The invention is such a mooring apparatus that allows rope-free, automatic mooring and parking for 10-70 feet long watercrafts.
Watercrafts are traditionally moored with ropes to the dock or anchors. This is also the case with expensive watercrafts/yachts equipped with state-of-the-art technology. To moor with ropes, the operator also usually needs an assisting person to moor.
Mooring watercrafts is a dangerous manoeuvre, especially in windy weather, in high waves or in case of changes in water level. Under such circumstances, when approaching the mooring spot and during mooring the watercraft may hit the dock with such force that it and/or the dock can be damaged. Repairing the damage of high-value watercrafts involves professional work and therefore significant costs and time. The use of a damaged dock is not safe and requires repair as well.
Various technical solutions have been developed and applied to avoid injury and damages caused by the collision of the watercraft and the dock.
The simplest and most common solution is to use bumpers that are hanging on the ship and the crew on board hang them out by the side of the ship at an appropriate height during mooring. The force of collision with the dock is dampened by the bumpers as they are made of flexible material to absorb collision energy. The problem with the use of bumpers is that they have to be hung out at the right height and points, which is not always successful. A further problem is that besides the watercraft operator there is a need for at least one assisting person, who is most often not available.
For the protection of watercrafts against damages materials glued or mounted on its side are also used. Such a simple solution is to attach plastic or rubber strips to the most vulnerable parts of the hull. Their role is to prevent friction damage.
U.S. Pat. No. 6,161,494 discloses the use of inflatable bumpers on the hull. According to the invention, an appropriate opening must be provided on the hull and an inflatable bumper must be installed there. Its function is ensured by an appropriate mechanical unit. This solution is not applicable to watercrafts already in use, and their incorporation into newly-built watercrafts has not spread either. The drawback of the invention is that bumpers must be mounted at fixed heights, which is not always appropriate. Further problem is that the inflatable bumpers are easily damaged and then do not fulfil their roles.
U.S. Pat. No. 7,730,844 discloses a technical solution in which there are rotatable bumping elements fixed at the top of the hull. The bumping elements reduce the collision energy at the physically encountered points of the ship and the dock and can absorb it using an appropriate machine mechanism. The use of the invention in watercrafts is complicated. Factory or post-fitting is expensive. Because of the abovementioned, the solution has not spread in practice.
Equipping docks with various elements is also a common way to protect ships and the dock from damage. One of the conventional solutions of collision-reducing elements is when used tires are fixed to the side of the docks. As these bumpers are fixed at a given height and location, they cannot follow the change in water level and the bumping points regarding the side of the watercraft are not optimized. In modern harbours, using used tires is not a popular option.
A known solution is the use of bumpers attached to the vertical columns of docks. Such solutions are disclosed in U.S. Pat. Nos. 5,184,562, 5,762,016 and 7,481,174. The bumpers are made of flexible material and are therefore suitable for absorbing some of the collision energy. Bumpers that rotate around the axis also reduce or prevent bumping and friction damage. They have the advantage of allowing to track the changes in water level by freely rising or sinking a moored watercraft. The disadvantage is that they can only be used where the dock is equipped with vertical columns. However, most docks are not like that.
A special solution is disclosed in Patent No. GB 2.415.942. The object of the invention is a V-shaped mooring unit which includes inclined bumper columns adapted to the shape of the front of the watercraft, on which there are rotating bumping elements. The ship's side-to-side collision is reduced by the ship's own mobile bumpers.
The US 2005/0066869 patent discloses a longitudinal bumping element mounted on a dock. The essence of the solution is that an element is attached to the inside of the dock to accommodate the mooring ropes of the watercraft, and also serves as a bumper. In case of proper water level, bumping and friction are indeed reduced. However, the problem is that the water level changes. Another problem is that the size of the watercrafts and the shapes of the hulls are different, which cannot be adapted by fixed installation or design.
For the protection of docks and watercrafts, an inflatable device is disclosed in patent No. CA 2.672.456. According to the invention, inflatable tubes are fixed on the side of the dock, which significantly reduces the risk of damage from the collision of a watercraft and a dock. However, the disadvantage of the solution is the mechanical demand, the vulnerability of the air inflated tubes and the need for operational tasks.
Apparently, avoiding collisions and friction between watercrafts and the dock is an important requirement for manoeuvring and already moored watercrafts. Some of the technical solutions for this requirement have been described above.
Another important requirement for a modern mooring apparatus is to make navigation to the mooring easier and ultimately to get to an optimal parking position for the watercraft. After it is reached, there is an additional need for the watercraft to be automatically fixed.
These extra requirements are particularly important when someone is sailing out alone and there is no assisting staff at the time of return. It is well known that the owners of pleasure watercrafts rarely have great experience in manoeuvring: therefore, it is important for them to have an opportunity for an easy sailing in and a modern rope-free mooring.
For the Skilled in the Art of the invention, such technical solutions are known when a watercraft navigates into diverter arms and a fixing element catches it there.
Such a solution is described, for example, in WO 2017/144927 A1, which has the disadvantage that the diverter arm does not allow a watercraft to be secured near a statically optimum waterline. A further disadvantage is that designing the column-shaped fixing means with the pivoting cylindrical element is complicated. The installation and constant presence of hook-like catching elements on a watercraft during navigation is disturbing. Their possible removal and dismantling before and after mooring reduce the benefit of the automatic mooring operation.
Document KR 2013 0001775 discloses a fender with a friction reduction device that comprises a friction reduction device, a protruded portion, and a support portion. The friction reduction device comprises a first friction reduction portion and a first main body portion. The first friction reduction portion has multiple protrusions. The first main body portion resettles the first friction reduction portion to the fender. The protruded portion comprises fixing grooves in which the first main body portion is resettled. The support portion is extended from the protruded portion and is fixed to a structure in a pier.
Document U.S. Pat. No. 6,551,010 discloses a vehicle impact system that includes a road accommodating vehicle traffic in a direction along its center line, a support structure and first and second adjacent energy-absorbing fender elements supported by the support structure and extending adjacent to the road. Each of the first and second adjacent energy-absorbing fender elements includes an elastomeric leg extending non-parallel from the support structure and a contact panel extending from the leg.
Thus, there is a need for a harbour equipment and method to overcome the abovementioned problems.
The objective of the present invention is to produce such a mooring apparatus that provides rope-free, automatic mooring and simple sailing out. With such technical solutions, a non-experienced watercraft operator can safely moor watercrafts and there is no need for assisting staff.
A further objective is to connect the mooring apparatus to the harbour IT system, thereby support the work of the harbour management. For example, in the event of an outbreak of a storm or at the request of an authority sailing out has to be prohibited, the registration and online rental of watercrafts are required, or harbour data and information have to be sorted and used in a database.
The disclosed invention is an automatic mooring apparatus that is built from two dock-finger units fixed to the dock. The dock-finger units are equipped with flexible tentacle elements for positioning the watercraft by keeping continuous contact with the hull, and they are also equipped with automatic-operated locking mechanisms for mooring of the watercraft.
The mooring apparatus has a control panel with a built-in programmable processor and a communication unit that is available for the operator via the watercraft's onboard communication unit or from a smart device from anywhere.
Harbour management has access to the control panel via wired or wireless connection, so they are able to take actions when it is required. The central server continuously registers all data and information related to the registered mooring apparatus.
By using the invented mooring apparatus, the mooring process is automatic and it can be managed alone by the watercraft operator, without any assistance. The progress of mooring can be controlled from the cabin, so it can be easily done even under unfavourable weather conditions.
The positioning of the watercraft and reducing its oscillatory movements are provided by the flexible tentacle elements by acting on the hull; there is no need for bumpers or other anti-collision solutions for the mooring process.
Due to the built-in lights of the mooring apparatus, the mooring process can be carried out in low visibility as well.
As there is no human intervention during the mooring, accidents related to mooring will cease.
Since there is no rope fixing the position of the prow, the navigable surface and the receptive capacity in harbours are increased, which is a significant operating and area utilization advantage of the present solution.
Control and communication equipment for the mooring apparatus is connected to the harbour IT system. The harbour master is able to prohibit sailing from a harbour with a single instruction which can be required due to bad weather, official orders or any other reason. He/she is able to view the details of the parking or sailing watercrafts, the status and dates of the sailings, and the data of the users.
Another advantage is that an online rental system can be implemented for each mooring or watercraft, which can be self-managed by the owner of the watercraft or the harbour management.
The detailed description of the invention is provided by means of drawings.
A találmány részletes bemutatása rajzok segítségével történik.
When installing the dock-finger units (20), the control panel (90) is placed on the dock (2) and activated. A programmable processor (96) and communication module (98) are incorporated into the control panel (90) that is accessible by authorized persons from anywhere by communication means.
The mooring apparatus (10), in the event that the dock (2) is not capable of securing dock-finger units (20) or if the customer needs an independent mooring spot, is to connect 2 individual dock-finger units (20). In this case, a U-shape mooring apparatus (10) is formed, which is secured with ropes at the harbour, private bay or other location.
A dock-finger unit (20) is shown in detail in
Locking mechanisms (40) are attached to the beam structure (22) according to the type of the watercraft (4) and the location of the catching units (70) fixed to the hull (6). As an example, the drawing shows that the longitudinal position of the locking mechanisms (40) mounted on the left and right sides of the dock-finger unit (20) are different, therefore the positions of the fixing units (50) are also different.
The beam structure (22) is equipped with flexible tentacles (80) for guiding the watercraft (4) into the mooring apparatus (10) and for reducing its oscillatory movements during parking. In the figure, the flexible tentacles (80) are evenly spaced along the length of the beam structure (22), but may be fixed at different distances depending on the type of the watercraft (4) and the design of the hull (6). By appropriately allocating the flexible tentacles (80), the desired motion limitation of the given watercraft (4) is achieved.
The end of the dock-finger unit (20) facing the open water is a cylindrical end (32) which aids in turning the watercraft (4) while it is moving into and out of the mooring apparatus (10). Bumpers (30) are installed to catch any collision. Stepping (28) is provided for entering or exiting the watercraft (4). The surface of the dock-finger unit (20) is walkable and the edges are covered with soft-coverage (34). Alternatively, the entire walking surface is covered.
With the series of dock-finger units (20) shown, a complete harbour system can be implemented, which is schematically illustrated in
The locking mechanisms (40) are also flexibly mounted on the dock-finger units (20) depending on the size of the watercraft (4) and the position of the catching unit (70) fixed on the hull (6). The advantageous alternative is the possibility of mooring and parking watercrafts (4) with the stern or bow.
The fixing unit (50) is mounted to the end of the holding arm (42) rotating around the horizontal “Axis B”. The fixing unit (50) has a vertical standby position, which is supported by a spring 2 (52). Using the spring 2 (52) is not mandatory in some cases.
The fixing rod (62) is clamped between the head element (56) and the bottom element (58). The outer surfaces of the head element (56) and the bottom element (58) are provided with collar elements (60) covered with soft coverage (34). The collar elements (60) can rotate freely around the Axis C of the fixing unit (50).
The material of the fixing rod (62) is preferably steel of suitable strength, its length is in the range of 0.5 to 2.0 meters, but its actual length is always determined by the type of the watercraft (4). The cross-sectional diameter is in the range of 10-50 mm, the actual diameter fits into the catching units (70) mounted on the hull (6).
The design of the catching unit (70) is shown in
The catching unit (70) is preferably made of silicone and is preferably secured to the hull (6) by gluing. The exact location of the anchorage depends on the type, dimensions, structure and geometry of the watercraft (4) and other factors. Due to this, the place of gluing to the hull (6) is always preceded by careful planning.
In Schema B, the watercraft (4) moves forward and when a predetermined position is reached, the engine (46) automatically shuts off and the force of spring 1 (44) is re-applied. Spring 1 (44) pushes the holding arm (42) towards the hull (6), causing the upper collar element (60) of the fixing unit (50) to touch the hull (6). Then, due to the additional force exerted by spring 1 (44), the fixing unit (50) is rotated from its vertical position around the horizontal axis and the other collar element (60) also reaches the hull (6). The collar elements (60), as the watercraft (4) moves, are forced to rotate due to the tension on the hull and to hold the fixing unit (50) adjacent to the hull (6). The fixing rod (62) clamped between the head element (56) and the bottom element (58) is in a “forced” position and is approached by a catching unit (70) fixed to the hull (6).
Schema C illustrates when the catching unit (70) reaches the fixing rod (62) and after passing the wedge-type hook (74), it is fixed. This is the “locked” state of the locking mechanism. The closed state remains until the opening command is sent to the motor control (48). When closed, the watercraft (4) has only limited mobility in both directions: in the horizontal direction, the fixing rod (62) has limited movement in the horizontal gap formed in the catching unit (70), and in the vertical direction, movement is limited in the direction of the axis of the fixing rod (62). The relative movements of the watercraft (4) towards the dock-finger units (20) when moored are minimized by the locking mechanism (40) and the flexible tentacle (80) together.
Schema D shows the case of sailing out. When the opening command is sent to the motor control (48), the holding arm (42) rotates away from the hull, causing the fixing rod (62) to move away from the hull (6). During moving away, the catching unit (70) also opens the cover (76). This is the “released” state, in which the fixing rod (62) moves away from the hull to release the watercraft (4).
The mooring apparatus (10) of the present invention allows the watercraft (4) to be moored forward or in reverse. In this case, two catching units (70) fixed in opposite directions are placed on the hull (6), as shown in
The flexible tentacles (80) are made in a variety of geometries and sizes, with a thicker/stronger cross-section at the attachment point and a thinner/weaker cross-section at the other end.
Type A is a flexible tentacle (80) with a simpler cross-section and designed for less stress. It is fixed to the beam structure (22) by screwing so that it can be easily replaced if necessary. Type B is capable of absorbing and dampening larger and more dynamic forces. As it can be seen, both solutions are statically clamped, flexible consoles.
The flexible tentacles (80) are generally distributed evenly along the length of the beam structure (22). The frequency of the distribution depends on the size of the watercraft (4), the shape and structure of the hull (6), the weather conditions and the security conditions of the harbour. The role of the flexible tentacles (80) is to secure the position of the watercraft (4) by providing pressure on the hull by touching it and maintaining it in the central axis of the mooring apparatus (10) during mooring and parking. The flexible tentacles (80), due to their flexibility, balance most of the force effects and transmit the unbalanced forces to the statically dimensioned beam structure (22). Their other general role is to dampen the oscillatory movements of the watercraft (4).
The flexible tentacles (80) are made of seawater and weather resistant material, preferably silicone.
The watercraft (4) sails out freely and when the distance from the dock (6) is D2, the fixing unit automatically returns to the “resting” position. This operation is pre-programmed in the control panel (90).
The mooring apparatus (10) is equipped with state-of-the-art information and communication tools that are connected to the harbour IT system (100).
The programmable processor (96) built into the control panel (90) is in direct contact with the motor control (48), the laser rangefinder (92) and the camera (94). It also has a connection with the communication module (98).
The communication module (98) is wired or wirelessly connected to the central server (110) of the harbour IT system (100). Thus, the actual position of the locking mechanism (40), the resting, opening, locking and forcing events are visible in the IT system (100) and continuously recorded in its database (112).
In addition, all related data and information, such as the data of the renter of the mooring apparatus (10), the identity of the owner of the watercraft (4), etc., are provided and stored in the database (112) of the central server (110). The stored data provides harbour management records and greatly facilitate harbour operations. Eligible users have access to the data from external smart devices such as a notebook (116), PC (114) or a cell phone (108) via the Internet.
Harbour management has the opportunity to prohibit the opening of mooring apparatuses (10) connected to the harbour IT system (100). Such cases include the approach of a storm, an order by the authorities, or the protection of harbour traffic. The communication module (98) can be accessed online by the owner or the renter of the watercraft (4) or another authorized person who can directly act on the operation of the mooring apparatus (10). Access can be done directly from the onboard control (102) of the watercraft (4), using a remote control (104), a tablet (106), or a cell phone (108).
The technical solution described in this specification is a possible embodiment of the invention, which in no way restricts the claims to this solution alone.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/HU2019/000026 | 8/22/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62734319 | Sep 2018 | US |