The invention relates generally to the field of automatic web splicing, and in particular to splicing of perforated web. More specifically, the invention relates to automatically acquiring the web leader from a wound stock roll of perforated web, and automatically splicing the web leader to the trailer of a previously unwound stock roll of perforated web, while maintaining the perforations in pitch.
An exemplary perforated web has one or more rows of perforations along its entire length, often used to engage a sprocket, which is often used to advance the perforated web through a device or process. For example, motion picture film (web) has perforations, which are used to advance the film (web) through a film projector system in a controlled fashion. The perforations, which are in a row or multiple rows, are evenly spaced along the entire length of the perforated web. It is preferable to maintain the same perforation pitch between the perforations adjacent to each side of a splice, so the splice section of a perforated web advances effectively through any sprocket type device. Splices, which are not accurately spliced on pitch, or are not accurately aligned laterally, can cause a variety of web conveyance problems, or create damage to the web itself.
Many commercially available ultrasonic splicing systems, similar to what is described in U.S. Pat. No. 4,029,538 and European Patent No. EP 0 496 393 A1, are often used to splice webs together, such as polyester webs used as motion picture film. These systems require an operator to manually insert both a web trailer and a web leader into a splicing apparatus. An operator also registers both the web leader and web trailer perforations, to maintain the perforations pitch, by placing the two webs against pin type locating features. The operator trims the web trailer end and the web leader end with a web-cutting device, to form an on-pitch overlap splice. Next, the operator discards these trimmed web ends. An operator has to physically actuate a device to overlap the web ends to the desired on-pitch overlap position. The operator then activates an ultrasonic splicing device. When the ultrasonic splicing is completed, the spliced web is manually removed from the splicing device. This overall splicing operation is very manually intensive and the rate and accuracy of generating a splice is dependent on the skill of the operator. For motion picture film splicing, the splicing operation is sometimes done in the dark, due to the inherent light sensitivity of unprocessed motion picture film, which increases the difficulty of manual splicing. Fully automating this web handling and ultrasonic splicing operation is very desirable, because it would eliminate the manual labor required, and provide splices at fast and consistent rates.
Many automated web stock roll unwind and splicing systems have been developed, for example, as seen in U.S. Pat. Nos. 6,817,566 B2 and 5,679,207. Often these systems require two stock roll unwind spindles, which requires loading stock rolls at two different locations. A dual spindle unwind system can add complexity in tooling and system controls. Also, if one desires to automatically load web stock rolls onto a dual unwind system, there is added complexity to automatically load two spindles.
Even when the web stock rolls are manually loaded onto web stock roll unwind and splicing systems having dual unwind spindles, the dual spindle system can be problematic. Often the dual spindles are located side by side, which requires additional floor space. Alternatively, the dual spindles are placed one over the top of another, thereby creating operator-handling problems, because one spindle is located too high or too low for proper manual loading. Therefore, the simplicity of a single unwind spindle system remains very desirable.
Consequently, there is a need for automatic web splicing systems, which can accurately splice a leader of a wound stock roll of perforated web to the trailer end of a previously unwound stock roll of perforated web. There is a need for a system that can accurately splice two perforated webs on pitch (such as webs of motion picture films).
There is also a need to be able to automatically acquire the leader of a web stock roll and splice the leader from the web stock rolls of varying diameters and of varying rotational orientations. There is a desire to provide an automatic splicing system, which requires minimal space. Finally, there is a need for a simple and low cost system, which will be reliable in operation.
The present invention is directed to overcoming one or more of the problems set forth above. Briefly summarized, according to one aspect of the present invention, an automated perforated web splicing system, includes a web stock roll of a perforated web, supported on a single unwind spindle, and having both a precut web leader edge and a web trailer edge for splicing. Also included in the automated perforated web splicing system is a leader holder device for automatically acquiring and positioning the web leader edge of the web stock roll according to perforations in the perforated web, and a splicing station for automatically positioning the web trailer edge prior to splicing and performing an on pitch splice according to perforations in the perforated web.
These and other aspects, features and advantages of the present invention will be more clearly understood and appreciated from a review of the following detailed description of the preferred embodiments and appended claims, and by reference to the accompanying figures. Identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.
The present invention provides a fully automated splicing system, which can perform the required operations quickly and at a consistent rate.
The present invention provides only one unwind spindle and associated drive. This approach simplifies the system controls, reduces hardware costs and can reduce required floor space. Also, having one unwind spindle reduces the complexity of any automatic stock roll loading system.
The use of a precut prepared web stock roll leader with a leader adhesive feature facilitates an automatic means of acquiring the web leader and accurately positioning it at the splice station.
The present invention does not require cutting the web, or removal of trimmed web within the splicing system. This greatly simplifies the splicing system, and improves its reliability.
One embodiment of the present invention mechanically registers the web perforation pitches on each side of the splice, and holds the web, which is adjacent to each side of an ultrasonic horn, tightly. This method of registering the web perforation's pitches can reduce variability in pitch and lap splice dimensions verses using a system that only uses optical sensors to locate perforations.
The present invention does not require pushing the web into tracks, which is often unreliable, due to stubbing and buckling of the web. The trailer and leader web ends are always pulled to positions, and both web ends are positioned under tension.
When the web stock roll is loaded, it does not need to be oriented rotationally on the unwind spindle in the present invention, and does not require the operator to perform any pre-thread (or staging) of the web leader. This greatly simplifies the requirements for the overall stock roll loading process.
The present invention can automatically accommodate large variations in stock roll diameters.
The present invention can accurately laterally position the web trailer and web stock roll leader edges inline, even when the lateral sidewall position of the incoming web stock roll varies in flatness or position (by +/−0.125″ variation, for example).
A preferred embodiment of the present invention uses an ultrasonic splicing process; therefore, no splice tape, which is a consumable, is required. Therefore, there are no problems which results from feeding and replenishing splice tape.
General Description
One exemplary embodiment of the automatic web splicing system 1, shown in
The automatic web splicing system 1 includes a web stock roll 2, further illustrated in
The loaded web stock roll 2 can be of varying diameters, and of varying rotational orientations when loaded onto the unwind spindle 41. The present invention is capable of automatically acquiring the web leader 3, and positioning the web leader 3 for splicing, when the web stock roll 2 is loaded in a random rotational orientation.
Both the web trailer 4 of the previous unwound web stock roll 2, and the web leader 3 of a new web stock roll 2, mounted to the unwind spindle 41, are accurately located via mechanical registration of perforations 5.
Unwind
The automated web splicing system1 has an unwind spindle 41, which is supported by a unwind drive 42 as seen in
Web Stock Roll
The web stock roll 2, seen in
The leader adhesive 12 can be of many forms and shapes, for example:
An exemplary splicing station 13, shown in
Adjacent to the fixed vacuum block 16 is a web sprocket 19 designed to transport and position the web via its perforations 5. Sprocket 19 is driven by sprocket drive 20, which has accurate rotational positional control (an internal encoder). The sprocket drive 20 is mounted to the system 1 frame (not shown). Adjacent to sprocket 19 is a guide roller 22, which does not contact the sprocket or web during normal operation. However, the guide roller 22 maintains a slight gap between the sprocket 19 and itself to keep the web engaged with the sprocket 19, if there is no web tension on ether side of sprocket 19. A flanged idler 21 is pivotally mounted to the system 1 frame (not shown) and provides sufficient wrap of the web on sprocket 19, and also provides web guiding.
Also mounted to the system 1 frame (not shown) are a stop 23 and a locator pin 24, as seen in
Leader Holder Device
A leader holder device 25, seen in
In a forward position, the leader holder device 25 is positioned when the moving idler roller 27 contacts the web stock roll 2. The flanges 28 of the moving idler roller 27 contact the edges of the roll of web 11, and position the moving vacuum head 26 in the transverse direction. This feature provides accurate lateral location of the web leader 3 on the moving vacuum head 26, even if the web stock roll 2 sidewall varies in flatness or the web stock roll's 2 lateral position varies on the unwind spindle 41.
An encoder 29, which supports the moving idler 27, is used as a position input signal for the unwind drive 42. Attached to the moving vacuum head 26 is a sensor bracket 33, which holds two pairs of infrared-through beam sensors 34 and 35, which can be used safely for most light sensitive webs. Leader edge sensor 34 detects the web leader edge 6 of the new loaded stock roll 2 of web. Trailer edge sensor 35 detects the web trailer edge 7 of the previous unwound web stock roll 2, when the leader holder device 25 is at the splicing station 13. NOTE: the moving vacuum head 26 has a sensor clearance slot 40, so the sensors pair 34 and 35 can see through the vacuum head 26. Vacuum sensor 36 detects whether the web leader 3 seals off the vacuum pressure into the moving vacuum head 26 to sense that the web leader is flat on the moving vacuum head 26. Similar to the fixed vacuum block 16, when the web is under sufficient web tension, the moving vacuum head 26 can hold web leader 3 flat and tight for splicing, while still allowing the web to be pulled across it.
Also attached to the leader holder device 25 is a perforation tab 37 designed to easily fit through two perforations when actuated by perforation tab actuator 38, as shown in
A manual method or an automated device to unload empty cores 8 and load new web stock rolls 2 onto the unwind spindle 41 are also functions in the overall process, but are not illustrated, because those skilled in the art understand how to provide a wide range of means to enable these interfacing functions to the present invention.
Some variations in the present invention are worth noting.
Although the present invention illustrates a web with two rows of perforations 5, which extend the entire length of the roll of web 11, a web having a single row or more than two rows of perforations 5 could be accommodated by a variation of the present invention.
There are several variations in the present invention, which one could consider. The leader holder device 25 consists of an encoder 29, which supports the moving idler 27, and is used as a position input signal for the unwind drive 42. Instead, the moving idler 27 could be supported by a drive with an integrated encoder, which could drive the idler 27 and in turn drive the web stock roll 2 when engaged. This variation in the present invention would then allow the unwind drive 42 to be replaced by a rotational brake, which would provide web tension when the web is advanced by the sprocket drive 20.
Another variation in the present invention, which one could consider, is eliminating the perforation tab 37 and the associated perforation tab actuator 38. This variation in the present invention would then only use the leader edge sensor 34 to detect the position of the web leader edge 6 and then advance the web leader 3 to the correct location on the moving vacuum head 26, to ensure the correct position of the perforations 5 and web leader edge 6. Although this variation would simplify the system, one would lose the mechanical registration means to locate the perforations.
Often it is difficult to use ultrasonic splicing processes with some web materials, or with dissimilar web materials. In this case a variation of the present invention could be considered, such as using an adhesive between the web leader and web trailers. Or, an adhesive tape or adhesive label could be used to connect the two webs together.
The present invention uses an “overlap” ultrasonic slicing process to achieve the desired splice 43. A variation, which could be considered, is to generate a splice wherein the web leader of the wound stock roll web is not overlapping (often called a butt splice) with the web trailer of the unwound stock roll leader. The web leader and trailer edges (3,4) of the web stock roll 2 would be cut to a specific dimension from their adjacent perforations 5 to facilitate such a “non-overlapping” splice. The web leader and web trailer would be spliced on pitch, with a connecting splice material, such as an adhesive splice tape or adhesive label.
In the present invention, a slot 30 incorporated within the moving vacuum head 26 interfaces with a locating pin 24, which is part of the splicing station 13. A variation in the present invention, which could be considered, would be to include a slot feature, similar to slot 30 in the moving vacuum head 26, and to place the locating pin 24 in the moving vacuum head 26. By inverting these features, the same locating capability can be achieved.
Controls
Basic control functions of the Present Invention:
Additional functions used in overall process; but not functions of automated splicing process:
The exemplary steps of operation for acquiring the web leader 3 from a web stock roll 2, accurately positioning the web leader 3 and the web trailer 4 of another web at an ultrasonic station 13, and ultrasonic sealing these webs together, are illustrated in
In
As seen in
In block 102 the vacuum pressure is energized in the moving vacuum head 26, which is positioned at the splicing station 13. Vacuum pressure is also energized in the fixed vacuum block 16.
In diamond 104 the state of the vacuum sensor 36, which is connected to the moving vacuum head 26, is monitored. If vacuum pressure is not seen, the sprocket drive 20 continues to advance web at a constant rate, as shown in block 105.
If the vacuum sensor 36 sees vacuum pressure, the system again looks at the state of the vacuum sensor 36 as seen in diamond 106. If the vacuum pressure is still seen, the sprocket drive 20 continues to advance web at a constant rate, as shown in block 107. If the vacuum pressure in the moving vacuum head 26 is not seen, then this indicates that the web trailer edge 7 is moving across the moving vacuum head 26 and is approaching the trailer edge sensor 35.
In diamond 108 the state of the trailer edge sensor 35, which detects the web trailer edge 7, is monitored. It the trailer edge sensor 35 continues to see the web, the sprocket drive 20 continues to advance web at a constant rate, as shown in block 109. When the trailer edge sensor 35 sees its transition in state, and senses the web trailer edge 7, the sprocket drive 20 then advances the web a specific length to position the web trailer edge 7 at the splicing location, as seen in block 110.
Now the web trailer 4 of the unwound stock roll 2 is positioned and held securely in place at the splicing station 13, in preparation for splicing. In block 112, the leader holder device 25 is actuated to engage the web stock roll 2.
Continuing in
In block 226 the unwind drive 42 continues to rotate CCW at a controlled rate. And as seen in block 228, the vacuum pressure to the moving vacuum head 26 is turned on.
In diamond 230 the state of the vacuum sensor 36, which is connected to the moving vacuum head 26, is monitored. If vacuum pressure is not seen, the unwind drive 42 continues to advance rotate the web stock roll 2 at a controlled constant rate, as shown in block 231. If vacuum pressure is seen, this indicates the web leader 3 of the web stock roll 2 is flat against the moving vacuum head 26.
Next, in diamond 232 the state of the leader edge sensor 34 is monitored. If web is seen by the leader edge sensor 34, the unwind drive 42 continues to advance the web leader across the moving vacuum head 26 as shown in 233. When the leader edge sensor 34 sees its transition in state, and senses the web leader edge 6, the unwind drive 42 then advances the web a specific length and stops, to position the perforations adjacent to the web leader edge 6 to align with the perforation tab 37 as seen in block 234.
Continuing in
In block 240, the unwind drive 42 rotates CW to create a slack loop of web 44. The leader holder device 25 is then retracted to the locator pin 24 and stop 23, at the splicing station 13, as shown in block 242.
Now both the web leader 3 and web trailer 4 are in a prepared position for splicing. In block 244 the ultrasonic horn transducer 15 is energized.
Continuing in
In block 354, the vacuum pressure is turned off in the moving vacuum head 26 and in the fixed vacuum block 16. And in diamond 356, the vacuum pressure is monitored in the moving vacuum head 26. If vacuum pressure is still present, as indicated by the vacuum sensor 36, then the system waits as shown in 357. When the vacuum sensor 36 senses that the vacuum pressure is gone, the unwind drive 42 rotates to take up the slack loop of web 44, as shown in block 358.
Finally, in block 360 the sprocket drive 20 and the associated unwind drive 42, in a braking torque mode, begins unwinding the stock roll.
Number | Name | Date | Kind |
---|---|---|---|
4029538 | Vance, Jr. | Jun 1977 | A |
5197688 | Giorgio et al. | Mar 1993 | A |
5679207 | Palone et al. | Oct 1997 | A |
6015114 | Randazzo et al. | Jan 2000 | A |
6192955 | Rice | Feb 2001 | B1 |
6817566 | Clifford et al. | Nov 2004 | B2 |
Number | Date | Country |
---|---|---|
0496 393 | Jan 1995 | EP |
WO 9111380 | Aug 1991 | WO |
Number | Date | Country | |
---|---|---|---|
20060208128 A1 | Sep 2006 | US |