The invention relates to a fairlead that is intended to equip a towing device that can be installed on the deck of a ship and makes it possible to tow an object trailed behind the ship. The towing device conventionally comprises a winch, a cable and a fairlead, the cable passing through the fairlead under the action of the winch. This type of device is employed for example in the field of underwater acoustics and more particular for towed active sonars. These sonars generally comprise a transmission antenna integrated into a submersible object or “towfish” and a receiving antenna made up of a linear antenna or “streamer”. During the use of the sonar being towed, the towfish and the streamer are secured to the same cable in order to be towed by the ship.
It is possible to use the sonar in passive mode, i.e. without its transmission antenna, or in active mode with its transmission antenna formed by the towfish and its receiving antenna. In order to ensure these two operating modes, the towfish is fixed and connected removably to the cable. When the towfish is in place on the cable, it is suspended from the cable such that its center of gravity is situated under the axis of the cable. The towfish comprises a body and one or two arms. The free end of each arm is coupled to the cable from above the cable in order to allow the cable to be guided through the fairlead.
The cable generally comprises a core formed of electrical and/or optical conductors for transmitting energy and information between the equipment of the sonar that are situated on board the ship and the antennas. The core of the cable is generally covered with a strand of metal wires that ensure the mechanical integrity of the cable. The make-up of the cable imposes a minimum radius of curvature thereon. Below this radius, inadmissible mechanical stresses arise and cause the constituents of the cable to deteriorate. The winch fixed to the deck of the ship has a reel on which the cable can be hauled in when the sonar is inactive and when the antennas are stowed on board the ship. The diameter of the reel makes it possible to ensure that the hauled-in elements are not curved at a radius smaller than the minimum radius of curvature.
When the towed elements are in the sea, the cable is guided by the fairlead, which makes it possible to safeguard its effective radius of curvature. The fairlead forms the last element for guiding the cable with respect to the ship before the cable drops into the water. The fairlead comprises a frame fixed to the deck of the ship and a channel in which the cable slides. The channel has an upwardly open section such that the cable is held in the channel by gravity. When the sea is heavy or while the ship is being maneuvered, the cable can escape from the channel, the fairlead then no longer fulfilling its guiding role. In order to prevent the cable from escaping from the channel, it is desirable to close at least a section of the channel. However, the fact of closing the channel prevents the arms of the towfish from passing through the fairlead.
The applicant has attempted to internally produce a fairlead having a closed section that an operator can open manually to allow the arms of the towfish through. The position of the fairlead behind the ship, or partially overhanging the transom of the ship makes the opening and closing operation tricky or even dangerous under difficult navigation conditions. It would be conceivable to remote-control the opening and closing of the fairlead, but this would be complicated to implement. Furthermore, the towing device already requires an operator manipulating the winch. If this operator had to move around in order to open the fairlead, this would entail the risk of the fairlead being left open for an excessively long time. A second operator could manipulate the fairlead, but this would generate a higher operating cost for the towing device.
The invention provides a solution to this problem by proposing a fairlead with a closed channel that can open automatically during the passage of the towfish.
To this end, the subject of the invention is a fairlead that is intended to equip a towing device that can be installed on the deck of a ship and comprises a winch, a cable passing through the fairlead under the action of the winch, the fairlead comprising:
an open-section channel extending in a main direction for guiding the cable, a movable bolt closing a section of the channel, a force sensor that is situated in front of the bolt in one sense of the main direction and is configured to detect an external force, and a trigger configured to open the bolt when a force exerted on the sensor and oriented along the main axis in the sense exceeds a predetermined force, and to close the bolt when this force ceases.
Advantageously, the force sensor is configured to detect an external force in front of the bolt in both senses of the main direction, and the trigger is configured to open the bolt when a force exerted on the sensor and oriented along the main axis in both senses exceeds the predetermined force, and to close the bolt when this force ceases.
According to a first embodiment of the invention, the bolt is rotatable with respect to the channel about an axis of rotation substantially perpendicular to the main direction.
Advantageously, according to the first embodiment, the force sensor comprises a tab that is rotatable about the axis of rotation. The trigger comprises a pawl that can take up two positions, of which a first position, referred to as the closed position, is effective when there is no force on the tab and keeps the bolt closed, and of which a second position, referred to as the open position, allows the bolt to rotate freely. The pawl is driven by the tab from the closed position to the open position after the predetermined force has been exceeded, the fairlead also comprising a first spring connected between the channel and the tab, the stiffness of the spring contributing to the predetermined force and to the realignment of the bolt with the tab.
The first spring may be preloaded, the preload contributing to the predetermined force and to the realignment of the bolt with the tab.
Advantageously, according to the first embodiment, the trigger comprises a second spring that tends to close the bolt, the second spring being connected in series with the first spring. The bolt is secured at the common point between the two springs.
The second spring advantageously has a stiffness less than that of the first spring.
The second spring may be preloaded by a value less than that of the first spring.
According to a second embodiment of the invention, the bolt is movable in translation with respect to the channel along an axis substantially perpendicular to the main direction.
Advantageously, according to the second embodiment, the force sensor comprises a tab that is rotatable about an axis of rotation substantially perpendicular to the main direction, and means for converting a rotary movement of the tab into a movement in translation of the bolt. These means are advantageously irreversible.
Advantageously, the fairlead of the second embodiment comprises a cam that turns with the tab and a pivoting lever comprising, at a distance from its pivot axis, a pin bearing on the cam and a slot in which the bolt is supported.
The fairlead advantageously comprises a return spring that tends to return the cam into a balanced position in which the bolt is closed.
A further subject of the invention is a towing device that can be installed on the deck of a ship and comprises a winch, a cable and a fairlead according to the invention, the fairlead and the winch being fixed with respect to one another.
The invention will be understood better and further advantages will become apparent from reading the detailed description of an embodiment given by way of example, said description being illustrated by the appended drawing, in which:
a show the automatic opening mechanism from
For the sake of clarity, the same elements will bear the same references in the different figures.
The invention is described with reference to the towing of a sonar by a surface vessel. It will of course be understood that the invention can be implemented for other towed elements.
The antennas 12 and 13 are mechanically anchored and connected electrically and/or optically to the cable 14 in an appropriate manner. Conventionally, the receiving antenna 13 is formed by a tubular linear antenna identical to those found in passive sonars, hence its name of streamer, while the transmission antenna 12 is incorporated into a voluminous structure having a shape similar to that of a fish. The receiving streamer is generally disposed at the rear, at the end of the cable 14, the towfish being positioned on the part of the cable 14 closest to the ship 10. During an underwater acoustic mission, the antenna 12 transmits sound waves through the water and the receiving antenna 13 picks up any echoes coming from targets at which the sound waves output by the antenna 12 are reflected.
The receiving antenna 13 is generally anchored permanently to the cable 14 while, for its part, the towfish 12 is anchored in a removable manner. To this end, the cable 14 has an anchoring zone 15 for the towfish 12, in which zone means for mechanically fixing the towfish 12 and for electrically and/or optically connecting it to the cable 14 are installed.
The launching and retrieval of the antennas 12 and 13 are realized by means of a winch 16 disposed on a deck 17 of the ship 10. The winch 16 comprises a reel 18 dimensioned to allow the cable 14 and the receiving antenna 13 to be hauled in. The winch 16 also comprises a stand. The reel 18 turns with respect to the stand in order to haul in the cable. The hauling in of the cable 14 makes it possible to winch the towfish 12 on board the ship 10, for example onto an aft platform 19 provided for this purpose.
A fairlead 20 guides the cable 14 downstream of the reel 18. The fairlead 20 forms the last guiding element for the cable 14 before it drops into the water. During towing, the inclination of the cable 14 can vary with respect to the longitudinal axis of the ship 10. The variations in inclination are caused in particular by changes in the heading and speed of the ship and also by the state of the sea. One of the functions of the fairlead 20 is to ensure that the respective radii of curvature of the cable 14 and of the linear antenna do not exceed a predefined lower limit. The cable 14 comprises for example a core formed of electrical and/or optical conductors for transmitting energy and information between the sonar equipment situated on board the ship 10 and the antennas 12 and 13. The core of the cable 14 is generally covered with a strand of metal wires that ensure the mechanical integrity of the cable 14 notably the tensile strength thereof. Below the lower limit of curvature, there is a risk of permanent deformations or breakage of constituents of the cable 14. The same goes for the linear antenna.
On the sea side, the cable 14 can oscillate depending on the state of the sea or more simply if the heading of the ship changes. To this end, the fairlead 20 can comprise a plurality of mutually articulated sectors, each for guiding the cable 14. Such a fairlead is described for example in the patent application WO 2015/014886 A1 filed in the name of the applicant. In that document, the axis of the articulation of the sectors intersects the main axis along which the cable extends. It is possible to dispose the axis of rotation of the articulation of the sectors differently, as described for example in the document WO 2013/068497 A1, likewise filed in the name of the applicant. It is of course possible to implement the invention in a fairlead that comprises only a single sector that is fixed to the frame 21 or is rotatable with respect thereto.
The fairlead 20 comprises a first sector 23 that is fixed with respect to the frame 21, and a second sector 24 referred to as pivoting sector, both of which guide the cable 14. Each of the sectors 23, 24 comprises a channel or groove, 25 for the sector 23, 26 for the sector 24. The cable 14 slides in the channels 25 and 26, which are substantially in line with one another so as to be able to guide the cable 14 along the entire length of the fairlead 20. Each of the channels 25 and 26 allows the cable 14 to be curved. The channels 25 and 26 are dimensioned and arranged so as to limit the maximum curvature of the cable 14 to a predetermined curvature. The sectors 23 and 24 are mutually articulated. The sector 24 can pivot about an axis 28 with respect to the sector 23. The minimum radius of curvature is maintained during the rotary movements of the sector 24 with respect to the sector 23.
The sectors 23 and 24 have sections in the shape of the letter C making it possible to guide the cable in the bottom part of the C and more specifically in the channels 25 and 26. The opening of the C allows the arms 12a and 12b of the towfish 12 to pass through. In order to prevent any escape of the cable 14 from the fairlead 20 during unintentional movements of the cable 14, the open side of the fairlead 20 comprises at least one closed section. According to the invention, this closed section opens and closes automatically during the passage of the arms 12a and 12b.
The fairlead 20 comprises:
In
When the fairlead comprises several sectors 23 and 24, as in the example shown, the fairlead 20 may advantageously comprise its own automatic opening mechanism associated with each sector. The automatic opening mechanisms of each of the sectors 23 and 24 can function simultaneously. The triggering of the opening then takes place with the aid of a force sensor shared by the different mechanisms. Alternatively, the different mechanisms function independently of one another, each having its own force sensor. This independence makes it possible to reduce the opening time of the different bolts as far as possible in order to best safeguard the cable 14 inside the fairlead 20.
The trigger 36 is situated inside a shell 50 secured to the tab 33. The trigger 36 mainly comprises a pawl 52 that can take up three positions: a position in which the bolt 30 is closed, as shown in
The pawl 52 is likewise visible in the cross sections HH and DD shown in
The automatic opening mechanism has a shaft 54 extending along the axis 31. The shaft is fixed to the bolt 30 (not shown in
The pawl 52 comprises two fingers 61 and 62 that are rotatable with respect to the frame 60 about an axis 64. The fingers each have a hook: 65 for the finger 61 and 66 for the finger 62. When the pawl 52 is in the closed position as shown in
During a rotary movement of the tab 33, a pin 70, secured to the tab 33, makes it possible to open the pawl 52 by moving away one of the fingers 61 and 62. In practice, the pin 70 is fixed to the shell 50, which is itself fixed to the tab 33.
Moreover, a first spring 72 opposes the rotation of the tab 33 with respect to the bolt 30, which is fixed in the closed position of the pawl 52. Moreover, in addition to the spring 72, the internal shape of the fingers 61 and 62 against which the pin 70 presses and the shape of the hooks 65 and 66 are configured to define the force above which the pawl 52 opens in order to release the bolt 30.
It is likewise possible to differentiate the force necessary for opening the pawl 52 in the two senses of rotation by doubling the spring 72, one acting in one sense and the other acting in the other sense. For each of the two springs, it is possible to choose different stiffnesses and different preloads.
Once the pawl 52 is open, the shapes thereof no longer prevent the rotation of the bolt 30. The spring 72 then applies a return action on the bolt 30 in order to realign the bolt 30 with the tab 33 and thus to prevent contact between the arm 12a or 12b and the bolt 30.
Advantageously, the mechanism comprises a second spring 74, which is connected between the frame 60 and the first spring 72 and tends to close the bolt 30, which is secured at the common point between the two springs 72 and 74. By choosing a stiffness of the second spring 74 that is less than that of the first spring 72, it is possible to limit the force necessary to completely open the mechanism and to maintain a high triggering force of the pawl 52 and thus to maintain the minimum force to be exceeded in order to trigger the opening of the bolt 30. Disposing the two springs 72 and 74 in series between the frame 60 and the tab 33 with the bolt 30 fixed at the common point of the two springs 72 and 74 makes it possible to maintain an angular offset between the tab 33 and the bolt 30 and thus to avoid any contact between the arm 12a or 12b and the bolt 30.
The two springs 72 and 74 are preloaded so as to allow the return toward the closed position when the pressure on the tab 33 stops. It is possible to regulate the preload and the stiffness of the spring 74 to a value lower than that of the spring 72 in order to further reduce the force necessary to reach the open position of the bolt 30.
Alternatively, it is possible to use only one spring that applies a return force to the bolt 30 with respect to the frame 60 and a return force to the tab 33 with respect to the frame 60. However, the use of one spring (per sense) has the drawback of leaving the tab 30 free during the opening of the pawl 52 and it is one of the arms of the towfish that pushes against the bolt 30 after the pawl 52 has been unlocked. Moreover, this variant, for one and the same predetermined force for triggering the opening of the bolt 30, results in a force necessary for complete opening, shown in
The spring 74 is preloaded between two flanges 82 and 84 that are free to rotate with respect to the frame 60, in each case in an angular sector giving the possible angular travel for the bolt 30 in one of the senses of rotation. The balanced position is visible in
Just like the spring 72, it is possible to double the spring 74 in order to differentiate the stiffness and the preload in the two senses of circulation of the cable 14 in the fairlead 20.
Between the balanced position where α=0° and the position α3, the tab 33 moves angularly without the bolt 30 turning. When the bolt 30 is released, the latter is realigned with the tab 33. In other words, beyond the position α3, the tab 33 returns to the advanced position that it had on the bolt 30 in the rest position for α=0° in order to prevent any contact between the arm 12a or 12b and the bolt 30. The stiffness of the spring 72 contributes to the realignment of the bolt 30 and the tab 33.
Following the opening of the bolt 30, the curve in
Beyond the position α3, the rotation of the tab 33 continues as far as the position α5, for example around 110°, in which position the return torque C3 is substantially a function of the stiffness of the second spring 74.
The variant with one spring (per sense) is also depicted by dashed lines in
The curve is substantially symmetric with respect to the y-axis give or take the adaptations described above, the maximum torque value C5 and angular amplitude which can be adjusted differently in the two senses of rotation. Thus, the bolt 30 tends to return to its closed balanced position regardless of its sense of rotation.
Returning to the variant with two springs 72 and 74, when the force on the spring 33 ceases, the tab 33 and the bolt 30 close, following a direct curve from the point on the curve (α5, C3) to the point (0, C1) and then (0,0). The preload C1 of the second spring 74 ensures the closure of the bolt 30 and the return of the pin 72 to its balanced position.
The return of the tab 33 with respect to the shaft 54 takes place in a similar manner to that of the bolt 30 with respect to the frame 60. The spring 72 is preloaded between two flanges 90 and 92 that are rotatable with respect to the shaft 54. The flange 90 is coupled to the shaft 54 via a key and the flange 92 is coupled to the shell 50 and thus to the tab 33 via a pin. The angular travel of the flange 90 is around 10° with respect to the shaft 54, and corresponds to the movement 45 and 46 of the tab 33 with respect to the bolt 30; it can be ensured, as above, by means of a key fixed to the shaft 54 and a free angular sector realized in the flange 90.
The pin 70 secured to the shell 50 and the tab 33 appears in the diagram in
In the kinematic diagram in
Similarly, for one of the senses, the function ensured by the spring 74 is ensured by the spring 74.1 held between the two flanges 82.1 and 84.1. For the other sense, the function ensured by the spring 74 is ensured by the spring 74.2 held between the two flanges 82.2 and 84.2. The key 86 secured to the frame 60 is likewise doubled and shown in
In the second embodiment, the tab 33 for detecting a force is apparent. A bolt 100 which, unlike the first embodiment, opens and closes in a movement in translation along an axis 102, is apparent. The bolt is guided in translation with respect to the sector 24 along the axis 102.
A pinion 104 is secured to the tab 33. The pinion 104 turns about the axis 31. A second pinion 106 is rotatable with respect to the sector 24. The axis of rotation 108 of the pinion 106 is different from the axis of rotation 31 of the pinion 104. The pinion 106 is driven by the pinion 104 via a belt 110. The tab 33, the pinions 104 and 106 and the belt fulfill the function of the force sensor 32.
A cam 112 is secured to the pinion 106. An arm 114 can pivot at one of its ends 116 with respect to the sector 24 about an axis 118 different from the axes of rotation 31 and 108 of the two pinions 104 and 106. The arm 114 comprises a roller 120 that forms a cam follower and presses on the cam 112. The bolt 100 comprises a pin 122 that can slide in a slot 124 made in the arm 114 at its second end 126. The cam 112, the arm 114 and the roller 120 fulfill the function of the trigger 36.
The arm 114 forms a lever for moving the bolt 100 in translation along its axis 102. The shape of the cam 112 is defined to coordinate the movement in translation of the bolt 100 depending on the angular movement of the tab 33. The distance ratio between the pin 122 and the axis of rotation 118, for the one part, and the roller 120 and the axis of rotation 118, for the other part, makes it possible to amplify the movement in translation of the bolt 100 with respect to the rotation of the tab 33. This amplification can be modified by the ratio of the diameters of the pinions 104 and 106. In the example in question, the pinions 104 and 106 and the arm 114 amplify the movement in translation of the bolt 100. A reduction is likewise conceivable.
Any other means for converting the rotary movement of the tab 33 into a movement in translation of the bolt 100 is possible within the scope of the invention, for example a system of the rod-crank type.
In order to avoid a situation in which the roller 120 loses contact with the cam 112, the latter advantageously comprises a groove 130 in which the roller 120 moves. The roller 120 thus remains in contact with the two flanks of the groove 130.
The profile of the cam 112 against which the roller 120 bears is advantageously defined such that the mechanism is irreversible, i.e. a force on the bolt 100 cannot open it. This makes it possible to prevent friction of the cable on the bolt 100 being able to raise it. Thus, only a force on the tab 33 that tends to pivot it about its axis 31 makes it possible to open the bolt 100.
The profile of the cam 112 is symmetric with respect to the point of equilibrium shown in
The mechanism comprises a return spring 132 that tends to keep the bolt 100 in the closed position. A preload of the spring 132 makes it possible to define the minimum force to be exerted on the tab 33 in order to open the bolt 100. The spring 132 can be directly fixed between the sector 24 and the bolt 100. This disposition of the spring 132 only functions if the mechanism is reversible. In the case of an irreversible mechanism, the spring 132 can be directly fixed between the sector 24 and the cam 112 in order to exert a torque on the cam 112, this torque tending to keep the roller 120 at the balanced position. In the example shown, in order to accentuate the effect of the spring 132, the mechanism comprises a crown wheel 134 that is rotatable with respect to the sector 24 and a pinion 136 secured to the cam 112. The crown wheel 134 and the pinion 136 roll without sliding on one another. To this end, the crown wheel 134 and the pinion 136 comprise for example cooperating gear teeth. With respect to the plane of
Number | Date | Country | Kind |
---|---|---|---|
1601450 | Oct 2016 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/075034 | 10/3/2017 | WO | 00 |