Automatic napkin dispenser

Information

  • Patent Grant
  • 10993591
  • Patent Number
    10,993,591
  • Date Filed
    Tuesday, July 16, 2019
    4 years ago
  • Date Issued
    Tuesday, May 4, 2021
    3 years ago
Abstract
The present application provides a tucker fold dispenser for folding and dispensing a sheet of material. The tucker fold dispenser may include an outer shell, a removable roller cassette positioned within the outer shell, a paper path therethrough, a number of loading rollers positioned about the paper path, a number of folding rollers positioned about the paper path, and a tucker bar mechanism positioned about the folding rollers.
Description
TECHNICAL FIELD

The present application and the resultant patent relate generally to a napkin dispenser and more particularly relate to an automatic napkin dispenser that folds and dispenses one or more napkins or groups of napkins in a controlled and efficient fashion from a continuous roll of sheet material.


BACKGROUND OF THE INVENTION

Dispensers, such as napkin dispensers, generally are configured to enable the end user to retrieve products such as napkins and the like for personal use. Although conventional dispensers adequately dispense the products therein, such dispensers also enable end users to obtain any number of napkins with no control mechanisms. Moreover, such conventional dispensers tend to allow napkins to be soiled due to contact with the surrounding environment during storage and/or dispensing. As such, excessive distribution of napkins, prematurely soiled napkins, and other types of waste thus may lead to unnecessary operating expenses.


Known dispensers generally provide a stack of folded napkins therein. Establishments, such as quick service restaurants and the like, must maintain a ready supply of such napkins and also must continuously refill the dispensers to ensure customer satisfaction. Such pre-folded napkins, however, generally may be more expensive than, for example, a continuous roll of napkin material or other types of sheet material. Moreover, any type of napkin also requires the time and expense to refill continuously the dispensers.


There is thus a desire for improved napkin dispensers and methods of dispensing napkins and the like. Such improved dispensers and methods may provide for controlled, automatic dispensing of napkins and similar types of paper products in an economical, efficient, and sanitary fashion so as to limit or eliminate unnecessary waste and expense.


SUMMARY OF THE INVENTION

The present application and the resultant patent thus provide a tucker fold dispenser for folding and dispensing a sheet of material. The tucker fold dispenser may include an outer shell, a removable roller cassette positioned within the outer shell, a paper path therethrough, a number of loading rollers positioned about the paper path, a number of folding rollers positioned about the paper path, and a tucker bar mechanism positioned about the folding rollers.


The present application and the resultant patent further provide a method of dispensing a napkin from a roll of sheet material. The method may include the steps of pulling a tail of the sheet material through a number of feed rollers, driving the sheet material along a paper path, activating a tucker bar mechanism, creating a fold in the sheet material by a number of folding rollers, and lofting the napkin into a presentation tray by the plurality of folding rollers.


The present application and the resultant patent further provide a dispenser for folding and dispensing a number of napkins. The dispenser may include a paper path therethrough, a number of folding rollers positioned about the paper path, and a presentation tray positioned about the folding rollers. The presentation tray may include a downwardly angled orientation and a front facing opening such that the folding rollers fold each napkin and project each napkin towards the presentation tray where the napkins form a stack therein.


These and other features and improvements of the present application and the resultant patent will become apparent to one of ordinary skill in the art upon review of the following detailed description when taken in conjunction with the several drawings and the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of a napkin dispenser as may be described herein.



FIG. 2 is a perspective view of an example of a napkin dispenser as may be described herein with a partially transparent outer shell.



FIG. 3 is a partial side plan view of the napkin dispenser of FIG. 2.



FIG. 4 is a perspective view of a second alternative embodiment of a napkin dispenser as may be described herein with a partially transparent outer shell.



FIG. 5 is a perspective view of a third alternative embodiment of a napkin dispenser as may be described herein with a partially transparent outer shell.



FIG. 6 is a partial side plan view of the napkin dispenser of FIG. 5.



FIG. 7 is a perspective view of a fourth alternative embodiment of a napkin dispenser as may be described herein with a partially transparent outer shell.



FIG. 8 is a partial side view of the napkin dispenser of FIG. 7.



FIG. 9 is a perspective view of a fifth alternative embodiment of the napkin dispenser as may be described herein with a partially transparent shell.



FIG. 10 is a partial side view of the napkin dispenser of FIG. 9.



FIG. 11 is a perspective view of a sixth alternative embodiment of a napkin dispenser as may be described herein with a partially transparent outer shell.



FIG. 12 is a partial side view of the napkin dispenser of FIG. 11.



FIG. 13 is a perspective view of a seventh alternative embodiment of a napkin dispenser as may be described herein with a partially transparent outer shell.



FIG. 14 is a partial side view of the napkin dispenser of FIG. 13.



FIG. 15 is a perspective view of a number of napkin dispensers as may be described herein in several different configurations.



FIG. 16 is a perspective view of a further alternative embodiment of a napkin dispenser as may be described herein in the form of a tucker fold dispenser.



FIG. 17 is a front plan view of the tucker fold dispenser of FIG. 16.



FIG. 18 is a side plan view of the internal components of the tucker fold dispenser of FIG. 16.



FIG. 19 is a perspective view of a roller cassette for use with the tucker fold dispenser of FIG. 16.



FIG. 20A is a side plan view of the roller cassette of the tucker fold dispenser of FIG. 16.



FIG. 20B is a side plan view of the roller cassette of the tucker fold dispenser of FIG. 16.



FIG. 21 is a back plan view of the roller cassette of the tucker fold dispenser of FIG. 16.



FIG. 22 is a perspective view of a presentation tray of the tucker fold dispenser of FIG. 16.



FIG. 23 is a side plan view of the presentation tray of the tucker fold dispenser of FIG. 16.



FIG. 24 is a side plan of the tucker fold dispenser of FIG. 16 in operation.



FIG. 25 is a side plan of the tucker fold dispenser of FIG. 16 in operation.





DETAILED DESCRIPTION

Referring now to the drawings, in which like numerals refer to like elements throughout the several views, FIG. 1 shows a schematic diagram of an example of a napkin dispenser 100 as may be described herein. As will be described in more detail below, the napkin dispenser 100 may take many different sizes, shapes, and configurations and may use many different types of components. Moreover, the components described in the examples below may be interchangeable such that the napkin dispenser 100 is not limited to the given components or configurations of any one example. Rather, any of the components described herein and the like may be used together in any combination or orientation.


Generally described, the napkin dispenser 100 may use one or more continuous rolls 110 of a sheet material 120. Any suitable number of the rolls 110 may be used in the napkin dispenser 100. The sheet material 120 may include any type of natural and/or synthetic cloth or paper sheets including woven and non-woven articles. The sheet material 120 may or may not include perforations at given intervals. The leading end of the sheet material 120 on each roll 110 may be considered a tail 125. The napkin dispenser 100 separates and folds the sheet material 120 to produce a number of napkins 130 with a fold 135 therein. The fold 135 may be a hard fold with a crease therein or more of a “U” or a “C”-shaped configuration. Moreover, multiple folds 135 also may be created, i.e., a “Z”-shaped fold or a dinner napkin fold also may be created herein.


The napkin dispenser 100 thus includes a number of stations so as to produce the napkins 130 from the sheet material 120 on the roll 110. These stations may include a loading station 140. The loading station 140 accepts the roll 110 of the sheet material 120 therein. The loading station 140 may include a loading mechanism 145 and a transfer mechanism 150. The napkin dispenser 100 also may include a folding station 160. The folding station 160 may perform a number of functions. The folding station 160 thus may include a folding mechanism 170 and a cutting mechanism 180. The folding mechanism 170 also may provide napkin separation as will be described in more detail below, either with or without the cutting mechanism 180, as a speed mechanism 185.


The napkin dispenser 100 also may include a presentation station 190. The presentation station 190 provides the napkins 130 to an end user. The napkin dispenser 100 also may include a user interface 200. The user interface 200 may allow the end user to select the number of napkins 130 and the like as well as allowing the end user to initiate a dispense. These stations and the other components of the napkin dispenser 100 may be enclosed in whole or in part in an outer shell 210. The outer shell 210 may be made out of any type of substantially rigid material. The outer shell 210 may have one or more loading doors 220 thereon. The napkin dispenser 100 also may be in communication with a cash register 225 or other type of ordering or input device. Other components and other mechanisms also may be used herein in many different configurations.



FIGS. 2 and 3 show a first example of the napkin dispenser 100 as may be described herein as a single roll, buckle fold, horizontal dispenser 230. The dispenser 230 may include a single roll 110. The single roll 110 may have a number of perforations 235 at substantially uniform intervals. The loading mechanism 145 of the loading station 140 may include a slot mechanism 245 having a pair of spindle plugs 240 in the roll 110 and a pair of slots 250 formed in the outer shell 210. The slots 250 are configured to accommodate the spindle plugs 240 therein. The loading door 220 also may have a tucker finger 260 sized to accommodate the sheet material 120 as will be described below.


The folding station 160 may include the folding mechanism 170 in the form of a buckle fold mechanism 270. The buckle fold mechanism 270 may include a first pair of pinch rollers 280 and a second pair of pinch rollers 290. The buckle fold mechanism 270 also may include a buckle tray 300 and a dispense shelf 310. The first pair of pinch rollers 280 may be positioned about the roll 110 and the loading door 220. The second pair of pinch rollers 290 may be positioned operationally downstream about the buckle tray 300 and the dispense shelf 310. The second pair of pinch rollers 290 may be aligned with the first pair of pinch rollers 280 as the tail 125 descends. The buckle tray 300 may be sized to accommodate the desired length of the napkin 130. The pinch rollers 280, 290 may be spring loaded and may be motor driven. Each pair of pinch rollers 280, 290 may be driven at different speeds. Stripper fingers between the pinch rollers also may be used herein.


The presentation station 190 may include a presentation tray 330. The presentation tray 330 may be semi-covered. The presentation tray 330 may include an offset angle 340 so as to stack the napkins 130 therein. The angle of the buckle tray 340 may be about 140 degrees or so. Other angles may be used herein. The presentation tray 330 also may have multiple retracting shelves therein as will be described in more detail below. The user interface 220 may include a number of push buttons 350. The push buttons 350 may be any type of mechanical or electrical selector and the like. The push buttons 350 may indicate the number of napkins 130 to be dispensed therefrom. Although push buttons 350 for two, four, and six napkins 130 are shown, any suitable number of the napkins 130 may be used herein with any number or orientation of the push buttons 350. A single napkin hang mode also may be used.


In use, the roll 110 may be dropped into the outer shell 210 via the loading door 220 along the slots 250 of the slot mechanism 245. The tail 125 of the roll 110 may be placed over the first pair of pinch rollers 280. The tucker finger 260 on the loading door 220 may push the tail 125 between the first pair of pinch rollers 280 to load the tail 125 therein when the loading door 220 is shut. The buckle fold mechanism 270 creates the fold 135 by driving the tail 125 into the buckle tray 300. Once the tail 125 hits the buckle tray 300, the sheet material 120 begins to buckle and the second pair of pinch rollers 290 drives the fold 135 therethrough. The perforation 235 may be separated based upon a speed differential between the first and the second pair of the pinch rollers 280, 290 acting as the speed mechanism 185. The speed differential may be about two to one or so as to separate the perforation 235 between the pinch rollers 280, 290. Once the perforation 235 is separated, the napkin 130 may drop along the dispense shelf 310 into the presentation tray 330. Specifically, the number of napkins 130 as indicated by the push buttons 350 may drop into the presentation tray 330. The napkins 130 may be removed as a group by the end user. The presentation tray 330 then may be reloaded as above. Other components and other configurations may be used herein.



FIG. 4 shows a further example of a single roll, buckle fold, vertical dispenser 360. The dispenser 360 may be largely similar to the dispenser 230 described above except for the user interface 200. Instead of the push buttons 350, the user interface 200 may include one or more sensors 370. Each sensor 370 may be any type of motion sensor such as photoelectric, infrared, and the like that does not require physical contact. The sensor 370 may be suitably positioned anywhere on the outer shell 210. The dispenser 360 thus may be activated by the end user waving his or her hand thereabout. The dispenser 360 may be set to dispense a predetermined number of napkins 130 or a single napkin 130 may be dispensed for each wave of the end user's hand about the sensor 370. The dispenser 360 may dispense the napkins 130 into the presentation tray 330 or directly into the end user's hand. The presentation tray 330 then may be reloaded as above. Other components and other configurations may be used herein.



FIGS. 5 and 6 show a third example of the napkin dispenser 100 as may be described herein as a multiple roll, slot fold, vertical dispenser 380. The dispenser 380 may include two or more of the rolls 110. In this case, a first roll 390 and a second roll 400 may be used although any suitable number may be used herein. The loading mechanism 145 of the loading station 140 may include a door loading mechanism 405 with a number of the loading doors 220. Each roll 390, 400 may have its own loading door 220 with the first roll 390 having a first loading door 410 and the second roll 400 having a second loading door 420. Each door 410, 420 may be held open via a door prop 430. The door prop 430 may include a prop rod operating in a pen click like mechanism and the like. The loading doors 410, 420 may be held closed via magnets and the like. The transfer mechanism 150 may include a roller mechanism 435 with each door 410, 420 having a pair of spring loaded pinch rollers positioned thereabout. Specifically, a first pair of pinch rollers 440 may be positioned about the first door 410 and a second pair of pinch rollers 450 may be positioned about the second door 420. One of the rollers 440, 450 may be positioned on each of the doors 410, 420 with one positioned internally. Other positions may be used herein. The pinch rollers 440, 450 may be motor driven, i.e., drive rollers. A sensor may be used to determine when one of the rolls 390, 400 is depleted so as to start the pair of pinch rollers 440, 450 of the other roll.


The folding station 160 of the dispenser 380 may include the folding mechanism 170 as a slot fold mechanism 460. The slot fold mechanism 460 may include a vertical plate 470 with a thin slot 480 therein. A horizontal pusher plate 490 may be positioned opposed the slot 480 and may include a plate drive motor 500 for largely horizontal motion. The upper edge of the slot 480 may create as little friction as possible while the lower edge may create a friction force thereabout. As such, a sharp, slightly offset corner may be used. The leading edge of the pusher plate 490 also may have sharp corners to create a frictional force. Multiple pusher plates 490 may be used herein. The slot fold mechanism 460 may have an assembly drive mechanism 510 to maneuver the slot fold mechanism 460 vertically up and down or in any type of direction. Any type of drive mechanism may be used herein.


The presentation station 190 may take the form of a multiple slot presentation tray 530. The multiple slot presentation tray 530 may have a number of slots 540 therein. A first group 550 of the slots 540 may accommodate two napkins 130, a second group 560 of the slots 540 may accommodate four napkins 130, and a third group 570 of slots 540 may accommodate six napkins 130. The groups may accommodate any number of the napkins 130. Any number of groups may be used herein. Any type of a user interface 200 may be used herein.


In use, the first roll 390 may be loaded through the first door 410 while the second roll 400 may be loaded through the second door 420 of the door loading mechanism 405. The tail 125 of each roll 390, 400 may be positioned about the respective pair of pinch rollers 440, 450 of the roller mechanism 435 and fed therein. As the respective pair of pinch rollers 440, 450 pull the sheet material 120 downward, the pusher plate 490 of the slot fold mechanism 460 drives the sheet material 120 into the slot 480 so as to create the fold 135. The force of the pusher plate 490 also may separate the perforations 235 while the leading edge of the next napkin 130 is held via the pair of pinch rollers 440, 450. The pusher plate 490 then may be withdrawn so as to leave the napkin 130 in one of the slots 540. The slot fold mechanism 460 may be maneuvered vertically via the assembly drive mechanism 510 such that a napkin 130 may be positioned within the slots 540 of each of the groups 550, 560, 570 by the pusher plate 490. The appropriate group of napkins 130 may be removed by the end user. The presentation tray 530 then may be reloaded as above. Other components and other configurations may be used herein.



FIGS. 7 and 8 show a fourth example of the napkin dispenser 100 as may be described herein as a multi-roll, reverse fold, vertical dispenser 580. The dispenser 580 may use a number of the rolls 110. In this example, a first roll 590 and a second roll 600 are used, although any suitable number of the rolls 110 may be used herein. The loading mechanism 145 of the loading station 140 may include a side door loading mechanism 405 with one or more side loading doors 610. The rolls 590, 600 may be spindle loaded through the side loading door 610. The first roll 590 may unwind along a back side 620 of the outer shell 210 while the second roll 600 may unwind along a front side 630 of the outer shell 210. A sheet guide 640 may be used between the rolls 590, 600.


The transfer mechanism 150 may take the form of a multi-roller mechanism 650. The multi-roller mechanism 650 may be positioned under the rolls 590, 600. The multi-roller mechanism 650 may include a top feed roller 660 and a pair of bottom directional rollers: a first directional roller 670 and a second directional roller 680. Some or all of the rollers 660, 670, 680 may be motor driven. The top feed roller 660 may cooperate with the first directional roller 670 to pull the sheet material 120 off of the first roller 590 while the top feed roller 660 may cooperate with the second directional roller 680 to pull the sheet material 120 off of the second roll 600. A tucker finger 690 may be positioned adjacent the side loading door 610 so as to tuck the tails 125 of each roll 590, 600 into the multi-roller mechanism 650. Other positions may be used herein.


The folding station 160 of the dispenser 580 may include the folding mechanism 170 in the form of a reverse fold mechanism 700. The reverse fold mechanism 700 may include a reverse drive mechanism 710 positioned downstream of the multi-roller mechanism 650. The reverse drive mechanism 710 may include a pair of drive rollers: a first drive roller 720 and second drive roller 730, and a directional roller 740. Some or all of the rollers 720, 730, 740 may be motor driven. The reverse fold mechanism 700 also may include a pair of rollers 750 positioned downstream of the reverse fold mechanism 700. The rollers 750 may be spring loaded and motor driven.


The presentation station 190 may include a presentation tray 760. The presentation tray 760 may be partially covered. A presentation tray 760 may be positioned on either or both ends 620, 630 of the outer shell 210. The user interface 200 may take the form of an adjustable knob 770 or other type of selector so as to indicate the number of napkins 130 to be dispensed therefrom.


In use, the rolls 590, 600 may be loaded via the side loading door 610 of the side door loading mechanism. The tail 125 of the first roll 590 may extend along the back side 620 towards the multi-roller mechanism 650 while the tail 125 of the second roll 600 may extend along the front side 630 towards the multi-roller mechanism 650. The tucker finger 690 feed the tails 125 into the multi-roller mechanism 650 when the side door 610 is closed. When the first roll 590 is to be dispensed, the top feed guide roller 660 of the multi-roller mechanism 650 may rotate in a counterclockwise direction while the first directional roller 670 rotates in a clockwise direction. When the second roll 600 is to be dispensed, the top feed guide roller 660 may rotate in a clockwise direction while the second directional roller 680 rotates in a counterclockwise direction. (These rotational directions are by way of example and only refer to relative as opposed to absolute directions. Any direction of rotation may be used herein in any order or orientation.)


In either orientation, the tail 125 is fed from the multi-roller mechanism 650 into the reverse drive mechanism 710 of the reverse fold mechanism 700. The first drive roller 720 may rotate in a clockwise direction while the second drive roller 730 rotates in a counterclockwise direction so as to pull the tail 125 downward. The directional roller 740 may rotate in a counterclockwise direction to advance the sheet material 120 to the desired length. The directional roller 740 then may reverse direction such that the fold 135 is formed and is captured by the downstream rollers 750. The speed differential between the multi-roller mechanism 650 and the reverse drive mechanism 710 acting as the speed mechanism 185 so as to separate the perforations 235. The directional roller 740 then may again reverse direction so as to continue to pull the sheet material 120 downward. The now folded napkin 130 drops into the presentation tray 760. The appropriate group of napkins 130 then may be removed by the end user. The presentation tray 760 then may be reloaded as above.


Alternate examples, however, may use a cutting mechanism 180 and the like downstream of the reverse fold mechanism 700 to separate the napkins 130 as will be described in more detail below. The dispenser 580 also may use the buckle fold mechanism 270 and the like herein instead of the reverse fold mechanism 700. Other components and other configurations may be used herein.



FIGS. 9 and 10 show a fifth example of the napkin dispenser 100 as may be described herein as a single roll, tucker fold, vertical dispenser 780. The dispenser 780 may use the single roll 110 although additional rolls may be used. The dispenser 780 may include the loading station 140 in the form of a tail finding mechanism 790. The tail finding mechanism 790 may include a cradle 800. The cradle 800 may be spring loaded by a number of springs 810 or other types of tensioning devices. The tail finding mechanism 790 may include a pair of drive rollers 820. The pair of drive rollers 820 may be positioned about the bottom of the cradle 800. The roll 110 may be positioned with the cradle 800 via the loading door 220. The rollers 820 may rotate back and forth until the tail 125 is captured therein


The loading station 140 also may include the cutting mechanism 180 as a knife assembly 830. The knife assembly 830 may include a knife roller 840 with a knife blade 850 thereon as well as an anvil roller 860. The knife assembly 830 may be used with a non-perforated roll 870 of the sheet material 120. The knife assembly 830 may cut the napkin 130 from the non-perforated roll 830 by contact between the knife roller 840 and the anvil roller 860. The knife blade 850 may be slightly angled. An additional roller may be used to maintain tension. The knife assembly 830 also may be used with a roll having the perforations 235.


The loading station 140 also may have the folding mechanism 170 in the form of a tucker fold assembly 880. As the napkin 130 advances from the knife assembly 830, the napkin 130 may be pushed through a slot 890 by a tucker bar 900 of the tucker fold assembly 880. The tucker bar 900 may be sized so as to accommodate the slot 890. The napkin 130 then may be pulled through the slot 890 via a pair of pinch rollers 910. The pinch rollers 910 may be spring loaded and motor driven. The fold 135 may be formed as the napkin 130 extends through the slot 890.


The napkin dispenser 780 also may include the presentation station 190 in the form of a hidden tray assembly 920. The hidden tray assembly 920 may include a flat tray 925 out of the normal view of the end user. The flat tray 925 may be motor driven or gear driven. A push paddle 930 may be positioned underneath the flat tray 925 and in communication with the flat tray 925. Depressing the push paddle 930 may cause the flat tray 925 to retract so as to drop a number of the napkins 130. A sensor and the like also may be used herein to initiate a dispense. The napkin dispenser 780 also may use the user interface 200 in the form of a knob 940 or other type of mechanical or electrical selector. Any suitable triggering mechanism may be used herein.


In use, the single roll 110 may be dropped into the cradle 800 of the tail finding mechanism 790. The rollers 820 may rotate back and forth until the tail 125 is captured therein. The sheet material 120 then may be pulled into the cutting mechanism 180. The knife assembly 830 cuts the sheet material 120 from the non-perforated roll 830 by contact between the knife roller 840 and the anvil roller 860. As the sheet material 120 advances from the knife assembly 830, the sheet material 120 may be pushed through a slot 890 by a tucker bar 900 in the tucker fold assembly 880 so as to create the fold 135 and the napkin 130. The napkin 130 then may drop onto the flat tray 925 of the hidden tray assembly 920. Depressing the push paddle 930 may cause the flat tray 925 to retract so as to drop one or more napkins 130 onto the push paddle 930 or on to the end user's hand. One or more trays also may be used. Other configurations and other components may be used herein.



FIGS. 11 and 12 show a sixth example of the napkin dispenser 100 as may be described herein as a multi roll, reverse fold, horizontal dispenser 950. The dispenser 950 may have multiple rolls 110 therein. In this example, a first roll 960 and a second roll 970 may be used although any number of the rolls may be used. The assembly 950 may use the loading station 140 in the form of the door loading mechanism 405 with the two doors 410, 420 and the pair of drive rollers 440, 450 in the roller mechanism 435 such as that shown in FIG. 5. Likewise, the dispenser 950 may use the folding station 160 with the folding mechanism 170 as the reverse fold mechanism 700 of FIG. 7 with the reverse drive mechanism 710 having the first and second drive rollers 720, 730 and the directional roller 740.


The dispenser 950 may have the cutting mechanism 180 in the form of a wheel cutter 980 if a non-perforated roll 870 is used. The wheel cutter 980 may have a cutting wheel 990 maneuvered by a pulley 1000 and the like. The pulley 1000 may pull the wheel cutter 980 over the sheet material 120 so as to separate the napkins. A speed differential created by a number of pinch rollers and the like also may be used to separate the perforations 235 as described above if a perforated roll 110 is used.


The dispenser 950 may have the presentation station 190 in the form of a presentation bucket 1010 with a number of trays 1020 therein. The trays 1020 may be divided by a number of shelves 1030. In this example, a first shelf 1040 and a second shelf 1050 are shown. Any number of the shelves may be used herein. Each of the shelves 1040, 1050 may have a shelf motor 1060 positioned thereabout. The shelf motor 1060 may retract one or both of the shelves 1040, 1050. The shelves 1030 may form a first tray 1070, a second tray 1080, and a third tray 1090. Any number of trays 1020 may be used herein. Any type of user interface 200 may be used herein.


In use, the rolls 960, 970 may be loaded within the doors 410, 420 of the door loading assembly 405 and fed through the pinch rollers 440, 450 of the roller mechanism 435. The fold 135 then may be formed via the reverse fold mechanism 700 or a similar device. Once the appropriate length of sheet material 120 has advanced, the wheel cutter 980 may cut the sheet material 120 via the cutting wheel 990 advancing along the pulley 1000. Alternatively, the speed of the respective pinch rollers may be used to separate a perforation 235 if perforated paper is used. Each napkin 130 then may fall into the presentation bucket 1010. The third tray 1090 may hold, for example, six napkins 130, the second tray 1080 may hold four napkins 130, and the first tray 1070 may hold two napkins 130. The appropriate number of napkins 130 then may be removed from the appropriate tray 1020 by the end user. In order to reload the presentation bucket 1010, the first and the second shelves 1040, 1050 may be retracted via the shelf motors 1060. Six napkins 130 then may drop into the third tray 1090. The second shelf 1050 then may close such that four napkins 130 may drop into the second tray 1080. The first shelf 1040 then may close such that two napkins 130 may drop into the first tray 1070. Other shelf opening and loading techniques may be used herein. Other components and other configurations may be used herein.



FIGS. 13 and 14 show a seventh example of the napkin dispenser 100 as may be described herein as a multi-roll, buckle fold, vertical dispenser 1100. The dispenser 1100 may use a number of the rolls 110. In this example, a first roll 1110 and a second roll 1120 may be used although any number of the rolls 110 may be used herein. In this example, the assembly 1100 may have the loading station 140 in a manner similar to that shown in FIG. 7 with the side door loading mechanism 605 having the side loading door 610 and the guide 640 positioned between the rolls 1110, 1120. The loading station 140 also may use the transfer mechanism 150 in the form of the multi-roller mechanism 650. The dispenser 1100 further may use the folding station 160 with the folding mechanism 170 similar to the buckle fold mechanism 270 with the pinch rollers 280, 290 and the buckle tray 300 described above.


The dispenser 1100 may have the presentation station 190 in the form of a multi-slot maneuverable presentation tray 1130. The multi-slot maneuverable presentation tray 1130 may have a vertical drive mechanism 1140 positioned adjacent to the buckle fold mechanism 270. The multi-slot maneuverable presentation tray 1130 may have a number of slots 1150 therein. The slots 1150 may be organized into groups such that a first group 1160 may have two slots 1150, a second group 1170 may have four slots 1150, and a third group 1180 may have six slots 1150. Any number of the slots and the groups may be used herein. The vertical drive mechanism 1140 drives the multi-slot maneuverable presentation tray 1130 up and down such that the buckle fold mechanism 270 may deliver the appropriate number of napkins 130 into each group 1160, 1170, 1180. The napkins 130 may be removed as a group by the end user. The presentation tray 1130 then may be reloaded as suggested above. Other components and other configurations may be used herein.


As can be seen, the various types of loading stations 140, the various types of folding stations 150, the various types of presentation stations 190, and the various types of user interfaces 200 may be applied in many different combinations and orientations for the overall napkin dispenser 100. Although vertical orientations 1190 and horizontal orientations 1100 are shown above, FIG. 15 also shows a side by side orientation 1210, an above-counter mount 1220, a below-counter mount 1230, a rear wall mount 1240, and a sidewall mount 1250. Other types of mounting may be used herein. In addition to the use of the various types of user interfaces 200 described herein, the dispensers also may be in direct communication with the cash register 225 or other type of ordering device. Any type of input device may be used herein. The cash register 225 or other device may indicate the number of napkins 130 to be dispensed based upon the content of the order or other parameter. Other configurations and other components may be used herein.



FIGS. 16-25 show an example of the napkin dispenser 100 as a tucker fold dispenser 1300. The tucker fold dispenser 1300 may use the single roll 110 although additional rolls also may be used herein. The single roll 110 may have the perforations 235 at substantially uniform intervals. Alternatively, non-perforated rolls also may be used herein.


As is shown in FIGS. 16 and 17, the tucker fold dispenser 1300 may include the outer shell 210. The outer shell 210 may be made out of any type of substantially rigid materials. The outer shell 210 may include the loading door 220. In this example, the loading door 220 may be positioned about a top of the outer shell 210 although other positions may be used herein. The tucker fold dispenser 1300 may include the loading station 140 positioned about the loading door 220. The loading station 140 may include the loading mechanism 145 in the form of a roll holder assembly 1330. The roll holder assembly 1330 may include a pair of roll holder arms 1340. The roll holder arms 1340 may cooperate with one or more spindle or core plugs 1350. The core plugs 1350 may be positioned about the single roll 110. The single roll 110 may be dropped into the roll holder assembly 1330 or otherwise positioned for rotation and dispensing therein.


As is shown in FIGS. 18 and 19, the tucker fold dispenser 1300 may have the folding station 160 therein. The folding station 160 may be partially in the form of a removable roller cassette 1360. The removable roller cassette 1360 may include a pair of upper feed rollers 1370 with a first upper feed roller 1380 and a second upper feed roller 1390. Additional rollers may be used herein. The upper feed rollers 1370 may be driven by an upper feed roller gear 1400 and an upper feed roller pinion 1410. The upper feed roller pinion 1410 may be motor driven. A conventional electrical motor or other types of drive mechanisms may be used. One or more of the upper feed rollers 1370 may include a feed roller spring 1420 attached thereto. The feed roller spring 1420 may maintain the upper feed rollers 1370 engaged with the sheet material 120 under suitable tension. Other components and other configurations may be used herein.


The removable roller cassette 1360 also may include a pair of lower folding rollers 1430 with a first lower folding roller 1440 and a second lower folding roller 1450. Additional rollers may be used herein. The lower folding rollers 1430 may be driven by a lower folding gear 1460 and a lower folding roller pinion 1470. The lower folder rolling pinion 1470 may be motor driven. A conventional electrical motor or other types of drive mechanisms may be used. One or both of the lower folding rollers 1430 may include a folding roller spring 1480 attached thereto. The folding roller spring 1480 may maintain the lower folding rollers 1430 engaged with the sheet material 120 under suitable tension. Other components and other configurations may be used herein.


The removable roller cassette 1360 may define a portion of a paper path 1490 therethrough. The paper path 1490 may be defined by a fixed first wall 1500 outside of the removable roller cassette 1360 and a second wall 1510 that is part of the cassette. The first wall 1500 may be relatively straight. The second wall 1510 may have a relatively straight upper section 1530, a folding roller gap 1540 positioned about the lower folding rollers 1430, and an offset lower section 1550. The offset lower section 1550 may expand the width of the paper path 1490 so as to prevent premature feeding of the sheet material 120 into the lower folding rollers 1430. A paper path sensor 1560 may be positioned about the lower section 1550 of the second wall 1510 or elsewhere. The paper path sensor 1560 may be any type of motion sensor such as a photoelectric sensor, an infrared sensor, optical recognition, and the like that may or may not require physical contact.


The tucker fold dispenser 1300 may include the folding mechanism 170 in the form of a tucker bar mechanism 1570. The tucker bar mechanism 1570 may be fixed adjacent to the removable roller cassette 1360 or otherwise positioned. The tucker bar mechanism 1570 may include a tucker bar 1580 positioned about the first wall 1500 adjacent to the removable roller cassette 1360. The tucker bar 1580 may be largely plate-like in shape and may extend for part or all of the width of the paper path 1490. The tucker bar 1580 may include a number of tucker bar fingers 1582 that may be positioned about a number of first wall gaps 1584 for overlapping therewith. The overlap also assists in preventing the premature feeding of the sheet material 120 into the lower folding rollers 1430. The tucker bar 1580 may be driven by a solenoid 1590 and a linkage mechanism 1600. As is shown in FIGS. 20A and 20B, the reciprocal motion of the solenoid 1590 causes the linkage mechanism 1600 to move the tucker bar 1580 in and out towards the lower folding rollers 1430. Other types of drive mechanisms may be used herein. The tucker bar 1580 and the linkage mechanism 1600 may have any suitable size, shape, or configuration. Additional tucker bar mechanisms 1570 may be used if additional folds in the sheet material 120 are desired. Other components and other configurations may be used herein.


As is shown in FIGS. 22 and 23, the tucker fold dispenser 1300 may include the presentation station 190 in the form of a presentation tray 1610. The presentation tray 1610 may have a downwardly angled position 1612 and a front facing opening 1614. The downward angle may vary. The presentation tray 1610 may be in communication with the removable roller cassette 1360 via an upper paper pathway 1620 and a lower paper pathway 1630. The presentation tray 1610 and the pathways 1620, 1630 may have any suitable size, shape, or configuration. A paper tray sensor 1615 may be positioned about the presentation tray 1610 or elsewhere. The paper tray sensor 1615 may be any type of motion sensor such as a photoelectric sensor, an infrared sensor, optical recognition, and the like that may or may not require physical contact. Other components and other configurations may be used herein.


In an embodiment, the presentation tray 1610 may have a length a of about a length of a conventional napkin 130 divided in half (i.e., a once folded napkin) with any suitable length offset and tolerances. The offset preferably may be less than about ten percent or so. The presentation tray 1610 also may have a width of a conventional napkin with any suitable width offset and tolerances. The offset preferably may be less than about then percent or so. A height b of the presentation tray 1610 may be a desired number of napkins 130 plus tolerances. For example, the height b may be about ten napkins 130 or so. The height b here is also the napkin drop height for the first napkin 130. A bottom tray angle c may be measured between a horizontal line though the bottom folding roller 1430 and the lower paper pathway 1630. The bottom tray angle c may be between about zero degrees to about forty-five degrees, preferably between about ten degrees to about thirty degrees, and with about eighteen degrees shown. A roller exit angle d between the folding rollers 1430 may be between about zero degrees to about ninety degrees, preferably between about ten degrees to about thirty degrees, and with about twenty degrees shown. A top tray arch e (the area that the napkin 130 may hit first) may have a radius of between about 2 millimeters to about 5 millimeters with about 4.33 millimeters shown. A top tray angle f may be the same as the bottom tray angle c or at least in the same range. Other dimensions and other angles may be used herein.


The result of these angles and configurations thus may result in a substantially uniform stack within the presentation tray 1610. Preferably, a stack of any number of napkins 130 may be aligned in two dimensions, within ten percent of each other in any one dimension and preferably within five percent of each other in any one dimension. In other words, the stack may appear to be pre-aligned despite each individual napkin 130 being lofted into the presentation tray 1610 one after the other to create the stack therein.


The tucker fold dispenser 1300 may include the user interface 200 in the form of an input/output device 1640 and/or a display screen 1650. The input/output device 1640 and the display screen 1650 may or may not be used. The input/output device 1640 and the display screen 1650 may be of conventional design. Other types of selection means and input means may be used herein. For example, a conventional cash register and the like may be in communication herein. A conventional control device may be in communication with the input/output device 1640, the display screen 1650, as well as the sensors 1560, 1615, and the drive motors. Any type of programmable processing device may be used herein. The control device may be internal or externally positioned. Other components and other configurations may be used herein.


In use, the single roll 110 may be dropped within the roll holder assembly 1330. The roll 110 may be loaded in an underhanded fashion so as to accommodate the natural curl therein towards the first wall 1500 in order to reduce the likelihood of premature feeding of the tail 125 into the lower folding rollers 1430. The tail 125 of the sheet material 120 may be fed into the nip in between the upper feed rollers 1370. The sheet material 120 may be urged into the nip via the tucker finger 260 and the like on the loading door 220 or elsewhere. The upper feed rollers 1370 may be oriented at an angle in order to feed the sheet material 120 towards the first wall 1500 so as to reduce the likelihood of premature feeding of the sheet material 120 into the folding rollers 1430 as the material advances along the paper path 1490. The upper feed rollers 1370 may be positioned at about ten degrees (10°) to about twenty degrees (20) or so from the horizontal. Other angles may be used herein. The offset lower section 1550 of the second wall 1510 gives the tail 125 of the sheet material 120 sufficient room so as to also assist in preventing premature feeding therein. Specifically, this larger area also lowers the chance that static will pull the sheet material 120 into the nip of the lower folding rollers 1430.


In one embodiment, once the tail 125 of the sheet material 120 reaches the paper path sensor 1560, the solenoid 1590 of the tucker bar mechanism 1570 may be activated so as to maneuver the tucker bar 1580 towards the lower folding rollers 1430. The tucker bar mechanism 1570 is shown in a retracted position in FIG. 24 and in an engaged position in FIG. 25. The linear motion of the solenoid 1590 may be translated into rotary motion via the linkage mechanism 1600. Specifically, the linkage mechanism 1600 maneuvers the tucker bar 1580 against or at least close to the second lower folding roller 1450 so as to create a frictional force between the sheet material 120 and the lower folding rollers 1430. This frictional force pulls the sheet material 120 into the nip and thus creates the fold. Once the sheet material 120 is fed into the folding roller nip, the solenoid 1590 may be deactivated and the tucker bar 1580 may return to its original position. The tucker bar 1580 may be spring loaded. The maximum force applied to the folding rollers 1430 may be a factor of the spring constant and the degree of rotation past contact (torsional spring). This design allows for intentional interference and may accommodate manufacturing variation and tolerance stack.


As the sheet material 120 is pulled into the folding rollers 1430, the next row of perforations 235 on the sheet material 120 may be just below the upper feed rollers 1370. The upper feed rollers 1370 and the lower folding rollers 1430 thus act as the speed mechanism 185. Specifically, due to a speed differential between the upper feed rollers 1370 and the lower folding rollers 1430, a force may be created in the sheet material 120 that is greater than the tensile strength of the perforations 235 so as to pop the perforations 235 without allowing the sheet material 120 to be ripped if the tail 125 is prematurely fed into the nip. Alternatively, a cutting mechanism and the like also may be used.


The lower folding rollers 1430 may be positioned at an angle so as to provide loft as the now folded napkin 130 is driven out of the lower folding rollers 1430 and into the presentation tray 1610 through the upper paper pathway 1620 and the lower paper pathway 1630 and against the top tray arch e. Other types of arches and no contact embodiments also may be used. The lower folding rollers 1430 may have enough spring force to form a crisp fold without losing traction against the sheet material 120. As described above, the lower folding rollers 1430 preferably may be positioned at about ten degrees (10°) to about thirty degrees (30°) or so from the vertical. Other angles may be used herein. The combination of the upward angle of the folding rollers 1430 and the downward angle 1612 of the presentation tray 1610 allows for a number of napkins 130 to be lofted into the presentation tray 1610 and be neatly stacked therein. The nature of the lofting assists in the neat stacking therein. The presentation tray 1610 may provide for neatly stacking about ten (10) napkins 130 or so in the tray at one time. A stack with any suitable number of napkins 130 may be used herein. The napkins 130 may be removed from the front facing opening 1614 of the presentation tray 1610 or otherwise removed.


Both the upper feed rollers 1370 and the lower folding rollers 1430 may continue to operate until the folded napkin 130 lands in the presentation tray 1610 and triggers the tray sensor 1615. Both roller drive motors then may be turned off simultaneously. Alternatively, independent operation also may be used. The nature of the fold in the napkins 130 may be adjusted by moving the position of the paper path sensor 1560 so as to change the timing of the tucker bar actuation. The cycle then may begin again.


In case of a paper jam, the removable roller cassette 1360 may be removed from the outer shell 210 and the paper path 1490 easily cleared. Alternatively, the tucker bar 1580 may be activated so as to push any remaining sheet material 120 outward through the lower folding rollers 1430.


The nature of the dispense of the folded napkin 130 into the presentation tray 1610 also may vary. The angle of the lower folding rollers 1430 may vary the “loft” with which the napkin 130 is ejected therefrom. Likewise, the angle and positioning of the upper and lower pathways 1620, 1630 as well as the presentation tray 1610 also may vary. Further, the nature of the sheet material 120 may have an impact given the type of material, the nature of the folds, as well as the direction of the fold. The specific combination of angles and orientations described herein provides for the improved presentation, appearance, and stacking of the napkins 130 herein.


It should be apparent that the foregoing relates only to certain embodiments of the present application and the resultant patent. Numerous changes and modifications may be made herein by one of ordinary skill in the art without departing from the general spirit and scope of the invention as defined by the following claims and the equivalents thereof.

Claims
  • 1. A dispenser for folding and dispensing a number of napkins, comprising: a paper path therethrough;a plurality of upwardly angled folding rollers positioned about the paper path; anda presentation tray positioned about the plurality of folding rollers;the presentation tray comprising a floor extending in a downwardly angled orientation in the direction of the paper path along one axis through a bottom tray angle offset from the plurality of folding rollers;wherein the presentation tray comprises a top tray arch and wherein the plurality of folding rollers folds each napkin and projects each napkin upwardly toward the top tray arch and then downwardly towards the presentation tray floor where the number of napkins forms a stack therein.
  • 2. The dispenser of claim 1, wherein the stack is aligned in two dimensions.
  • 3. The dispenser of claim 2, wherein each napkin in the stack is aligned within ten percent of the other napkins along the width of the presentation tray.
  • 4. The dispenser of claim 2, wherein each napkin in the stack is aligned within five percent of the other napkins along the width of the presentation tray.
  • 5. The dispenser of claim 1, wherein the presentation tray comprises a bottom tray angle and a top tray angle of about ten degrees to about thirty degrees.
  • 6. The dispenser of claim 1, wherein the plurality of upwardly angled folding rollers comprises a roller exit angle of about ten degrees to about thirty degrees.
  • 7. The dispenser of claim 1, wherein the presentation tray comprises a top tray arch of about two to about five millimeters.
  • 8. The dispenser of claim 1, further comprising a paper sensor tray sensor positioned about the presentation tray sensor to determine the number of napkins in the stack.
  • 9. The dispenser of claim 1, wherein the stack comprises about ten napkins.
  • 10. The dispenser of claim 5, wherein the presentation tray comprises a bottom tray angle and a top tray angle of about eighteen degrees.
  • 11. The dispenser of claim 6, wherein the plurality of upwardly angled folding rollers comprises a roller exit angle of about twenty degrees.
  • 12. A dispenser for folding and dispensing a number of napkins, comprising: a paper path therethrough;a plurality of upwardly angled folding rollers positioned about the paper path; anda presentation tray positioned about the plurality of folding rollers;the presentation tray comprising a floor with a downwardly angled orientation and a front facing opening;wherein the downwardly angled orientation extends in the direction of the paper path along one axis; andwherein the presentation tray comprises a top tray arch and wherein the plurality of folding rollers folds each napkin and projects each napkin upwardly toward the top tray arch and then downwardly towards the presentation tray floor where the number of napkins forms a stack therein.
  • 13. The dispenser of claim 12, wherein the stack is aligned in two dimensions.
  • 14. The dispenser of claim 12, wherein the presentation tray comprises a bottom tray angle and a top tray angle of about ten degrees to about thirty degrees.
  • 15. The dispenser of claim 12, wherein the plurality of upwardly angled folding rollers comprises a roller exit angle of about ten degrees to about thirty degrees.
  • 16. The dispenser of claim 12, further comprising a paper sensor tray sensor positioned about the presentation tray sensor to determine the number of napkins in the stack.
RELATED APPLICATIONS

The present application is a divisional of U.S. patent application Ser. No. 14/576,534, filed on Dec. 19, 2014, and entitled “Automatic Napkin Dispenser”, which is a continuation-in-part of U.S. patent application Ser. No. 13/370,511, filed on Feb. 10, 2012, entitled “Automated Napkin Dispenser,” both of which are incorporated by reference herein in full.

US Referenced Citations (296)
Number Name Date Kind
453003 Hicks May 1891 A
390328 Wheeler Dec 1899 A
400913 Hicks Dec 1899 A
459516 Wheeler Dec 1899 A
511983 Wheeler Dec 1899 A
607498 Wheeler Dec 1899 A
2007544 Meisel Jul 1935 A
2053786 Straubel Sep 1936 A
2105707 Stancliff Jan 1938 A
2328109 Thompson Aug 1943 A
2390399 Kenneth Dec 1945 A
2637503 Birr May 1953 A
2693321 Birr Nov 1954 A
2726823 Jespersen Dec 1955 A
2751222 Dexter Jun 1956 A
2993658 Sweeney Jul 1961 A
3040943 Bump Jun 1962 A
3276706 House Oct 1966 A
3326365 Neureither Jun 1967 A
3570335 Marin Mar 1971 A
3784188 De Jan 1974 A
3845289 French Oct 1974 A
3858476 Deligt Jan 1975 A
3861985 Parlagreco Jan 1975 A
3877576 Kishi Apr 1975 A
3935802 Perrin Feb 1976 A
4134521 Pecht Jan 1979 A
4236679 Jespersen Dec 1980 A
4317547 Graham Mar 1982 A
4378912 Perrin Apr 1983 A
4403748 Cornell Sep 1983 A
4457964 Kaminstein Jul 1984 A
4467974 Crim Aug 1984 A
4508527 Uno Apr 1985 A
4521209 DuFresne Jun 1985 A
4552315 Granger Nov 1985 A
4566608 Draper Jan 1986 A
4621755 Granger Nov 1986 A
4627117 Morishita Dec 1986 A
4643705 Bober Feb 1987 A
4648530 Granger Mar 1987 A
4651895 Niske Mar 1987 A
4691503 Frerich Sep 1987 A
4753369 Morrison Jun 1988 A
4756485 Bastian Jul 1988 A
4802412 Edwards Feb 1989 A
4807824 Gains Feb 1989 A
4846412 Morand Jul 1989 A
4856724 Jespersen Aug 1989 A
4905868 Beane Mar 1990 A
4928432 Yang May 1990 A
4944466 Jespersen Jul 1990 A
5044873 Vijuk Sep 1991 A
5048809 Tebbe Sep 1991 A
5054676 Ban Oct 1991 A
5064179 Martin Nov 1991 A
5092833 King Mar 1992 A
5131302 Watanabe Jul 1992 A
5135147 Granger Aug 1992 A
5205454 Schutz Apr 1993 A
RE34288 Beck Jun 1993 E
5244161 Wirtz-Odenthal Sep 1993 A
5246137 Schutz Sep 1993 A
5310398 Yoneyama May 1994 A
5364332 Gray, Jr. Nov 1994 A
5370267 Schroeder Dec 1994 A
5371267 Seitz Dec 1994 A
5386950 Abt Feb 1995 A
5405127 Welborn Apr 1995 A
5496605 Augst Mar 1996 A
5514066 Monaco May 1996 A
5526973 Boone Jun 1996 A
5582362 Johnson Dec 1996 A
5625659 Sears Apr 1997 A
5630526 Moody May 1997 A
5704566 Schutz Jan 1998 A
5715971 Morand Feb 1998 A
5757664 Rogers May 1998 A
5765718 Grasso Jun 1998 A
5785274 Johnson Jul 1998 A
5836862 Granger Nov 1998 A
5846412 Tharp Dec 1998 A
5868275 Moody Feb 1999 A
5878381 McConnell Mar 1999 A
5918197 Toussant Jun 1999 A
5979822 Morand Nov 1999 A
5980439 Johnson Nov 1999 A
6000429 Van Marcke Dec 1999 A
6010090 Bushmaker Jan 2000 A
6029921 Johnson Feb 2000 A
6059711 Wang May 2000 A
6065639 Maddox May 2000 A
6090467 Yip Jul 2000 A
6092726 Toussant Jul 2000 A
6109473 Neveu Aug 2000 A
6129240 Morand Oct 2000 A
6145779 Johnson Nov 2000 A
6145782 King Nov 2000 A
6152397 Purcell Nov 2000 A
6189163 Van Marcke Feb 2001 B1
6226959 Krasuski May 2001 B1
6228454 Johnson May 2001 B1
6237871 Morand May 2001 B1
6352172 Chan Mar 2002 B1
6360181 Oyler Mar 2002 B1
6375038 Daansen Apr 2002 B1
6401045 Rogers Jun 2002 B1
6404837 Thompson Jun 2002 B1
6411920 McConnell Jun 2002 B1
6440052 Reider Aug 2002 B1
6447864 Johnson Sep 2002 B2
6460727 Irwin Oct 2002 B1
6464120 Johnson Oct 2002 B1
6519505 Formon Feb 2003 B2
6536624 Johnson Mar 2003 B2
6554158 Kapiloff Apr 2003 B2
6561598 Granger May 2003 B2
6581500 Kietaibl Jun 2003 B1
6592013 Fujiwara Jul 2003 B1
6592067 Denen Jul 2003 B2
6622888 Boone Sep 2003 B2
6644503 Peterson Nov 2003 B2
6651922 Quimpo Nov 2003 B1
6684751 Kapiloff Feb 2004 B2
6685074 Vish Feb 2004 B2
6691061 Rogers Feb 2004 B1
6704616 Formon Mar 2004 B2
6704617 Cherfane Mar 2004 B2
6707873 Thompson Mar 2004 B2
6730010 Yamakawa May 2004 B2
6736348 Formon May 2004 B1
6826991 Rasmussen Dec 2004 B1
6838887 Denen Jan 2005 B2
6860447 Boone Mar 2005 B2
6871815 Moody Mar 2005 B2
6874653 Boone Apr 2005 B2
6883563 Smith Apr 2005 B2
6884209 Roozrokh Apr 2005 B2
6889970 Takahashi May 2005 B2
6892898 Boone May 2005 B1
6895296 Holt May 2005 B2
6909986 Rogers Jun 2005 B2
6915980 Tsuruga Jul 2005 B2
6925397 Rogers Aug 2005 B2
6934644 Rogers Aug 2005 B2
6959885 King Nov 2005 B2
6964395 Lewis Nov 2005 B1
6997094 Granger Feb 2006 B2
7044421 Hoyt May 2006 B1
7063656 Lindsay Jun 2006 B1
7066070 Granger Jun 2006 B2
7072738 Robertson Jul 2006 B2
7085618 Holt Aug 2006 B2
7122005 Shusterman Oct 2006 B2
7131609 Lewis Nov 2006 B1
7137539 Jackson Nov 2006 B2
7168602 Broehl Jan 2007 B2
7177725 Limkemann Feb 2007 B2
7177780 Hillam Feb 2007 B2
7178561 Memmott Feb 2007 B2
7181361 Memmott Feb 2007 B2
7185683 Peterson Mar 2007 B2
7197409 Hillam Mar 2007 B2
7213782 Chang May 2007 B2
7234610 Skarda Jun 2007 B2
7242307 LeBlond Jul 2007 B1
7275655 Duff Oct 2007 B2
7275672 Pierquet Oct 2007 B2
7346427 Hillam Mar 2008 B2
7370824 Chang May 2008 B1
7370826 Neveu May 2008 B2
7411511 Kennish Aug 2008 B2
7416162 Behroozi Aug 2008 B2
7419150 Kushida Sep 2008 B2
7423533 LeBlond Sep 2008 B1
7454267 Robertson Nov 2008 B2
7536264 Memmott May 2009 B2
7546256 Scoleri Jun 2009 B2
7574385 Hillam Aug 2009 B2
7590467 Holt Sep 2009 B2
7606632 Roberts Oct 2009 B2
7689371 Memmott Mar 2010 B2
7726599 Lewis Jun 2010 B2
7774096 Goerg Aug 2010 B2
7783380 Detamore Aug 2010 B2
7783435 Hillam Aug 2010 B2
7791490 Kennish Sep 2010 B2
7805340 Blakeslee Sep 2010 B2
7806291 Anderson Oct 2010 B2
7814582 Reddy Oct 2010 B2
7832678 Hjort Nov 2010 B2
7837077 Formon Nov 2010 B2
7855651 LeBlond Dec 2010 B2
7954405 Kling Jun 2011 B2
7955797 Dietz Jun 2011 B2
7966879 Bishop Jun 2011 B2
7967235 Forman Jun 2011 B2
7971514 Alalu Jul 2011 B2
7975955 Takeuchi Jul 2011 B2
7996108 Yardley Aug 2011 B2
8066217 Cittadino Nov 2011 B2
8094029 Ortiz Jan 2012 B2
8160742 Goerg Apr 2012 B2
8181899 Marietta-Tondin May 2012 B2
8245879 Wegelin Aug 2012 B2
8298640 Cattacin Oct 2012 B2
8342360 Long Jan 2013 B2
8350706 Wegelin Jan 2013 B2
8364546 Jahrling Jan 2013 B2
8366035 Kling Feb 2013 B2
8517618 Cartwright Aug 2013 B2
8590738 Formon Nov 2013 B2
8616486 Billman Dec 2013 B2
8899508 Kullman Dec 2014 B2
8899509 Kullman Dec 2014 B2
8939392 Granger Jan 2015 B2
9108436 Yamamoto Aug 2015 B1
9345368 Formon May 2016 B2
9604811 Case Mar 2017 B2
9701508 Diamond Jul 2017 B2
9770143 Corley Sep 2017 B2
10105020 Carper Oct 2018 B2
10117549 Atalla Nov 2018 B2
10405705 Formon Sep 2019 B2
20020033405 Gergek Mar 2002 A1
20020139488 Parker Oct 2002 A1
20030109368 Kitai Jun 2003 A1
20030169046 Morris Sep 2003 A1
20030183717 Chen Oct 2003 A1
20040254054 Suzuki Dec 2004 A1
20050067519 King Mar 2005 A1
20050156081 Schaeffer Jul 2005 A1
20050184441 Munneke Aug 2005 A1
20060157148 Hillam Jul 2006 A1
20060167967 Defosse Jul 2006 A1
20060175344 Skarda Aug 2006 A1
20060273100 Cittadino Dec 2006 A1
20070090132 Williams Apr 2007 A1
20070098944 Mitchell May 2007 A1
20080004507 Williams, Jr. Jan 2008 A1
20080073371 Neiberger Mar 2008 A1
20080173661 Neveu Jul 2008 A1
20080185395 Sahud Aug 2008 A1
20080197142 Langen Aug 2008 A1
20080280088 Baum Nov 2008 A1
20090120951 Titas May 2009 A1
20090125424 Wegelin May 2009 A1
20090155512 Neto Jun 2009 A1
20090204256 Wegelin Aug 2009 A1
20090212153 Alalu Aug 2009 A1
20090319072 Fukui Dec 2009 A1
20100075094 Cattacin Mar 2010 A1
20100094581 Cagle Apr 2010 A1
20100114366 Case May 2010 A1
20100170979 Lewis Jul 2010 A1
20100224647 Formon Sep 2010 A1
20100304945 Ang Dec 2010 A1
20110011886 Zaima Jan 2011 A1
20110132920 Petocchi Jun 2011 A1
20110139920 Formon Jun 2011 A1
20110163870 Snodgrass Jul 2011 A1
20110168831 Mok Jul 2011 A1
20110169643 Cartner Jul 2011 A1
20110169645 Cartner Jul 2011 A1
20110169646 Raichman Jul 2011 A1
20110177278 Neto Jul 2011 A1
20110184864 Mon Jul 2011 A1
20110210137 Kling Sep 2011 A1
20110226883 Forman Sep 2011 A1
20110232367 McManus Sep 2011 A1
20110233254 Lundqvist Sep 2011 A1
20110252883 Dietz Oct 2011 A1
20110254214 Walsh Oct 2011 A1
20110316701 Alper Dec 2011 A1
20110319244 Toyoizumi Dec 2011 A1
20120037746 Cittadino Feb 2012 A1
20120138625 Case Jun 2012 A1
20120218106 Zaima Aug 2012 A1
20120235313 Yan Sep 2012 A1
20120237711 Cattacin Sep 2012 A1
20120245729 Wegelin Sep 2012 A1
20120249331 Wegelin Oct 2012 A1
20120256037 Nordlund Oct 2012 A1
20130040089 Cattacin Feb 2013 A1
20130052408 Carlson Feb 2013 A1
20130161346 Wolme Jun 2013 A1
20140263387 Muehl Sep 2014 A1
20150282678 Larsson et al. Oct 2015 A1
20150336765 Sawada Nov 2015 A1
20160088982 Larsson Mar 2016 A1
20170188759 Borke Jul 2017 A1
20170190535 Case Jul 2017 A1
20170258278 Moody Sep 2017 A1
20170290473 Borke Oct 2017 A1
20170296004 Borke Oct 2017 A1
20180208424 Case Jul 2018 A1
Foreign Referenced Citations (31)
Number Date Country
654722 Nov 1994 AU
2633158 Dec 2009 CA
101068494 Nov 2007 CN
20107189 Aug 2001 DE
10256295 Jul 2003 DE
20314147 Jan 2004 DE
865247 Mar 2002 EP
930039 Nov 2002 EP
1308905 Mar 1973 GB
2377204 Jan 2003 GB
2489965 Oct 2012 GB
63051254 Mar 1988 JP
H0622882 Mar 1994 JP
H0769529 Mar 1995 JP
H11178741 Jul 1999 JP
11244184 Sep 1999 JP
2002-17601 Jan 2002 JP
2003-144344 May 2003 JP
2003290072 Oct 2003 JP
2004-129863 Apr 2004 JP
2005-065730 Mar 2005 JP
2009039226 Feb 2009 JP
1036213 Jan 2009 NL
9721377 Jun 1997 WO
9837794 Sep 1998 WO
2010141689 Dec 2010 WO
WO2011074946 Jun 2011 WO
WO2012034590 Mar 2012 WO
2012102608 Aug 2012 WO
WO2013119940 Aug 2013 WO
2014118483 Aug 2014 WO
Non-Patent Literature Citations (12)
Entry
Extended European Search Report for Application No. 14851269.2 dated Mar. 3, 2017.
Georgia-Pacific LLC, “Relevant Information Regarding Other Georgia Pacific Towel & Tissue Dispensers,” Mar. 2013, 1 page.
International Search Report and Written Opinion for PCT/US2014/015524; dated May 9, 2014.
International Search Report and Written Opinion for PCT/US2014/058283; dated Jan 15, 2015.
International Search Report and Written Opinion for PCT/US2015/066015; dated Apr. 8, 2016.
International Search Report and Written Opinion for PCT/2018/032099; dated Sep. 11, 2018.
International Search Report and Written Opinion of the International Searching Authority for PCT/FR2007/001737; dated Oct. 31, 2008.
International Search Report and Written Opinion of the International Searching Authority for PCT/US2013/025334 dated May 15, 2013, 11 pages.
International Search Report and Written Opinion of PCT/US2015/066015 dated Apr. 8, 2016.
Nilsson, Ulrika and Volme, Lisa; ReDesign of RollNap, a Technical and Aesthetical Development of a Napkin Dispenser; University Essay from Lunds Universitet/Maskinkonstruktion; LTH; 2010, 121 pages; http://www.essays.se/essay/1629aeca878/.
Supplementary European Search Report of EP 13 74 6627 dated Mar. 16, 2016.
Written Opinion of the International Search Authority for PCT/FR2007/001737, dated Oct. 31, 2008; 7 pages.
Related Publications (1)
Number Date Country
20190335962 A1 Nov 2019 US
Divisions (1)
Number Date Country
Parent 14576534 Dec 2014 US
Child 16512840 US
Continuation in Parts (1)
Number Date Country
Parent 13370511 Feb 2012 US
Child 14576534 US