and positioning centers (XPCs) 1-5 in every non-landline network e.g. cellular, VoIP etc.


The inventive ALI/ESME Steering Gateway 100 manages the connectivity between individual PSAP/ALIs 510-515 and XPCs 1-5 (e.g. TCP/IP, frame relay etc). In accordance with the present invention, access by the ALI to the XPC is accomplished with any type of interface, irregardless of the protocol type.


When the PSAP/ALI 510-515 requests location, the ALI/ESME Steering Gateway 100 handles protocol conversions as required between existing and future ALI protocols (ve2, e2, e2+, PAM, legacy NENA, etc.) to the appropriate protocol used to communicate with the XPC that can provide location data.


The ALI/ESME Steering Gateway 100 selects the appropriate XPC for each ALI query it receives, and passes the query; providing protocol translation between the two ALI-XPC interface sets (inbound and outbound) as required.


Preferably, the ALI/ESME Steering Gateway 100 also consolidates (or “de-duplicates”) any/all duplicated requests from a same PSAP/ALI for the same emergency call. In this way, only one request is then sent to the destined XPC within the relevant XPC network.


The ALI/ESME steering gateway 100 may also implement an ALI update request throttling as described in U.S. Provisional Patent Application No. 60/700,345, the entirety of which is expressly incorporated herein by reference.


On the ‘inbound’ ALI-MPC interfaces of the ALI/ESME Steering Gateway 100, shown generally on the left-hand side of FIG. 1, various exemplary interface protocols are shown, e.g. PAM, legacy NENA, NENA ESP, European OMA MLP and the pre-standard VoIP E2. Similarly, ‘outbound’ ALI-MPC interfaces of the ALI/ESME Steering Gateway 100, may include the same (or different) type interfaces, as shown generally on the right-hand side of FIG. 1.


Upon receipt of a location request from any of the various PSAP/ALIs 510-515, the ALI/ESME Steering Gateway 100 determines the correct XPC 1-5 servicing the call by accessing a suitable location to carrier lookup table 561. Most importantly, in that lookup, the outbound interface protocol type for accessing the relevant XPC 1-5 of the determined carrier's network is determined (e.g., E2, PAM, legacy NENA, NENA ESP or OMA MLP etc).


Because of the flexibility imported by the implementation of an ALI/ESME Steering Gateway 100 in accordance with the principles of the present invention, important network improvements can be accomplished.


For instance, the ALI/ESME Steering Gateway 100 preferably includes the capability to convert a single location request from a PSAP/ALI 510-515 to multiple ALI queries. Thus, the ALI/ESME steering gateway 100 may initiate multiple ALI location request queries to relevant XPCs 1-5 on the ‘outbound’ ALI interface shown generally on the right side of FIG. 1.


Another important network improvement is that the ALI/ESME steering gateway 100 can provide, as desired, the ability to de-duplicate duplicate location requests for a same emergency call. In this respect, it is possible that multiple location request queries may be received for the position of a same mobile device. In such a case, multiple duplicated ALI queries may be received by the ALI/ESME Steering Gateway 100. Thus, ALI/ESME Steering Gateway 100 may operate in a networked redundant mode that is capable of consolidating multiple identical ALI location requests from the same inbound ALI interface grouping (i.e. to/from the same PSAP). In such case, the ALI/ESME Steering Gateway 100 should exchange information in realtime so that the requesting device (e.g., an ALI) and the receiving device (e.g. an XPC) can coordinate and consolidate any duplicated ALI location requests received independently.


As mentioned previously, a PSAP must be capable of querying a variety of XPC networks that are determined to be responsible for a given emergency caller. The ALI/ESME Steering Gateway 100, using the location to carrier lookup table 561, determines which XPC 1-5 network a received ALI location request should be steered to, removing the burden of this from the PSAP/ALI system 510-515. Thus, the ALI/ESME steering gateway determines whether a consolidated ALI location request query should be steered, and to which XPC 1-5 the query should be steered to.


In one embodiment, this can be accomplished by checking the query key, i.e., the Emergency Service Routing Key (ESRK) or the Emergency Service Routing Digits (ESRD). This query key is compared to a database in the location to carrier lookup table 561 that contains information about which particular carrier owns that particular ESRK and/or ESRD. The carrier is matched to a particular XPC 1-5 for location servicing.


Once the ALI/ESME steering gateway 100 determines where a consolidated ALI location request query should be steered, based on the configuration of the outbound ALI interface, the ALI/ESME Steering Gateway 100 formats the received ALI location request query in the appropriate interface protocol type for the outbound ALI interface. Optionally, the ALI/ESME steering gateway 100 can generate multiple redundant ALI location request queries over the outbound ALI interface.



FIG. 2 shows an exemplary ALI/ESME steering gateway, in accordance with the principles of the present invention.


In particular, as shown in FIG. 2, the exemplary ALI/ESME steering gateway 100 comprises an ‘inbound’ ALI interface protocol 601, and an ‘outbound’ ALI interface protocol 602. The ‘inbound’ and ‘outbound’ interfaces protocols may utilize one of a variety of connection protocols (e.g. TCP/IP, frame relay), and may access the public world wide web (the Internet) and/or a local Intranet.


The ALI/ESME Steering Gateway 100 includes a suitable software agent 607 capable of establishing and maintaining a virtual connection between a given ALI/ESME of the respective protocol type (e.g., E2) with a XPC of the same respective protocol type. Protocol conversion is accomplished in a suitable processor associated with an ALI router steering control 621 having a data bus in communication with each software agent 607a to 607f. The ALI/ESME Steering Gateway 100 further includes an emergency call de-duplicator 622, providing the ability to de-duplicate duplicate location requests for a same emergency call.


During the transaction of steering a given ALI location request query, the ALI/ESME Steering Gateway 100 maintains the connection management for the inbound ALI interface 601 and the outbound ALI interface 602 separately. At the same time, however, the ALI/ESME Steering Gateway 100 coordinates the inbound and outbound ALI interfaces 601, 602, so that when the response(s) to the location request query (or queries) of the outbound ALI interface 602 is received, the ALI/ESME Steering Gateway 100 can translate and format a proper response(s) on the inbound ALI interface 601.



FIGS. 3A through 3B are a table showing possible ALI-MPC interface steering types, in accordance with an exemplary embodiment of the present invention. These interfaces currently exist in the PSAP/ALI network, and are used as examples for steering scenarios.


For example, as shown in FIGS. 3A through 3B, possible steering scenarios include steering ALI location requests from an ALI/ESME utilizing PAM protocols (e.g., PAM v6.1) (row 301) to any type XPC, e.g., XPC using the same PAM interface (column 311), or to an XPC using an SR/ALI E2 type protocol, e.g., NENA 05 redundant note primary/secondary operation as depicted in column 312. Similarly, ALIs using other protocols as depicted in rows 302-306 of FIG. 6 can communicate with XPCs using any protocol as depicted in columns 311-316- or any future protocols, using an ALI/ESME Steering Gateway 100 in accordance with the principles of the present invention.



FIG. 4 depicts ALI-XPC interface steering from a network context, in accordance with the principles of the present invention.


In particular, as shown in FIG. 4, a PSAP 901 makes an ALI location request of a relevant ALI/ESME 902 or 903. The ALI/ESME communicates with the ALI/ESME Steering Gateway 100, and is routed through relevant ALI router agents 921, 922 to desired XPC 911 or 912 of given XPC networks. The ALI router agents 921, 922 may be associated with any given interface protocol, e.g., E2 and PAM, respectively; or NENA ESP and PAM; etc.



FIGS. 5A through 5B and 6 show message flow for ALI steering between representative protocol types, in accordance with the principles of the present invention. These Figures are intended to illustrate to those of ordinary skill in the art exemplary message flows of the E2 ALISA to SR/ALI-E2 Steering and the PAM to SR/ALI-E2 Steering, as examples of ALI Steering implementation. Of course, as depicted in the table of FIG. 6, many other combinations and conversions of protocols may be implemented with ALI steering in accordance with the principles of the present invention.



FIGS. 5A through 5B are exemplary call flow diagrams showing a successful E2 ALISA (Fully Connected Redundant Node, Both Mode) to SR/ALI-E2+ Steering, in accordance with the principles of the present invention.


In particular, as shown in step (a) of FIGS. 5A-5B, as ALI/ESME-1561 and ALI/ESME-2562 are in Both Mode (both ESMEs query each of the MPCs 565, 566 to which each ESME 561, 562 has a TCP/IP session established. ALI/ESME-1561 queries for position by sending an ESPOSREQ to ALI router agent 1564 running in the ALI/ESME Steering Gateway 100.


In step (b), ALI/ESME-1561 sends an identical ESPOSREQ to ALI router agent 2563 running in the ALI/ESME Steering Gateway 100 for position. Note that this ESPOSREQ has the same transaction ID as the one in the ESPOSREQ received in Step (a).


In step (c), ALI/ESME-2562 also sends an identical ESPOSREQ to ALI router agent 2563. Note that the Transaction ID in this ESPOSREQ will be different from the one in steps (a) and (b).


In step (d), ALI/ESME-2562 sends an identical ESPOSREQ to ALI router agent 1564. Note that this ESPOSREQ has the same Transaction ID as the one in the ESPOSREQ received in step (c).


In step (e), the ALI/ESME Steering Gateway 100 may start a timer when it first receives an ESPOSREQ message from one of ALISA connections. Any identical E2 ALISAESPOSREQ requests received before the timer expiration shall be considered as duplicated requests; any identical E2 ALISAESPOSREQ requests received after the timer expires shall be considered as a new ALISA transaction. On receiving the identical ESPOSREQs, the ALI router agent 1564 and the ALI router agent 2563 shall exchange information, process only the first received ESPOSREQ (or decide which one to process by other manner). In this message flow, the ALI router agent 1564 handles the request.


Upon receipt of the ESPOSREQ messages, the ALI router agent determines the Query Key (ESRK or ESRD included in the first received query), and is configured to be steered to an outbound SR/ALI E2+grouping. ALI router agent 1564 and ALI router agent 2563 are coordinated so that the ALI/ESME Steering Gateway 100 starts an ALI Steering Timeout timer whenever it is ready to generate queries to the outbound SR/ALI E2+ interface. The ESPOSREQ that is being processed is forwarded to the XPC 566 with a new Transaction ID via the primary outbound connection, and an ESPRT timer is started.


In step (f), the XPC-1566 returns position information in an esposreq message. The ALI/ESME Steering Gateway 100 stops the ALI Steering Timeout timer when it receives the results of the outbound steered ALI transaction.


In step (g), ALI router agent 1564 returns an esposreq with the requested position information to the ALI/ESME-1561. The ALI router agents 563, 564 manage the state for each TCP/IP session to ALISA. In the case that the selected session (ESPOSREQ) for response is out of service, the ALI router agents 563, 564 can use a different route from which the ALI router agent 563, 564 has received the same query.


In step (h), ALI router agent 2563 returns an esposreq with PositionResult=04 (requestedPositionNotAvailable) or other error code, without position info to the ALI/ESME-1561.


In step (i), ALI router agent 2563 returns an esposreq with PositionResult=04 (requestedPositionNotAvailable) or other error code, without position info to the ALI/ESME-2562.


In step j), ALI router agent 1564 returns an esposreq with PositionResult=04 (requestedPostionNotAvailable) or other error code, without position info to the ALI/ESME-2562.



FIG. 6 is an exemplary call flow diagram showing a successful PAM to SR/ALI-E2 Steering, in accordance with the principles of the present invention.


In particular, as shown in step (a) of FIG. 6, an ALI/ESME-1661 queries a relevant ALI router agent 1664 for position by sending a PAM “00”, “01” or “02” request with ANI (ESRK).


In step (b), an ALI/ESME-2662, which is a mated PAM pair with the ALI/ESME-1661, sends an identical PAM “00”, “01” or “02” request to the connected ALI Router agent 2663.


In step (c), on receiving the first PAM “00”, “01” or “02” query from a mated PAM pair, the ALI/ESME Steering Gateway 100 (geographically redundant ALI router agent 1 and ALI router agent 2 belong to the same ALI/ESME Steering Gateway 100) start a timer. When this timer expires, any newly received PAM query is considered as a new transaction. Within a “Purge Interval” period, an identical PAM “00”, “01” or “02” is expected as the first query. The ALI/ESME Steering Gateway 100 coordinates the ALI router agent 1664 and ALI router agent 2663. The ALI router agent 2663 responds to the second PAM “00”, “01” or “02” query, which is identical to the first received PAM query, with a PAM “04” message with response code=02 (short response). Note: Two PAM queries are considered to be identical if the following information elements of the two queries are exactly the same: MESSAGE TYPE, PSAPID, ANI, POSITION and TRUNK.


In step (d), based on the first received PAM query, the ALI/ESME Steering Gateway 100 determines if the query needs to be steered, and to which outbound ALI interface it is to be steered based on the included ESRK. In the given exemplary scenario of FIG. 6, the query is steered to an outbound SR/ALI-E2 type interface.


The ALI router agent 1664 and ALI router agent 2663 are coordinated, so that the ALI/ESME Steering Gateway starts an ALI Steering Timeout timer whenever the ALI/ESME Steering Gateway 100 is ready to generate queries to an outbound SR/ALI-E2 interface. One ESPOSREQ message is generated, by translating the information received in the PAM query to the corresponding ESPOSREQ information elements. The ALI router agent 1664 sends an ESPOSREQ and starts an ESPRT timer for the query.


In step (e), a XPC-1666 sends position information in an esposreq message back to the ALI router agent 1664. The corresponding ESPRT is stopped. ALI router agent 1 stops the ALI Steering Timeout timer when it receives the result of the outbound steered ALI transaction.


In step (f), upon receiving position information in an esposreq message, the ALI router agent 1664 translates the received information to the information elements in the PAM “04” message format, and sends it back to the ALI/ESME-1661.


While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention without departing from the true spirit and scope of the invention.

Claims
  • 1. An automatic location identification (ALI) steering gateway, comprising: a plurality of interface protocol agents for communicating with respective ones of a plurality of ALI systems each having a different one of a plurality of different Internet Protocol (IP) communication protocols for communicating with a respective one of a plurality of mobile positioning centers;an inbound ALI interface for connecting each of said plurality of interface protocol agents to said respective one of said plurality of ALI systems; andan outbound ALI interface for connecting each of said plurality of interface protocol agents to said plurality of mobile positioning centers.
  • 2. The automatic location identification (ALI) steering gateway according to claim 1, wherein said plurality of different Internet Protocol (IP) communication protocols comprise: Pulse Amplitude Modulation (PAM);National Emergency Number Association (NENA); andE2.
  • 3. The automatic location identification (ALI) steering gateway according to claim 1, wherein said plurality of different Internet Protocol (IP) communication protocols comprise: Pulse Amplitude Modulation (PAM); andE2.
  • 4. The automatic location identification (ALI) steering gateway according to claim 1, further comprising: an ALI request de-duplicator to consolidate a plurality of ALI requests received by said ALI steering gateway into a fewer number of ALI requests transmitted by said ALI steering gateway.
  • 5. The automatic location identification (ALI) steering gateway according to claim 1, further comprising: a carrier lookup table associating each of said plurality of different Internet Protocol (IP) communication protocols with a given one of said plurality of mobile positioning centers.
  • 6. The automatic location identification (ALI) steering gateway according to claim 1, wherein said plurality of different Internet Protocol (IP) communication protocols comprise: E2.
  • 7. The automatic location identification (ALI) steering gateway according to claim 1, wherein said plurality of different Internet Protocol (IP) communication protocols comprise: Pulse Amplitude Modulation (PAM).
  • 8. The automatic location identification (ALI) steering gateway according to claim 1, wherein said plurality of different Internet Protocol (IP) communication protocols comprise: National Emergency Number Association (NENA).
  • 9. The automatic location identification (ALI) steering gateway according to claim 1, wherein: said ALI steering gateway is comprised in an E911 service provider network.
  • 10. A method of steering automatic location identification (ALI) requests of one type IP protocol to a mobile positioning center of another type IP protocol, comprising: receiving an ALI request of an inbound ALI interface using a first type Internet Protocol;converting said ALI request into a second type Internet Protocol different from said first type Internet Protocol; andtransmitting said converted ALI request over an outbound ALI interface using said second type Internet Protocol;wherein an ALI request of one type Internet Protocol is able to access a mobile positioning center using a different type Internet Protocol.
  • 11. The method of steering automatic location identification (ALI) requests of one type IP protocol to a mobile positioning center of another type IP protocol according to claim 10, wherein: said received ALI request is sourced from a public safety access point (PSAP).
  • 12. The method of steering automatic location identification (ALI) requests of one type IP protocol to a mobile positioning center of another type IP protocol according to claim 10, further comprising: upon receipt of said ALI request, determining a wireless carrier servicing a particular location using a location to carrier lookup table.
  • 13. The method of steering automatic location identification (ALI) requests of one type IP protocol to a mobile positioning center of another type IP protocol according to claim 10, further comprising: upon receipt of said ALI request, determining an interface type of a given mobile positioning center of a wireless carrier servicing a relevant emergency caller.
  • 14. The method of steering automatic location identification (ALI) requests of one type IP protocol to a mobile positioning center of another type IP protocol according to claim 10, further comprising: multiplying a single ALI request from at least one of an ALI and a public safety access point (PSAP);wherein an additional ALI request is directed to an additional mobile positioning center.
  • 15. The method of steering automatic location identification (ALI) requests of one type IP protocol to a mobile positioning center of another type IP protocol according to claim 10, further comprising: de-duplicating a plurality of ALI requests into a fewer number of ALI requests directed to said mobile positioning center.
  • 16. The method of steering automatic location identification (ALI) requests of one type IP protocol to a mobile positioning center of another type IP protocol according to claim 10, wherein said first type Internet Protocol and said second type Internet Protocol each comprise one of: PAM;NENA; andE2.
  • 17. Apparatus for steering automatic location identification (ALI) requests of one type IP protocol to a mobile positioning center of another type IP protocol, comprising: means for receiving an ALI request of an inbound ALI interface using a first type Internet Protocol;means for converting said ALI request into a second type Internet Protocol different from said first type Internet Protocol; andmeans for transmitting said converted ALI request over an outbound ALI interface using said second type Internet Protocol;wherein an ALI request of one type Internet Protocol is able to access a mobile positioning center using a different type Internet Protocol.
  • 18. The apparatus for steering automatic location identification (ALI) requests of one type IP protocol to a mobile positioning center of another type IP protocol according to claim 17, wherein: said received ALI request is sourced from a public safety access point (PSAP).
  • 19. The for steering automatic location identification (ALI) requests of one type IP protocol to a mobile positioning center (MPC) of another type IP protocol according to claim 17, further comprising: means for determining a wireless carrier servicing a particular location using a location to carrier lookup table, upon receipt of said ALI request.
  • 20. The apparatus for steering automatic location identification (ALI) requests of one type IP protocol to a mobile positioning center (MPC) of another type IP protocol according to claim 17, further comprising: means for determining an interface type of a given mobile positioning center of a wireless carrier servicing a relevant emergency caller, upon receipt of said ALI request.
  • 21. The apparatus for steering automatic location identification (ALI) requests of one type IP protocol to a mobile positioning center (MPC) of another type IP protocol according to claim 17, further comprising: means for multiplying a single ALI request from at least one of an ALI and a public safety access point (PSAP);wherein an additional ALI request is directed to an additional mobile positioning center.
  • 22. The apparatus for steering automatic location identification (ALI) requests of one type IP protocol to a mobile positioning center (MPC) of another type IP protocol according to claim 17, further comprising: means for de-duplicating a plurality of ALI requests into a fewer number of ALI requests directed to said mobile positioning center.
  • 23. The apparatus for steering automatic location identification (ALI) requests of one type IP protocol to a mobile positioning center (MPC) of another type IP protocol according to claim 17, wherein said first type Internet Protocol and said second type Internet Protocol each comprise one of: Pulse Amplitude Modulation (PAM);National Emergency Number Association (NENA); andE2.
Parent Case Info

The present application claims priority from U.S. Provisional Patent Application No. 60/720,044, filed Sep. 26, 2005, entitled “Automatic Location Identification (ALI) Service Requests Steering and Connection Sharing” to Zhu et al., the entirety of which is expressly incorporated herein by reference.

US Referenced Citations (738)
Number Name Date Kind
1103073 O'Connell Jul 1914 A
4445118 Taylor et al. Apr 1984 A
4494119 Wimbush Jan 1985 A
4651156 Martinez Mar 1987 A
4706275 Kamil Nov 1987 A
4868570 Davis Sep 1989 A
4891638 Davis Jan 1990 A
4891650 Scheffer Jan 1990 A
4952928 Carroll Aug 1990 A
4972484 Theile Nov 1990 A
5014206 Scribner May 1991 A
5043736 Darnell Aug 1991 A
5055851 Sheffer Oct 1991 A
5068656 Sutherland Nov 1991 A
5068891 Marshall Nov 1991 A
5070329 Jasimaki Dec 1991 A
5081667 Drori Jan 1992 A
5119104 Heller Jun 1992 A
5126722 Kamis Jun 1992 A
5144283 Arens Sep 1992 A
5161180 Chavous Nov 1992 A
5166972 Smith Nov 1992 A
5177478 Wagai Jan 1993 A
5193215 Olmer Mar 1993 A
5208756 Song May 1993 A
5214789 George May 1993 A
5218367 Sheffer Jun 1993 A
5223844 Mansell Jun 1993 A
5239570 Koster Aug 1993 A
5265630 Hartmann Nov 1993 A
5266944 Carroll Nov 1993 A
5283570 DeLuca Feb 1994 A
5289527 Tiedemann Feb 1994 A
5293642 Lo Mar 1994 A
5299132 Wortham Mar 1994 A
5301354 Schwendeman Apr 1994 A
5311516 Kuznicke May 1994 A
5325302 Izidon Jun 1994 A
5327529 Fults Jul 1994 A
5334974 Simms Aug 1994 A
5335246 Yokev Aug 1994 A
5343493 Karimullah Aug 1994 A
5347568 Moody Sep 1994 A
5351235 Lahtinen Sep 1994 A
5361212 Class Nov 1994 A
5363425 Mufti Nov 1994 A
5365451 Wang Nov 1994 A
5374936 Feng Dec 1994 A
5379337 Castillo et al. Jan 1995 A
5379451 Nakagoshi Jan 1995 A
5381338 Wysocki Jan 1995 A
5387993 Heller Feb 1995 A
5388147 Grimes Feb 1995 A
5390339 Bruckery Feb 1995 A
5394158 Chia Feb 1995 A
5396227 Carroll Mar 1995 A
5398190 Wortham Mar 1995 A
5406614 Hara Apr 1995 A
5418537 Bird May 1995 A
5422813 Schuchman Jun 1995 A
5423076 Westergren Jun 1995 A
5434789 Fraker Jul 1995 A
5454024 Lebowitz Sep 1995 A
5461390 Hosher Oct 1995 A
5470233 Fruchterman Nov 1995 A
5479408 Will Dec 1995 A
5479482 Grimes Dec 1995 A
5485161 Vaugh Jan 1996 A
5485163 Singer Jan 1996 A
5488563 Chazelle Jan 1996 A
5494091 Freeman Feb 1996 A
5497149 Fast Mar 1996 A
5504491 Chapman Apr 1996 A
5506886 Maine Apr 1996 A
5508931 Snider Apr 1996 A
5513243 Kage Apr 1996 A
5515287 Hakoyama May 1996 A
5517199 DiMattei May 1996 A
5519403 Bickley May 1996 A
5530655 Lokhoff Jun 1996 A
5530914 McPheters Jun 1996 A
5532690 Hertel Jul 1996 A
5535434 Siddoway Jul 1996 A
5539395 Buss Jul 1996 A
5539398 Hall Jul 1996 A
5539829 Lokhoff Jul 1996 A
5543776 L'Esperance Aug 1996 A
5546445 Dennison Aug 1996 A
5552772 Janky Sep 1996 A
5555286 Tendler Sep 1996 A
5568119 Schipper Oct 1996 A
5568153 Beliveau Oct 1996 A
5574648 Pilley Nov 1996 A
5579372 Angstrom Nov 1996 A
5588009 Will Dec 1996 A
5592535 Klotz Jan 1997 A
5594780 Wiedeman Jan 1997 A
5604486 Lauro Feb 1997 A
5606313 Allen Feb 1997 A
5606618 Lokhoff Feb 1997 A
5606850 Nakamura Mar 1997 A
5610815 Gudat Mar 1997 A
5614890 Fox Mar 1997 A
5615116 Gudat Mar 1997 A
5621793 Bednarek Apr 1997 A
5628051 Salin May 1997 A
5629693 Janky May 1997 A
5633912 Tsoi May 1997 A
5636276 Brugger Jun 1997 A
5661652 Sprague Aug 1997 A
5661755 Van de Kerkhof Aug 1997 A
5682600 Salin Oct 1997 A
5689245 Noreen Nov 1997 A
5699053 Jonsson Dec 1997 A
5704029 Wright, Jr. Dec 1997 A
5717688 Belanger et al. Feb 1998 A
5721781 Deo Feb 1998 A
5731785 Lemelson Mar 1998 A
5740534 Ayerst Apr 1998 A
5761618 Lynch Jun 1998 A
5765152 Erickson Jun 1998 A
5767795 Schaphorst Jun 1998 A
5768509 Gunluk Jun 1998 A
5771353 Eggleston Jun 1998 A
5774533 Patel Jun 1998 A
5774670 Montulli Jun 1998 A
5787357 Salin Jul 1998 A
5794142 Vantilla Aug 1998 A
5797094 Houde Aug 1998 A
5797096 Lupien Aug 1998 A
5802492 DeLorrme Sep 1998 A
5806000 Vo Sep 1998 A
5809415 Rossmann Sep 1998 A
5812086 Bertiger Sep 1998 A
5812087 Krasner Sep 1998 A
5822700 Hult Oct 1998 A
5828740 Khue Oct 1998 A
5835907 Newman Nov 1998 A
5841396 Krasner Nov 1998 A
5857201 Wright, Jr. Jan 1999 A
5864667 Barkam Jan 1999 A
5874914 Krasner Feb 1999 A
5896369 Warsta Apr 1999 A
5920821 Seaholtz Jul 1999 A
5922074 Richard Jul 1999 A
5930250 Klok Jul 1999 A
5930701 Skog Jul 1999 A
5943399 Bannister Aug 1999 A
5945944 Krasner Aug 1999 A
5946629 Sawyer Aug 1999 A
5946630 Willars Aug 1999 A
5950130 Coursey Sep 1999 A
5950137 Kim Sep 1999 A
5953398 Hill Sep 1999 A
5960362 Grob Sep 1999 A
5974054 Couts Oct 1999 A
5978685 Laiho Nov 1999 A
5983099 Yao Nov 1999 A
5987323 Huotari Nov 1999 A
5998111 Abe Dec 1999 A
5999124 Sheynblat Dec 1999 A
6014602 Kithol Jan 2000 A
6032051 Hall Feb 2000 A
6035025 Hanson Mar 2000 A
6049710 Nilsson Apr 2000 A
6052081 Krasner Apr 2000 A
6058300 Hanson May 2000 A
6058338 Agashe et al. May 2000 A
6061018 Sheynblat May 2000 A
6061346 Nordman May 2000 A
6064336 Krasner May 2000 A
6064875 Morgan May 2000 A
6067045 Castelloe May 2000 A
6070067 Nguyen May 2000 A
6075982 Donovan Jun 2000 A
6081229 Soliman Jun 2000 A
6081508 West Jun 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6101240 Blair et al. Aug 2000 A
6101378 Barabash Aug 2000 A
6101428 Snyder Aug 2000 A
6104931 Havinis Aug 2000 A
6108533 Brohoff Aug 2000 A
6122503 Daly Sep 2000 A
6122520 Want Sep 2000 A
6124810 Segal Sep 2000 A
6128664 Yanagidate et al. Oct 2000 A
6131067 Girerd Oct 2000 A
6133874 Krasner Oct 2000 A
6134316 Kallioniemi Oct 2000 A
6134483 Vayanos Oct 2000 A
6138003 Kingdon Oct 2000 A
6148197 Bridges Nov 2000 A
6148198 Anderson Nov 2000 A
6149353 Nilsson Nov 2000 A
6150980 Krasner Nov 2000 A
6154172 Piccionelli Nov 2000 A
6169891 Gorham Jan 2001 B1
6169901 Boucher Jan 2001 B1
6169902 Kawamoto Jan 2001 B1
6173181 Losh Jan 2001 B1
6178505 Schneider Jan 2001 B1
6178506 Quick, Jr. Jan 2001 B1
6181935 Gossman Jan 2001 B1
6181939 Ahvenainen Jan 2001 B1
6188354 Soliman Feb 2001 B1
6188752 Lesley Feb 2001 B1
6188909 Alananra Feb 2001 B1
6189098 Kaliski, Jr. Feb 2001 B1
6195557 Havinis Feb 2001 B1
6198431 Gibson Mar 2001 B1
6199045 Giniger Mar 2001 B1
6199113 Alegre Mar 2001 B1
6205330 Windbladh Mar 2001 B1
6208290 Krasner Mar 2001 B1
6208854 Roberts Mar 2001 B1
6215441 Moeglein Apr 2001 B1
6219557 Havinis Apr 2001 B1
6223046 Hamill-Keays Apr 2001 B1
6226529 Bruno May 2001 B1
6239742 Krasner May 2001 B1
6247135 Feague Jun 2001 B1
6249680 Wax Jun 2001 B1
6249744 Morita Jun 2001 B1
6249873 Richard Jun 2001 B1
6253074 Carlsson Jun 2001 B1
6253203 O'Flaherty Jun 2001 B1
6256489 Lichter et al. Jul 2001 B1
6260147 Quick, Jr. Jul 2001 B1
6266614 Alumbaugh Jul 2001 B1
6275692 Skog Aug 2001 B1
6275849 Ludwig Aug 2001 B1
6278701 Ayyagari Aug 2001 B1
6289373 Dezonno Sep 2001 B1
6297768 Allen, Jr. Oct 2001 B1
6307504 Sheynblat Oct 2001 B1
6308269 Proidl Oct 2001 B2
6313786 Sheynblat Nov 2001 B1
6317594 Gossman Nov 2001 B1
6321091 Holland Nov 2001 B1
6321092 Fitch Nov 2001 B1
6321257 Kotala Nov 2001 B1
6324542 Wright, Jr. et al. Nov 2001 B1
6327473 Soliman Dec 2001 B1
6327479 Mikkola Dec 2001 B1
6330454 Verdonk Dec 2001 B1
6333919 Gaffney Dec 2001 B2
6360093 Ross Mar 2002 B1
6360102 Havinis Mar 2002 B1
6363254 Jones Mar 2002 B1
6367019 Ansell Apr 2002 B1
6370389 Isomursu Apr 2002 B1
6377209 Krasner Apr 2002 B1
6377810 Geiger Apr 2002 B1
6400314 Krasner Jun 2002 B1
6400958 Isomursu Jun 2002 B1
6411254 Moeglein Jun 2002 B1
6421002 Krasner Jul 2002 B2
6427001 Contractor Jul 2002 B1
6433734 Krasner Aug 2002 B1
6434381 Moore Aug 2002 B1
6442391 Johansson Aug 2002 B1
6449473 Raivisto Sep 2002 B1
6449476 Hutchison, IV Sep 2002 B1
6456852 Bar Sep 2002 B2
6463272 Wallace Oct 2002 B1
6477150 Maggenti Nov 2002 B1
6504491 Christians Jan 2003 B1
6505049 Dorenbosch Jan 2003 B1
6510387 Fuchs Jan 2003 B2
6512922 Burg Jan 2003 B1
6512930 Sandegren Jan 2003 B2
6515623 Johnson Feb 2003 B2
6519464 Santhoff Feb 2003 B1
6519466 Pande Feb 2003 B2
6522682 Kohli Feb 2003 B1
6526026 Menon Feb 2003 B1
6529490 Oh et al. Mar 2003 B1
6529500 Pandharipande Mar 2003 B1
6529722 Heinrich Mar 2003 B1
6529829 Turetzky Mar 2003 B2
6531982 White Mar 2003 B1
6538757 Sansone Mar 2003 B1
6539200 Schiff Mar 2003 B1
6539232 Hendrey et al. Mar 2003 B2
6539304 Chansarkar Mar 2003 B1
6542464 Takeda Apr 2003 B1
6542734 Abrol Apr 2003 B1
6542743 Soliman Apr 2003 B1
6549522 Flynn Apr 2003 B1
6549776 Joong Apr 2003 B1
6549844 Egberts Apr 2003 B1
6553236 Dunko Apr 2003 B1
6556832 Soliman Apr 2003 B1
6560461 Fomukong May 2003 B1
6560534 Abraham May 2003 B2
6564261 Gudjonsson May 2003 B1
6570530 Gaal May 2003 B2
6571095 Koodli May 2003 B1
6574558 Kohli Jun 2003 B2
6580390 Hay Jun 2003 B1
6584307 Antonucci Jun 2003 B1
6584552 Kuno et al. Jun 2003 B1
6587691 Granstam Jul 2003 B1
6594500 Bender Jul 2003 B2
6597311 Sheynblat Jul 2003 B2
6600927 Hamilton Jul 2003 B2
6603973 Foladare Aug 2003 B1
6606495 Korpi Aug 2003 B1
6606554 Edge Aug 2003 B2
6609004 Morse Aug 2003 B1
6611757 Brodie Aug 2003 B2
6618593 Drutman Sep 2003 B1
6618670 Chansarkar Sep 2003 B1
6621452 Knockeart Sep 2003 B2
6621810 Leung Sep 2003 B1
6628233 Knockeart Sep 2003 B2
6633255 Krasner Oct 2003 B2
6640184 Rabe Oct 2003 B1
6650288 Pitt Nov 2003 B1
6650901 Shuster Nov 2003 B1
6661372 Girerd Dec 2003 B1
6665539 Sih Dec 2003 B2
6665541 Krasner Dec 2003 B1
6671620 Garin Dec 2003 B1
6677894 Sheynblat Jan 2004 B2
6678357 Stumer Jan 2004 B2
6680694 Knockeart Jan 2004 B1
6680695 Turetzky Jan 2004 B2
6687504 Raith Feb 2004 B1
6691019 Seeley Feb 2004 B2
6694258 Johnson Feb 2004 B2
6697629 Grilli Feb 2004 B1
6698195 Hellinger Mar 2004 B1
6701144 Kirbas Mar 2004 B2
6703971 Pande Mar 2004 B2
6703972 Van Diggelen Mar 2004 B2
6704651 Van Diggelen Mar 2004 B2
6707421 Drury Mar 2004 B1
6714793 Carey Mar 2004 B1
6718174 Vayanos Apr 2004 B2
6721578 Minear Apr 2004 B2
6721871 Piispanen Apr 2004 B2
6724342 Bloebaum Apr 2004 B2
6725159 Krasner Apr 2004 B2
6728701 Stoica Apr 2004 B1
6731940 Nagendran May 2004 B1
6734821 Van Diggelen May 2004 B2
6738013 Orler May 2004 B2
6738800 Aquilon May 2004 B1
6741842 Goldberg May 2004 B2
6744856 Karnik Jun 2004 B2
6744858 Ryan Jun 2004 B1
6744859 Koepke Jun 2004 B1
6745038 Callaway, Jr. Jun 2004 B2
6747596 Orler Jun 2004 B2
6748195 Phillips Jun 2004 B1
6751464 Burg Jun 2004 B1
6756938 Zhao Jun 2004 B2
6757266 Hundscheidt Jun 2004 B1
6757544 Rangarajan Jun 2004 B2
6757545 Nowak Jun 2004 B2
6771742 McCalmont et al. Aug 2004 B2
6771971 Smith Aug 2004 B2
6772340 Peinado Aug 2004 B1
6775267 Kung Aug 2004 B1
6775534 Lindgren Aug 2004 B2
6775655 Peinado Aug 2004 B1
6775802 Gaal Aug 2004 B2
6778136 Gronemeyer Aug 2004 B2
6778885 Agashe Aug 2004 B2
6781963 Crockett Aug 2004 B2
6788249 Farmer Sep 2004 B1
6795444 Vo Sep 2004 B1
6795699 McGraw Sep 2004 B1
6799049 Zellner Sep 2004 B1
6799050 Krasner Sep 2004 B1
6801159 Swope Oct 2004 B2
6804524 Vandermaijden Oct 2004 B1
6807534 Erickson Oct 2004 B1
6810323 Bullock Oct 2004 B1
6813264 Vassilovski Nov 2004 B2
6813560 Van Diggelen Nov 2004 B2
6816111 Krasner Nov 2004 B2
6816710 Krasner Nov 2004 B2
6816719 Heinonen et al. Nov 2004 B1
6816734 Wong et al. Nov 2004 B2
6820269 Baucke et al. Nov 2004 B2
6829475 Lee Dec 2004 B1
6832373 O'Neill Dec 2004 B2
6839020 Geier Jan 2005 B2
6839021 Sheynblat Jan 2005 B2
6839417 Weisman Jan 2005 B2
6842715 Gaal Jan 2005 B1
6847618 Laursen Jan 2005 B2
6847822 Dennison Jan 2005 B1
6853916 Fuchs Feb 2005 B2
6856282 Mauro Feb 2005 B2
6861980 Rowitch Mar 2005 B1
6865171 Nilsson Mar 2005 B1
6865395 Riley Mar 2005 B2
6867733 Sandhu Mar 2005 B2
6867734 Voor Mar 2005 B2
6873854 Crockett Mar 2005 B2
6876734 Summers Apr 2005 B1
6882850 McConnell et al. Apr 2005 B2
6885874 Grube Apr 2005 B2
6885940 Brodie Apr 2005 B2
6888497 King May 2005 B2
6888932 Snip May 2005 B2
6895238 Newell May 2005 B2
6895249 Gaal May 2005 B2
6898633 Lyndersay May 2005 B1
6900758 Mann May 2005 B1
6903684 Simic Jun 2005 B1
6904029 Fors Jun 2005 B2
6907224 Younis Jun 2005 B2
6907238 Leung Jun 2005 B2
6912230 Salkini Jun 2005 B1
6912395 Benes Jun 2005 B2
6912545 Lundy et al. Jun 2005 B1
6915208 Garin Jul 2005 B2
6917331 Gronemeyer Jul 2005 B2
6922565 Rhodes et al. Jul 2005 B2
6930634 Peng Aug 2005 B2
6937187 Van Diggelen Aug 2005 B2
6937597 Rosenberg Aug 2005 B1
6937872 Krasner Aug 2005 B2
6940826 Simard Sep 2005 B1
6940950 Dickinson Sep 2005 B2
6941144 Stein Sep 2005 B2
6944540 King Sep 2005 B2
6947772 Minear Sep 2005 B2
6950058 Davis Sep 2005 B1
6957068 Hutchison Oct 2005 B2
6957073 Bye Oct 2005 B2
6961562 Ross Nov 2005 B2
6963557 Knox Nov 2005 B2
6965754 King Nov 2005 B2
6965767 Maggenti Nov 2005 B2
6968044 Beason Nov 2005 B2
6970917 Kushwaha Nov 2005 B1
6973320 Brown Dec 2005 B2
6975266 Abraham Dec 2005 B2
6978453 Rao Dec 2005 B2
6980816 Rohler Dec 2005 B2
6985747 Chithambaram Jan 2006 B2
6993355 Pershan Jan 2006 B1
6996720 DeMello Feb 2006 B1
6999782 Shaughnessy Feb 2006 B2
7024321 Deninger Apr 2006 B1
7024393 Peinado Apr 2006 B1
7047411 DeMello May 2006 B1
7065351 Carter Jun 2006 B2
7065507 Mohammed Jun 2006 B2
7072667 Olrik Jul 2006 B2
7079857 Maggenti Jul 2006 B2
7092385 Gallant Aug 2006 B2
7103018 Hansen Sep 2006 B1
7103574 Peinado Sep 2006 B1
7106717 Rousseau Sep 2006 B2
7110773 Wallace Sep 2006 B1
7136466 Gao Nov 2006 B1
7136838 Peinado Nov 2006 B1
7151946 Maggenti Dec 2006 B2
7174153 Ehlers Feb 2007 B2
7177397 McCalmont et al. Feb 2007 B2
7177398 Meer Feb 2007 B2
7177399 Dawson et al. Feb 2007 B2
7184418 Baba Feb 2007 B1
7200380 Havlark Apr 2007 B2
7209758 Moll Apr 2007 B1
7209969 Lahti Apr 2007 B2
7218940 Niemenma May 2007 B2
7221959 Lindquist May 2007 B2
7245900 Lamb Jul 2007 B1
7246187 Ezra Jul 2007 B1
7260186 Zhu Aug 2007 B2
7260384 Bales et al. Aug 2007 B2
7269428 Wallenius Sep 2007 B1
7302582 Snapp Nov 2007 B2
7321773 Hines Jan 2008 B2
7330899 Wong Feb 2008 B2
7333480 Clarke Feb 2008 B1
7369508 Parantainen May 2008 B2
7369530 Keagy May 2008 B2
7382773 Schoeneberger Jun 2008 B2
7392240 Scriffignano Jun 2008 B2
7394896 Norton Jul 2008 B2
7412049 Koch Aug 2008 B1
7424293 Zhu Sep 2008 B2
7426380 Hines Sep 2008 B2
7428571 Ichimura Sep 2008 B2
7436785 McMullen Oct 2008 B1
7440442 Grabelsky Oct 2008 B2
7450951 Vimpari Nov 2008 B2
7453990 Welenson Nov 2008 B2
7495608 Chen Feb 2009 B1
7522581 Acharya Apr 2009 B2
7573982 Breen Aug 2009 B2
7602886 Beech Oct 2009 B1
7623447 Faccin Nov 2009 B1
7702081 Klesper Apr 2010 B1
7711094 Olshansky May 2010 B1
7715821 Rollender May 2010 B2
7747258 Farmer Jun 2010 B2
7764961 Zhu Jul 2010 B2
7783297 Ishii Aug 2010 B2
7787611 Kotelly Aug 2010 B1
7792989 Toebes Sep 2010 B2
7881233 Bieselin Feb 2011 B2
7890122 Walsh Feb 2011 B2
7895263 Kirchmeier Feb 2011 B1
7937067 Maier May 2011 B2
8005683 Tessesl Aug 2011 B2
8027658 Suryanarayana Sep 2011 B2
8041335 Khetawat Oct 2011 B2
RE42927 Want Nov 2011 E
8060389 Johnson Nov 2011 B2
8308570 Fiedler Nov 2012 B2
8660573 Zhu Feb 2014 B2
8682281 Dunn Mar 2014 B2
8787867 Bleckert Jul 2014 B2
20010011247 O'Flaherty Aug 2001 A1
20010040886 Jimenez Nov 2001 A1
20020037735 Maggenti Mar 2002 A1
20020042260 Saucedo et al. Apr 2002 A1
20020052214 Maggenti May 2002 A1
20020061760 Maggenti May 2002 A1
20020069529 Wieres Jun 2002 A1
20020077083 Zellner Jun 2002 A1
20020077084 Zellner Jun 2002 A1
20020077118 Zellner Jun 2002 A1
20020077897 Zellner Jun 2002 A1
20020085538 Leung Jul 2002 A1
20020086659 Lauper Jul 2002 A1
20020086676 Hendrey Jul 2002 A1
20020098832 Fleischer Jul 2002 A1
20020102996 Jenkins Aug 2002 A1
20020111172 DeWolf Aug 2002 A1
20020112047 Kushwaha Aug 2002 A1
20020118650 Jagadeesan Aug 2002 A1
20020123327 Vataja Sep 2002 A1
20020126656 Park Sep 2002 A1
20020138650 Yamamoto Sep 2002 A1
20020158777 Flick Oct 2002 A1
20020173317 Nykanen Nov 2002 A1
20020191595 Mar Dec 2002 A1
20020197991 Anvekar et al. Dec 2002 A1
20030009277 Fan Jan 2003 A1
20030009602 Jacobs Jan 2003 A1
20030012148 Peters Jan 2003 A1
20030013449 Hose Jan 2003 A1
20030016804 Sheha et al. Jan 2003 A1
20030026245 Ejzak Feb 2003 A1
20030037163 Kitada Feb 2003 A1
20030040272 Lelievre Feb 2003 A1
20030065788 Salimaki Apr 2003 A1
20030072318 Lam Apr 2003 A1
20030078064 Chan Apr 2003 A1
20030081557 Mettala May 2003 A1
20030086539 McCalmont May 2003 A1
20030101329 Lahti May 2003 A1
20030103484 Oommen Jun 2003 A1
20030104341 Zavitsanos Jun 2003 A1
20030108176 Kung Jun 2003 A1
20030109245 McCalmont Jun 2003 A1
20030114157 Spitz Jun 2003 A1
20030115328 Salminen Jun 2003 A1
20030119521 Tipnis Jun 2003 A1
20030119528 Pew Jun 2003 A1
20030137961 Tsirtsis et al. Jul 2003 A1
20030153340 Crockett Aug 2003 A1
20030153341 Crockett Aug 2003 A1
20030153342 Crockett Aug 2003 A1
20030153343 Crockett Aug 2003 A1
20030161298 Bergman Aug 2003 A1
20030186709 Rhodes Oct 2003 A1
20030196105 Fineberg Oct 2003 A1
20030204640 Sahinoja Oct 2003 A1
20030223381 Schroderus Dec 2003 A1
20040002326 Maher Jan 2004 A1
20040032485 Stephens Feb 2004 A1
20040043775 Kennedy et al. Mar 2004 A1
20040047461 Weisman Mar 2004 A1
20040068724 Gardner Apr 2004 A1
20040076277 Kuusinen Apr 2004 A1
20040098497 Banet et al. May 2004 A1
20040132465 Mattila Jul 2004 A1
20040143852 Meyers Jul 2004 A1
20040146040 Phan-Anh Jul 2004 A1
20040181689 Kiyoto Sep 2004 A1
20040184584 McCalmont Sep 2004 A1
20040185875 Diacakis Sep 2004 A1
20040190497 Know Sep 2004 A1
20040192271 Eisner Sep 2004 A1
20040198332 Lundsgaard Oct 2004 A1
20040198386 Dupray Oct 2004 A1
20040205151 Sprigg Oct 2004 A1
20040229632 Flynn Nov 2004 A1
20040242238 Wang Dec 2004 A1
20040267445 De Luca Dec 2004 A1
20050020242 Holland Jan 2005 A1
20050028034 Gantman Feb 2005 A1
20050039178 Marolia Feb 2005 A1
20050041578 Huotari Feb 2005 A1
20050043037 Loppe Feb 2005 A1
20050043038 Maanoja Feb 2005 A1
20050053209 D'Evelyn et al. Mar 2005 A1
20050063519 James Mar 2005 A1
20050078612 Lang Apr 2005 A1
20050083911 Grabelsky Apr 2005 A1
20050086467 Asokan Apr 2005 A1
20050090236 Schwinke Apr 2005 A1
20050101335 Kelly May 2005 A1
20050107673 Ball May 2005 A1
20050112030 Gaus May 2005 A1
20050119012 Merheb Jun 2005 A1
20050134504 Harwood Jun 2005 A1
20050135569 Dickinson Jun 2005 A1
20050136885 Kaltsukis Jun 2005 A1
20050169248 Truesdale Aug 2005 A1
20050174991 Keagy Aug 2005 A1
20050190892 Dawson et al. Sep 2005 A1
20050192822 Hartenstein Sep 2005 A1
20050201358 Nelson Sep 2005 A1
20050201528 Meer Sep 2005 A1
20050201529 Nelson et al. Sep 2005 A1
20050209995 Aksu Sep 2005 A1
20050213716 Zhu Sep 2005 A1
20050232252 Hoover Oct 2005 A1
20050255857 Kim Nov 2005 A1
20050259675 Tuohino Nov 2005 A1
20050265318 Khartabil Dec 2005 A1
20050271029 Iffland Dec 2005 A1
20050282518 D'Evelyn Dec 2005 A1
20050287979 Rollender Dec 2005 A1
20050289097 Trossen Dec 2005 A1
20060008065 Longman et al. Jan 2006 A1
20060023747 Koren et al. Feb 2006 A1
20060026288 Acharya Feb 2006 A1
20060053225 Poikselka Mar 2006 A1
20060068753 Karpen Mar 2006 A1
20060077911 Shaffer Apr 2006 A1
20060078094 Breen Apr 2006 A1
20060079236 Del Pino et al. Apr 2006 A1
20060079330 Dvorak Apr 2006 A1
20060088152 Green Apr 2006 A1
20060104306 Adamczyk May 2006 A1
20060120517 Moon Jun 2006 A1
20060128395 Muhonen Jun 2006 A1
20060135177 Winterbottom Jun 2006 A1
20060154710 Serafat Jul 2006 A1
20060188083 Breen Aug 2006 A1
20060189303 Rollender Aug 2006 A1
20060193447 Schwartz Aug 2006 A1
20060212558 Sahinoja Sep 2006 A1
20060212562 Kushwaha Sep 2006 A1
20060224752 Parekh Oct 2006 A1
20060234639 Kushwaha Oct 2006 A1
20060234698 Fok Oct 2006 A1
20060239205 Warren Oct 2006 A1
20060250987 White Nov 2006 A1
20060258380 Liebowitz Nov 2006 A1
20060281437 Cook Dec 2006 A1
20060293024 Benco Dec 2006 A1
20060293066 Edge Dec 2006 A1
20070003024 Olivier et al. Jan 2007 A1
20070019614 Hoffmann Jan 2007 A1
20070022011 Altberg Jan 2007 A1
20070026854 Nath Feb 2007 A1
20070026871 Wager Feb 2007 A1
20070027997 Polk Feb 2007 A1
20070036139 Patel Feb 2007 A1
20070041513 Gende Feb 2007 A1
20070049288 Lamprecht Mar 2007 A1
20070054676 Duan Mar 2007 A1
20070060097 Edge Mar 2007 A1
20070081635 Croak Apr 2007 A1
20070115941 Patel May 2007 A1
20070121601 Kikinis May 2007 A1
20070149166 Turcotte Jun 2007 A1
20070149213 Lamba Jun 2007 A1
20070160036 Smith Jul 2007 A1
20070162228 Mitchell Jul 2007 A1
20070201623 Hines Aug 2007 A1
20070206568 Silver Sep 2007 A1
20070206613 Silver Sep 2007 A1
20070242660 Xu Oct 2007 A1
20070253429 James Nov 2007 A1
20070254625 Edge Nov 2007 A1
20070263610 Mitchell Nov 2007 A1
20070270162 Hampel et al. Nov 2007 A1
20070270164 Maier Nov 2007 A1
20070291733 Doran Dec 2007 A1
20080032703 Krumm Feb 2008 A1
20080037715 Prozeniuk Feb 2008 A1
20080045250 Hwang Feb 2008 A1
20080059304 Kimsey Mar 2008 A1
20080063153 Krivorot Mar 2008 A1
20080065775 Polk Mar 2008 A1
20080081646 Morin et al. Apr 2008 A1
20080117859 Shahidi May 2008 A1
20080146343 Sullivan et al. Jun 2008 A1
20080162637 Adamczyk Jul 2008 A1
20080176582 Ghai Jul 2008 A1
20080186164 Emigh Aug 2008 A1
20080200182 Shim Aug 2008 A1
20080214202 Toomey Sep 2008 A1
20090003535 Grabelsky Jan 2009 A1
20090067417 Kalavade Mar 2009 A1
20090097450 Wallis Apr 2009 A1
20090128404 Martino May 2009 A1
20090215466 Ahl et al. Aug 2009 A1
20090323636 Dillon Dec 2009 A1
20100003976 Zhu Jan 2010 A1
20100054220 Bischinger et al. Mar 2010 A1
20100062788 Nagorniak Mar 2010 A1
20100067444 Faccin Mar 2010 A1
20100069034 Dickinson Mar 2010 A1
20100119049 Clark May 2010 A1
20100167760 Kim Jul 2010 A1
20100172482 Fotta Jul 2010 A1
20100178973 Snoddy et al. Jul 2010 A1
20100188992 Raleigh Jul 2010 A1
20100198933 Smith Aug 2010 A1
20100218664 Toledano et al. Sep 2010 A1
20100223222 Zhou et al. Sep 2010 A1
20100273445 Dunn Oct 2010 A1
20110113060 Martini May 2011 A1
20110273568 Lagassey Nov 2011 A1
20120001750 Monroe Jan 2012 A1
20120052832 Bleckert Mar 2012 A1
20120189107 Dickinson Jul 2012 A1
20130012232 Titus Jan 2013 A1
20130072308 Peck et al. Mar 2013 A1
20130079152 Hall Mar 2013 A1
20130303196 Mitchell Nov 2013 A1
Foreign Referenced Citations (11)
Number Date Country
WO9921380 Apr 1999 WO
9928848 Dec 1999 WO
9928848 Jun 2000 WO
WO0145342 Jun 2001 WO
WO0211407 Jul 2001 WO
0146666 Nov 2001 WO
0146666 Jul 2002 WO
WO2004025941 Mar 2004 WO
WO2005051033 Jun 2005 WO
WO 2005051033 Jun 2005 WO
WO2007027166 Mar 2007 WO
Non-Patent Literature Citations (25)
Entry
Qualcomm CDMA Technologies, LBS Control Plane/User Plane Overview—80-VD378-1NP B, 2006, pp. 1-36.
Bhalla et al, TELUS, Technology Strategy—LBS Roaming Summit, Sep. 19, 2006.
Alfredo Aguirre, Ilusacell, First and Only Carrier in Mexico with a 3G CDMA Network, 2007.
Mike McMullen, Sprint, LBS Roaming Summit, Sep. 19, 2006.
Andrew Yeow, BCE, LBS Roaming Summit, Sep. 19, 2006, pp. 1-8.
Nars Haran, U.S. Cellular, Packet Data—Roaming and LBS Overview, Nov. 2, 2007, pp. 1-15.
Qualcomm CDMA Technologies, LBS Control Plane Roaming—80-VD377-1NP A, 2006, pp. 1-10.
Qualcomm CDMA Technologies, MS Resident User Plane LBS Roaming—80-VC718-1 E, 2006, pp. 1-37.
3rd Generation Partnership Project 2, Position Determination Service Standard for Dual Mode SpreadSpectrum Systems, Feb. 16, 2001, pp. i-X, 1-1-1-5, 2-1-2-2, 3-1-3-51, 4-1-4-66, A-1-A-2, B-1-B-2, C-1-C-2, D-1-D-2.
Le-Pond Chin, Jyh-Hong Wen, Ting-Way Liu, The Study of the Interconnection of GSM Mobile Communication System Over IP based Network, May 6, 2001, IEEE, Vehicular Technology Conference, vol. 3, pp. 2219-2223.
International Search Report in PCT/US2007/23243 dated Apr. 2, 2008.
Yilin Ahao, Efficient and reliable date transmission for cellular and GPS based mayday systems, Nov. 1997, IEEE, IEEE Conference on Intelligent Transportation System, 1997. ITSC 97, 555-559.
Examiner's Office Letter in Japanese Patent Application No. 2006-542691 dated Sep. 7, 2009.
JP Laid-Open Gazette No. 2004-158947 (English abstract only).
JP Laid-Open Gazette No. 2007-507123 (counterpart English text U.S. Pat. No. 2007/0054676).
T. Hattori, “Wireless Broadband Textbook,” IDG Japan, Jun. 10, 2002, pp. 142-143. (no English text).
Intrado Inc., Qwest Detailed SR/ALI to MPC/GMLC Interface Specification for TCP/IP Implementation of TIA/EIA/J-STD-036 E2 with Phase I Location Description Addition, Intrado Informed Response; Apr. 2004; Issue 1.11; pp. 1-57.
Extended European Search Report from EPO in European Appl. No. 06827172.5 dated Dec. 29, 2009.
Intrado MSAG Prep for E911 Program and Documentation. Intrado Inc., Longmont, CO. Sep. 14, 2006. Accessed: Nov. 8, 2011. Idaho PSAP Standards Committee. Idaho Emergency Communications Commission,http://idahodispatch.com/index.php?option=com—documan&task=doc—download&gid=3&Itemid=7.
Location Based Services V2 Roaming Support (non proprietary), 80-V8470-2NP A, dated Jan. 27, 2005, pp. 1-56.
International Search Report received in PCT/US2011/02001 dated Apr. 27, 2012.
International Search Report received in PCT/US2011/000100 dated Apr. 24, 2012.
International Search Report received in PCT/US2011/001990 dated Apr. 24, 2012.
Schulzrinne et al., Emergency Services for Internet Telephony Systems draft-schulzrinne-sipping-emergency-arch, IETF Standard Working Draft, Feb. 4, 2004, 1-22.
International Search Report received in PCT/US11/01971 dated Feb. 28, 2013.
Related Publications (1)
Number Date Country
20070082650 A1 Apr 2007 US
Provisional Applications (1)
Number Date Country
60720044 Sep 2005 US