In the Figures and associated description, the left-most digit of a component reference number identifies the particular Figure in which the component first appears.
A Universal AMR Interface (UAI) for fluid sensing meters is described. The UAI converts legacy fluid meters (e.g., water, gas, etc.) that are not AMR-ready and that use electromagnetic induction to measure flow, to AMR-enabled meters. The UAI includes one or multiple magnetic sensors (such as reed switches or Hall Effect Sensors) coupled to a microcontroller, an energy source, and electronics and such as transistors to determine, store, and transmit information associated with volumes of fluid flow for subsequent collection by conventional AMR technologies. In one implementation, an AMR-enabling shroud (AES) encapsulates the UAI and replaces a standard lower shroud in a non-AMR-enabled fluid meter (a “legacy fluid meter”) to create an AMR-ready meter. To this end, the AES is configured and positioned such that magnetic sensors in the UAI are positioned directly above a rotating disc magnet in the meter housing and underneath the meter's pre-existing mechanical or electrical register. This positioning maintains the pre-existing register's operational coupling to the rotating disc magnet, rotations of which correlate to a per-unit fluid flow through the meter. In another implementation, the AES also provides an electronic register to replace the preexisting register. Is such an implementation, information associated with measured fluid flow is presented to a viewer, for example, via an operatively coupled LCD
To measure fluid flow, and responsive to detecting magnetic poles from the rotating disc magnet, the magnetic sensors in the UAI periodically wake-up the microcontroller to calculate and persist (in a computer-readable storage medium) fluid volume flow data. In one implementation, the UAI is also configured to determine, process, and persist additional information associated with event alarms, tampering, leak detection, low battery, reverse flow, etc. for water or energy use profiling, time of use billing, demand forecasting, rate of flow recording, leak detection, flow monitoring, etc. The UAI transmits at least a subset of such data via electronic pulses for collection by one or more conventional and arbitrary AMR technologies. The UAI is universal because it is programmable (e.g., via a serial port, etc.) for compatibility with multiple such AMR technologies including, for example, touch-based AMR, radio frequency AMR, handheld AMR, mobile AMR, fixed network AMR, and/or so on. In this manner, the UAI converts a conventional non-AMR based fluid meter to an AMR-enabled fluid meter without replacing the legacy mechanical or electrical register. Alternatively, the UAI also provides an electrical register to replace the preexisting mechanical or electrical register.
These and other aspects of the UAI for fluid sensing meters are described in greater detail below in reference to
Although not required, the UAI for fluid sensing meters is described in the general context of a combination of fluid metering hardware and computer-executable instructions executed by a computing device such as a microcontroller. Program modules generally include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. While the systems and methods are described in the foregoing context, acts and operations described hereinafter may also be completely implemented in hardware.
Specifically, fluid meter 200 is configured to capture, store, process and transmit data associated with the measured quantities of fluid to an AMR device 203. As shown, fluid meter 200 includes an upper shroud 102 (please also see
AES 202 is a customized shroud that contains (or otherwise supports) one or more magnetic sensors (shown in
A magnetic switch 302 closes whenever a North or South pole associated with rotating disc magnet 108 is sensed by the magnetic switch 302. In one implementation, a magnetic switch 302 is a conventional Reed switch. In another implementation, a magnetic sensor 302 is based on Hall effects. Closing of magnetic sensor 302 wakes-up microprocessor 304, responsive to which microprocessor 304 increments a count of rotations associated with rotating disc magnet 108. Microprocessor 304 uses a conversion of “counter” rotations to unit volumes of fluid to calculate a volume of fluid that has passed through fluid meter 200 during a configurable period. Responsive to receiving a query from a conventional AMR unit, microcontroller 304 communicates a pulse over signal lines 306 and 308 to receiving AMR (e.g., via a transmitter via any conventional AMR technology. In one implementation, microcontroller 304 includes sleep mode logic to extend life of the batter(ies) 206.
In this implementation, there are two magnetic switches 302; switches 302-1 and 302-2. In this implementation, both switches are Reed switches/sensors. The Reed switches are coupled to an energy source, for example, to positive battery voltage 402. To minimize current and extend battery life in system 400, one of the switches 302 (e.g., sensor 302-1) is a “wake-up” and count sensor, and both Reed switches 302 are coupled to high impedance resistors 404 and 406. As rotating disc magnet 108 rotates, each rotation indicating a per-unit volume of fluid passing through fluid meter 200, a magnetic pole periodically passes by Reed switches 302-1 and 302-1. When such a magnetic pole is not sensed by a switch sensor 302, the Reed switch 302 is open, effectively directing microprocessor 304 to enter sleep mode and conserve energy. Responsive to sensing the magnetic pole, a respective Reed switch closes, causing microcontroller 304 to wake-up from sleep mode and begin sensing module 416 processing. Such processing includes, for example, incrementing a count indicating a number of magnetic rotations of rotating disc magnet 108 over a configurable period. This count takes into consideration of the two-switch 302 configuration (i.e., for each rotation, each switch 302 increments the count), and as described in the following paragraph, also addresses a single switch 302 configuration in the event that one of the two switches 302 fails. For purposes of exemplary illustration, such a count is shown as a respective portion of fluid flow data 420. Using a preconfigured conversion factor based on the arbitrary fluid flow capabilities of fluid meter 200, sensing module 416 converts the count to total fluid use values for a designated and configurable period. Sensing module 416 persists such total fluid use value(s) in a respective portion of fluid flow data 420.
In this implementation, the two switch 302 configuration shown in circuit diagram 400 provides switch failover redundancy of the fluid flow sensing capabilities of fluid meter 200. Specifically, fluid sensing module 416 detects when a switch 302 (e.g., 302-1 or 302-2) fails, or otherwise malfunctions. For example, when input from only a single switch 302 is detected for a configurable threshold number of rotations of rotating disc magnet 208, fluid sensing module 416 determines that only one switch 302 is operational, reconfiguring fluid flow conversation operations accordingly. Specifically, from the point in time that it is determined that only one of the two sensors 302 is operational, fluid sensing module 416 calculates fluid volume flows based on a input from only a single operational switch 302 (i.e., one count maps to a full rotation of rotating magnetic disc 108). In this manner, use of multiple magnetic sensing switches 302 in fluid meter 200 provides redundancy to its fluid flow calculations, offering reliable meter readings even in view of failure or malfunction of one of magnetic switches 302. Analogously, fluid sensing module 416 detects if a previously failed or malfunctioning sensor 304 comes back on-line (i.e., begins to again provide input to fluid sensing module 416; input pertaining to rotations of rotating disc magnet 108), responsive to which fluid sensing module 416 reconfigures fluid flow calculations to according to input from both operational switches 302.
Sensing module 416 uses arbitrary configurable criteria to determine whether to send a pulse to the AMR indicating the stored total fluid use value. According to such criteria, sensing module 416 turns on transistor 408 for a configurable amount of time, allowing the pulse to be interrogated via AMR over signal lines 306 and 308. There are multiple known techniques for AMR to interrogate such a pulse. Such techniques include, for example, receipt of an interrogation signal from a computer or data collection device, radio frequency-based AMR, fixed network AMR, etc. In this manner, fluid meter 200 collects fluid flow data 420 and selectively communicates at least a subset of such data over signal lines 306 and 308 to AMR for analysis and presentation to a user.
Placing a strong magnet over a fluid meter generally tampers with the proper functionality of a fluid measuring meter that measures flow via electromagnetic induction. To identify such tampering, and in this implementation, fluid meter 200 includes the second sensor (e.g., Reed switch 302-2) placed relative to the first sensor (e.g., Reed switch 302-1) so that only one sensor at a time is closed due to the rotating disc magnetic field associated with rotating disc magnet 108. In this implementation, if a strong magnet is proximally located to meter 200, both switches 302-1 and 302-2 will be closed. In this scenario, microcontroller 304 will not receive any “wake up” signals for some amount of time. In this implementation, if microcontroller 304 does not receive a wake-up signal for a configurable threshold amount of time, microcontroller 304 automatically wakes-up to evaluate status of switches 302-1 and 302-2. If both sensors are closed, microcontroller 304 activates tamper line 422 to indicate that the fluid flow counts have been tampered. Tamper line 422 can be interrogated via AMR device(s) using any of multiple known such interrogation techniques. In another implementation, fluid meter 200 detects tampering by sensing the direction of magnet 108 rotation using multiple sensors 302 to determine if the water flow to the meter has been reversed.
The AES 202 comprises at least one magnetic switch (e.g., magnetic switch 302 of
Additionally, characteristics of the AES 202 maintain a pre-existing operational relationship between a rotating fluid meter magnet 108 in the fluid meter and the pre-existing register 104. As a result, the pre-existing register 104 is still configured (as it was in the legacy meter 100) to determine fluid flow information based on rotations of the rotating disc magnet to present fluid flow information to a viewer.
Operations of block 604 receive, by a microcontroller (e.g. a microcontroller 304 of
Operations of block 606 calculate, by the microcontroller, a total amount of fluid volume that has passed through the fluid meter 200 (e.g., fluid meter 200
Operations of block 610, responsive to determining that a wake-up signal has not been received from a magnetic switch for threshold amount of time, the microprocessor evaluates whether each of multiple magnetic switches in the AES are closed, for example, under the influence of a strong magnetic field. Upon determining that the magnetic switches are closed, the microprocessor activates a tamper line (e.g., please see temper line 422 of
Although the above sections describe an automatic meter-reading interface for fluid sensing meters in language specific to structural features and/or methodological operations or actions, the implementations defined in the appended claims are not necessarily limited to the specific features or actions described. For example,
This patent application claims priority to U.S. provisional patent application Ser. No. 60/792,890 filed on Apr. 18, 2006, titled “A Fluid Metering Sensing System Module”, which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60792890 | Apr 2006 | US |