Aspects of the present invention deal with archery bows, and in particular deal with accessories such as sights usable with archery bows.
A bow sight can be used to assist an archer in aiming a bow. A typical bow sight includes a sight housing secured to the frame of a bow by one or more brackets. The sight housing often defines a viewing opening (i.e., a sight window) through which an archer can frame a target. The bow sight also typically includes at least one sighting member, such as a pin, that projects into the viewing opening. The sighting member defines and supports a sight point. The sight point is the point the archer aligns with the target during aiming. In use, the archer draws the drawstring of the bow and adjusts the position of the bow so that the intended target is visible through the viewing opening. While continuing to peer through the viewing opening with the bowstring drawn, the archer adjusts the position of the bow so that the sight point aligns with the intended target from the archer's eye. Once the sight point is aligned with the intended target, the archer releases the bowstring to shoot the arrow. “Target” herein can mean either a target being hunted or a fixed target. One example of a vertically adjustable sight is illustrated in U.S. Pat. No. 7,275,328.
The vertical position of one or more sight points is preferably set and calibrated to the user and bow so that each sight point position corresponds to a different target distance. Multiple sighting members are generally arranged in either a vertically aligned orientation, such as discussed in U.S. Pat. No. 6,418,633 or a horizontal orientation, such as discussed in U.S. Pat. No. 5,103,568. In certain embodiments, the sight points can be adjusted vertically to calibrate the sight points for differing target distances. Lower sight point positions typically correspond to longer target distances.
Adjustment of multiple sight pins for different distances often involves an archer, through trial and error, “sighting in” the bow at each distance so that each sight point position is accurately associated with a particular target distance. An alternate approach is to use computer software based on bow speed and other variables to prepare and print a sight tape which is then mounted on the bow sight and provides guidance for individually adjusting sight pins for various target distances. A still alternate approach, as discussed in U.S. Pat. No. 7,392,590, uses a multi-pitch lead screw to simultaneously adjust multiple sight pins.
In certain embodiments, an archery sight is mounted or mountable on an archery bow which includes a riser with a handle, upper and lower limb portions extending from the handle to limb tip sections and rotational members supported at the limb tip sections. A bowstring extends between the rotational members. The sight is typically secured to the riser. The sight incorporates an indicator or adjustment assembly to indicate or control the desired position of one or more additional sight pins based on sighted in positions of the sight pin.
Certain embodiments include archery bow sights which incorporate pin adjustment mechanisms which can be set to automatically position a sight pin for a given target range based on the position of the sight pin for two initial target distances. In certain embodiments, a sight pin on an archery bow sight is calibrated at a first reference distance. Movement of the sight pin corresponds with movement of a pointer mechanism that is positioned at a base height indicator corresponding to the first reference distance. The bow and sight is then used at a second reference distance to determine a second reference point. The position of the sight pin is adjusted to correspond with the second reference point, causing the position of the pointer mechanism to change. A second height indicator corresponding to the second reference distance is adjusted to align with the pointer mechanism. As aligned, the mechanism then defines one or more additional proportionately spaced height indicators that correspond with different target distances. Adjustment of the pointer mechanism to align with these height indicators positions the sight pin so it is sighted in for the respective distance corresponding to the height indicator at which the pointer mechanism is aligned.
Additional objects and advantages of the described embodiments are apparent from the discussions and drawings herein.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.
Certain embodiments include archery bow sights which incorporate pin adjustment mechanisms which can be set to automatically arrange sight pins or to indicate sight pin placement points in appropriate proportional spacing for various target ranges based on the spacing measured for two initial points. In certain embodiments, a first pin on an archery bow sight is calibrated at a first reference distance to define a first reference point on the sight. A first alignment point on the mechanism is then calibrated to the first reference point. The bow and sight is then used at a second reference distance to determine a second reference point for a second sight pin. A second alignment point on the mechanism is then adjusted to align with the second reference point. As aligned, the mechanism then defines one or more additional proportionately spaced alignment points where additional sight pins will correspond with additional reference distances. In some embodiments, adjustment of the second alignment point on the mechanism correspondingly automatically adjusts additional sight pins. In alternate embodiments, alignment points on the mechanism define locations to which sight pins can be manually adjusted.
Bowstring 34 (shown as a tangent line without full cabling for convenient illustration) includes upper end 28 and lower end 30 which are fed-out from idler wheel 16 and cam 18 when the bow is drawn. Bowstring 34 is mounted around idler wheel 16 and cam 18 as is known in the art. From the perspective of the archer, the bowstring is considered rearward relative to the riser which defines forward.
When the bowstring 34 is drawn, it causes idler wheel 16 and cam 18 at each end of the bow to rotate, feeding out cable and bending limb portions 12 and 14 inward, causing energy to be stored therein. When the bowstring 34 is released with an arrow engaged to the bowstring, the limb portions 12 and 14 return to their rest position, causing idler wheel 16 and cam 18 to rotate in the opposite direction, to take up the bowstring 34 and launch the arrow with an amount of energy proportional to the energy stored in the bow limbs. Bow 10 is described for illustration and context and is not intended to be limiting. The present invention can be used with dual-cam compound bows, or can be used with single-cam bows as described for example in U.S. Pat. No. 5,368,006 to McPherson, hereby incorporated herein by reference. It can also be used with hybrid cam bows or recurve bows. The present invention can also be used in other types of bows, which are considered conventional for purposes of the present invention.
In certain embodiments, body assembly 44 is arranged to move or translate vertically and/or horizontally relative to a rearward base portion. Translational movement of body assembly 44 correspondingly vertically or horizontally moves the entirety of the sight guard assembly and the sight pins relative to the bow riser and arrow rest. In certain embodiments, the body assembly is horizontally adjusted to horizontally calibrate the sight pins with a particular archer and bow. Separately, in certain embodiments the body assembly is vertically adjusted to vertically calibrate the bow using a first sight pin with a first reference distance to a target.
Sight pin adjustment mechanisms according to preferred embodiments herein assist an archer to calibrate a plurality of sight pins to different reference distances. For example, once the first sight pin is calibrated to a first reference distance, the bow is shot using a second sight pin at a second reference distance to calibrate the second sight pin to the second reference distance. More specifically, the bow is shot at a second reference distance and the sight pin is adjusted relative to the first sight pin to calibrate it to the selected distance. Adjustment of the second sight pin can automatically adjust one or more additional sight pins at proportionally spaced intervals to correspond to additional reference distances or the second sight pin can be aligned with a second reference point on the sight pin adjustment mechanism, wherein the adjustment of the sight pin adjustment mechanism automatically adjusts additional reference points which indicate where one or more additional sight pins should be positioned to match additional reference distances.
Using laws of physics and geometry, a range formula can be applied to the travel of an arrow from an archery bow where the horizontal distance traveled is proportional to the angle of launch. More specifically, a formula of:
x=(v2 sin 2θ)/g2
applies where “x” is the horizontal distance of travel, “v” is the launch velocity of the arrow from the bow, “θ” is the angle of launch and “g” is the acceleration due to gravity. Assuming a bow with a consistent launch velocity, the horizontal travel distance for a specific bow and arrow can be calculated and is proportional to the sine of twice the launch angle.
For purposes of the present mechanism, a reference or zero degree line for calculating the angle of arrow launch can be defined as a horizontal line extending from a point closely adjacent to the archer's eye, through the sight, intersecting a first sight pin and then to a target point at a first defined distance. The distance from the archer's eye to the sight pin is proportional to the draw length of the bow and is assumed to be constant for a specific archer and bow. For example, when a first sight pin on a 27″ draw length bow is calibrated at 20 yards, the zero degree line can be defined as a line including approximately 27″ from the archer's eye to the first sight pin plus 20 yards to a target. Using the above formula and knowing the velocity of the bow, the angles for additional reference distances such as 30, 40, 50 yards, etc. relative to the reference line and the archery's eye can also be calculated. These angles can then be applied using the distance from the archer's eye to the sight to define the offset height of additional sight pins relative to the first sight pin. Offset heights for longer distances would typically be measured downward relative to a pin calibrated for a shorter distance.
The spacing of the respective pins as calculated above follows a proportional spacing pattern governed by the range formula. Aspects of the adjustment mechanisms herein take advantage of this pattern to adjust multiple sight pins to fit the appropriate pattern for a specific archer and bow without needing to measure or know the actual distance from the archer's eye to the sight pins or the actual bow speed. Instead, those variables are assumed to be constant. Then, by adjusting the mechanism to fit two alignment points to two reference points which are already known to fit the pattern, additional properly proportionally spaced alignment points will automatically fit the pattern. In other words, sight adjustment mechanisms herein constrain multiple pins or alignment points to only adjust relative to each other in a proportional pattern governed by the range formula. Thus, if two points, such as a 20 yard point and a 60 yard point are aligned with measured actual points for 20 and 60 yards respectively, the remaining alignment points will automatically indicate the desired points for sight pins for 30, 40, 50 yards, etc.
An example sight assembly is illustrated in
Adjustment mechanism 110 is mounted adjacent the sight pin slots or tracks. Adjustment mechanism 110 includes a linkage arrangement including pairs of linkage arms 122, 124, 126 and 128, and horizontal alignment bars 130, 132, 134, 136 and 138. Preferably an upper end of mechanism 110, such as the first horizontal bar 130 is mounted adjacent upper track end 57 parallel to a horizontal reference axis defined through the sight window, and the adjustment mechanism 110 can be expanded or retracted vertically downward relative to the first horizontal bar 130.
The linkage arrangement of mechanism 110 is illustrated in detail in
An example horizontal bar 130 is illustrated in
In the illustrated embodiment, horizontal bar 130 forms the upper base of mechanism 110 and defines a horizontal axis P1. Pairs of linkage arms 122, 124, 126 and 128 each form a pivotal “x” arrangement with the central pivot points 141 of each pair of linkage arms pivotally connected to each other, for example using pivot pins 144. Optionally, a spacer may fill the area along pivot pin 144 between a pair of arms.
The first pair of linkage arms 122 extends downward from bar 130. The upper pivot end point 140 of each of linkage arms 122 is rotatably and slidably mounted to bar 130, such as in slot 151, for example using pivot pins 143. In the illustrated embodiments, the upper pivot ends are on opposing sides of bar 130, but such an arrangement is optional. The lower pivot end point 140 of each of linkage arms 122 is rotatably and slidably mounted to a second horizontal bar 132 such as in a slot, for example using pivot pins 143. The pivot pins 143 form shared pivot points 140 with the upper ends of the next pair of linkage arms 124. As illustrated, pivot pins 143 extend from a linkage arm through a horizontal bar to a different linkage arm; however, different arrangements can be used instead.
Similarly, the lower pivot end points 140 of each pair of linkage arms 124 and 126 are rotatably and slidably mounted in a slot 151 of a horizontal bar 134 and 136 respectively, which form shared pivot points with the upper ends of the next pair of linkage arms 126 and 128 respectively. The lower pivot end points of the lowest pair of linkage arms 128 are rotatably and slidably mounted to the lowest horizontal arm 138. The present arrangement is illustrated with four pairs of linkage arms and five horizontal bars. Optionally, more or less pairs of linkage arms and horizontal arms can be used as desired. In certain options, one or more of the horizontal bars can be omitted.
In arrangement 110, the horizontal bars 130, 132, 134, 136 and 138 and slots 151 may have a standard length; however, the lengths of linkage arms 122, 124, 126 and 128 are not equal. For example, the length of linkage arms 122 is L1, the length of linkage arms 124 is L2, the length of linkage arms 126 is L3 and the length of linkage arms 128 is L4, where L1<L2<L3<L4. As a non-limiting example, example measurements could be L1=0.80954″, L2=0.81794″, L3=0.82172″ and L4=0.82465″.
Using linkage arms of different lengths, the “x” pairs of linkage arms maintain distances between the respective horizontal bars which are proportionally governed relative to each other and the reference horizontal bar 130. For example, pivot points 140 arranged in bar 132 define a variable height H1 relative to the pivot points 140 in bar 130. Pivot points 140 arranged in bar 134 define a variable height H2 relative to the pivot points 140 in bar 132, pivot points 140 arranged in bar 136 define a variable height H3 relative to the pivot points 140 in bar 134, and pivot points 140 arranged in bar 138 define a variable height H4 relative to the pivot points 140 in bar 136. The pivot points also define a horizontal sight point axis through each horizontal bar, for example P1, P2, P3, P4 and P5 respectively. The horizontal axis lines may alternately be used as the reference lines if one or more of the horizontal bars are optionally omitted.
During expansion and contraction of mechanism 110, the connected pairs of linkage arms will act upon each other so that the pivot points 140 in all of the horizontal bars travel or are displaced the same horizontal distance. This maintains bars 130, 132, 134, 136 and 138 as horizontal relative to sight block 50 and parallel to each other. However, because the linkage arms are of different lengths, the respective vertical heights H1, H2, H3 and H4 will change relative to each other. The relationship of the height changes is controlled by and proportional to the respective length differences of the linkage arms.
By selecting specific linkage arm lengths, the aggregate heights can be controlled so that they match the proportional height relationships governed by the range formula. For example, sight point axis P1 defines a first pin height at a reference or zero height, sight point axis P2 defines a second pin height at height H1, sight point axis P3 defines a third pin height at height H1+H2, sight point axis P4 defines a fourth pin height at height H1+H2+H3, and sight point axis P5 defines a fifth pin height at height H1+H2+H3+H4. Alternately, the respective sight point axes can be measured along an upper edge P1″, a lower edge P″, or any other parallel line on bars 130, 132, 134, 136 & 138.
When mechanism 110 is mounted to sight body 20, the sight point axis of each horizontal bar defines a height indicating a reference point where a corresponding sight pin should be mounted and secured. The reference point may be an edge of the bar, or it may be a specific line defined on the bar such as an inscribed line or a taut horizontal wire extending across slot 136. Alternately, the reference point can be a single point such as the pivot axis of a pivot pin 143. For example as illustrated from an internal perspective in
Optionally, a single planar relationship of sight pins within the sight guard is desired to maintain a constant distance from the archer's eye to each of the respective sight points. The base of each sight pin can be aligned in a forward or rearward track 52 or 54 as desired to accommodate the base at the height of an indicated sight point axis while allowing multiple pins to be mounted to the sight block 50. In this example, optionally one or more pins are offset, for example by being curved forward or rearward along their length to compensate for the separation between tracks 52 and 54. In alternate embodiments, one or more of the tracks may be angled so that the sight pins extend inward in a manner to arrange the sight points along a common line at a constant distance from the archer's eye to each of the respective sight points
As an example of use with mechanism 110 mounted to or incorporated within sight 10 which is mounted to a bow, the bow is shot at a fixed target at 20 yards and mechanism 110 is adjusted so that the height of horizontal bar 130 and axis P1 along with a first sight pin are calibrated and optionally locked in place, for example with a clamp so that an arrow strikes the 20 yard target point when the first sight pin is used. Mechanism 110 and a first sight pin can be adjusted by adjusting the entire sight block 50 relative to bow 10 or by adjusting the mounting of mechanism 110 and the first sight pin relative to sight block 50. The bow is then shot at a fixed target point at 60 yards, and mechanism 110 is expanded or contracted relative to bar 130 so that the height of a 60 yard bar, such as horizontal bar 138 and axis P5 along with a second sight pin are calibrated so that an arrow strikes the 60 yard target point when the second sight pin is used. Thereafter, third, fourth and fifth pins, for example corresponding to 30, 40 and 50 yard target ranges, can be adjusted in height to match the height of axes P2, P3 and P4.
The mechanism is described in this example as adjusted concurrently with adjusting the first and fifth sight pins. Alternately, the mechanism can be mounted and independently adjusted to match the height of the first and fifth sight pins after one or both pin heights have been established.
Illustrated in
Sight assembly 210 is illustrated in
Adjustment mechanism 240 is mounted to sight assembly 210 in
Adjustment mechanism 240 includes a linkage arrangement, similar to the arrangement illustrated in
Extending downward from upper alignment bar 250 is a first pair of linkage arms 262. The upper pivot end points of linkage arms 262 are rotatably and slidably mounted to short slots in bar 250. The lower pivot end points of linkage arms 262 are rotatably and slidably mounted to a second horizontal bar 252 such as in short slots, and form shared pivot points with the upper ends of the next pair of linkage arms 264. Similarly, the lower pivot end points of each pair of linkage arms 264 and 266 are rotatably and slidably mounted to horizontal bars 254 and 256 respectively, which form shared pivot points with the upper ends of the next pair of linkage arms 266 and 268 respectively. The lower pivot end points of the lowest pair of linkage arms 268 are rotatably and slidably mounted in the lowest horizontal arm 258.
Integrated with or mounted to each of horizontal alignment bars 250, 252, 254, 256 and 258 is a pointer arm 270, 272, 274, 276 and 278 respectively. Each pointer arm extends along the sight block to a reference point adjacent either track 224 or 226. Each reference point preferably designates the height along the track where the base 222 of a corresponding sight pin 220 should be aligned. Optionally, the pointer arm and/or the sight pin base includes indicia such as a marking or etched line and/or a yardage number or color to assist in precise alignment of a sight pin to a desired height.
The linkage arrangement can be expanded or contracted along the height of base bar 242 and relative to first alignment bar 250. Adjustment can be done manually, for example by grasping part of the linkage and urging it upward or downward. Alternately, a mechanical adjustment mechanism, such as a worm gear arrangement, may be added. Adjustment mechanism 240 may be mounted to sight block 212 before, during or after the calibration of the first two sight pins, and can be removed when not in use.
A variant of sight assembly 210 includes adjustment mechanism 240 or a slightly modified version which can be used with a sight block having one pin or with a lesser number of pins than the number of pointer arms. In these embodiments, one or multiple pins can be vertically adjusted in one track or multiple tracks. The pin or pins are used to calibrate first and second reference positions. The adjustment mechanism then indicates with pointer arms the positions to which the pin or pins can be adjusted to shoot at different distances. In still alternate embodiments, an adjustment mechanism can designate reference positions relative to which a sight block assembly including a pin or pins can be adjusted.
Adjustment mechanism 340 is mounted to sight assembly 310 in
Adjustment mechanism 340 includes a linkage arrangement, similar to the arrangement illustrated in
Extending downward from alignment bar 350 is a first pair of linkage arms 362. The upper pivot end points of linkage arms 362 are rotatably and slidably mounted to short slots in bar 350. The lower pivot end points of linkage arms 362 are rotatably and slidably mounted to a second horizontal bar 352 such as in short slots, and form shared pivot points with the upper ends of the next pair of linkage arms 364. Similarly, the lower pivot end points of each pair of linkage arms 364 and 366 are rotatably and slidably mounted to horizontal bars 354 and 356 respectively, which form shared pivot points with the upper ends of the next pair of linkage arms 266 and 268 respectively. The lower pivot end points of the lowest pair of linkage arms 368 are rotatably and slidably mounted in the lowest horizontal arm 358.
Integrated with or mounted to each of horizontal alignment bars 350, 352, 354, 356 and 358 is a pointer arm 370, 372, 374, 376 and 378 respectively. Each pointer arm extends to a point adjacent a desired sight point location for one of sight pins 320. Each pointer arm preferably designates the height where the sight point of a corresponding sight pin 320 is or should be aligned. Optionally, the pointer arm includes indicia such as a marking or etched line and/or yardage numbers or colors to assist in precise alignment of the sight point to a desired height.
The linkage arrangement can be expanded or contracted along the height of base bar 342 and relative to first alignment bar 350. Adjustment can be done manually, for example by grasping part of the linkage and urging it upward or downward. Alternately, a mechanical adjustment mechanism, such as a worm gear arrangement, may be added.
Adjustment mechanism 340 is typically not mounted to sight guard 314 while first and second reference sight pins are aligned. Typically, mechanism 340 is mounted to the guard after the first two pins are aligned and is then expanded or contracted to align the corresponding pointer arms with the calibrated pins. Thereupon, the remaining pointer arms designate heights for the remaining sight pins. Mechanism 340 is typically removed when not in use.
Adjustment mechanism 440 is mounted to sight block 412. Mechanism 440 includes a worm gear or continuous screw 446 arrangement extending between an upper mount 442 on the sight block and a lower mount 444 on the sight block. Worm gear 446 may be rotated clockwise or counter-clockwise using an adjustment mechanism, such as knob 448. The ends of the worm gear 446 preferably rotate within the upper and lower mounts 442 and 444 without displacing the gear shaft. In certain embodiments, adjustment mechanism 440 is enclosed within a cover 422, which optionally may be transparent or opaque. Cover 422 may also extend over the front of guard 414 to enclose fiber optic strands leading to the pins. Cover 422 is illustrated as a transparent cover in
Sight assembly 440 includes a linkage arrangement similar to the arrangement illustrated in
Integrated with or mounted to each of horizontal alignment bars 450, 452, 454, 456 and 458 is a sight pin 470, 472, 474, 476 and 478 respectively. Each sight pin extends through track 424 into sight guard 414 and defines a sight point at the inward end. Optionally, a vertical alignment dowel 480 may be arranged parallel to the worm gear 446 and slidably engages a passage in each sight pin such that each sight pin is maintained in alignment due to the respective alignment of the worm gear 446 and the alignment dowel 480. Vertical adjustment of each of horizontal alignment bars 450, 452, 454, 456 and 458 correspondingly adjusts the height of a sight pin 470, 472, 474, 476 and 478 respectively.
The lowest horizontal bar 458 includes a worm gear mount 459 which is in threaded engagement with worm gear 446. Worm gear mount 459 travels upward or downward corresponding to rotation of worm gear 444, and correspondingly raises or lowers the lowest horizontal bar 458. In alternate embodiments, the worm gear mount may be mounted to other horizontal bars or an alternate adjustment mechanism may be used. The linkage arrangement can be expanded or contracted along the height of sight block 412 and relative to first alignment bar 450 by rotating worm gear 444 in a clockwise or counter-clockwise direction to move bar 458.
In use, sight block 412 is adjusted to calibrate a first sight pin to a first distance. Then, during calibration the adjustment mechanism is used to adjust a second pin to a second distance. After correctly aligning the first and second pins, the remaining pins will already be adjusted to corresponding distances.
Illustrated in
In use, the sight is adjusted so that first pin 550 is calibrated to a first distance. The adjustment mechanism is used to adjust a second pin to a second distance. After correctly aligning the first and second pins, the remaining pins will already be adjusted to corresponding distances.
In use, the sight is adjusted so that first pin 650 is calibrated to a first distance. The adjustment mechanism is used to adjust a second pin to a second distance. After correctly aligning the first and second pins, the remaining pins will already be adjusted to corresponding distances.
Wheel 748 defines spirally curved and eccentrically positioned curved track portions 762, 764, 766 and 768 which slidably engage bases 752, 754, 756 and 758, such that rotation of wheel 748 clockwise or counter-clockwise causes pins 772, 774, 776 and 778 to adjust to respective heights within slot 726 as determined by the curve of tracks 762, 764, 766 and 768. In the illustrated embodiment the height of pin 750 remains fixed during rotation of wheel 748. In alternate embodiments, a middle or lower pin can remain fixed in height, with the curvature and positioning of the track portions arranged relative to the height of the fixed pin. For example, middle pin 774 could be arranged at a fixed height either as directly connected to block 712 or with a base engaged in a circular track portions. Other track portions would then increase or decrease the positions of pins 770, 772, 776 and 778 relative to pin 774 when the wheel is rotated.
The engagement of the pins to the track portions may be direct such as a tab-in-slot engagement, or alternately may include using a ball bearing arrangement, using low-friction materials such as Dekin® plastic or using a similar structure to facilitate sliding and movement of the bases relative to wheel 748 and slot 726. The position and curvature of the track portions is preferably calculated to maintain the desired proportional spacing of the respective pin heights as the pins are adjusted. The circumference of wheel 748 may optionally include texturing to enhance as user's grip and to allow precise adjustment and/or may include indicia such as lines or numbers to facilitate adjustment relative to indicia on sight block 712 or elsewhere on the assembly.
In use, the sight is adjusted so that first pin 750, or a fixed pin in alternate embodiments, is calibrated to a first distance. The adjustment mechanism is used to adjust a second pin to a second distance. After correctly aligning the first and second pins, the remaining pins will already be adjusted to corresponding distances.
Adjustment mechanism 840 is mounted to sight block 812. In certain embodiments, adjustment mechanism 840 is enclosed within a cover 822, which optionally may be transparent or opaque. Cover 822 may optionally extend over the front of sight guard 814 to enclose fiber optic strands leading to the sight pins. Cover 822 is illustrated as a transparent cover in
Adjustment mechanism 840 includes a cylindrical or barrel shaped body portion 842. Body portion 842 is rotatable around a vertical axis aligned with axle portions 846. Body portion 842 may be made integrally with the axle portions or axle pieces may be mounted to and to extend from each end of body portion 842. The upper end of an axle portion 846 can be engaged to be controlled and rotated by control knob 848, which correspondingly rotates body portion 842. Body portion 842 defines spirally curved and eccentrically spaced curved track portions 862, 864, 866 and 868
Assembly 810 includes horizontal sight pins 870, 872, 874, 876 and 878 with respective bases 850, 852, 854, 856 and 858. In the illustrated embodiment, sight pin 870 with base 850 is arranged at a fixed height relative to guard 812, while the heights of sight pins 872, 874, 876 and 878 are adjustable. In the illustrated embodiment, sight pin 870 is maintained at a fixed height via base 850 which extends into and is engaged with horizontal track 860. Bases 852, 854, 856 and 858 of the movable pins extend and engage respective spirally wound tracks 862, 864, 866 and 868 defined in body portion 842. The pins may be formed of one or more pieces and the base portions may be integral or separate and mounted to the pins.
As illustrated, pin bases 850, 852, 854, 856 and 858 define adjustment passages arranged around a vertical shaft 818. The engagement of pins 870, 872, 874, 876 and 878 to the shaft allows the pins to be slidably adjusted in height along the shaft, although pin 870 does not change in height in the embodiment illustrated. In certain embodiments, shaft 818 and the pin passages have matching non-circular cross-sections to prevent the pins from rotating horizontally around the shaft. A rectangular cross-section is illustrated.
Pin bases 852, 854, 856 and 858 are slidably engaged in spiral tracks 862, 864, 866 and 868 such that rotation of body portion 842 clockwise or counter-clockwise causes the tracks to apply force to urge pins 872, 874, 876 and 878 to adjust their respective heights along shaft 818 as determined by the curves of tracks 862, 864, 866 and 868. The engagement may be direct such as a tab-in-slot engagement, or alternately may use a ball bearing arrangement, low-friction materials such as Dekin® plastic or a similar structure to facilitate sliding and movement of the bases within the tracks. The position and curvature of the track portions is preferably calculated to maintain the desired proportional spacing of the respective pin heights as the pins are adjusted.
In alternate embodiments, a middle or lower pin can remain fixed in height, with the curvature and positioning of the track portions arranged relative to the height of the fixed pin. For example, middle pin 874 could be arranged at a fixed height either as directly connected to shaft 818 or with a base engaged in a circular track portion. Other track portions would then increase or decrease the positions of pins 870, 872, 876 and 878 relative to pin 874 when the mechanism's body portion is rotated.
In use, the sight assembly 810 is adjusted so that first pin 870, or alternately a selected pin of fixed height, is calibrated to a first distance. The adjustment mechanism 840 is used to adjust a second pin to a second distance. After correctly aligning the first and second pins, the remaining pins will already be adjusted to corresponding distances.
Adjustment mechanism 940 is mounted to sight block 912 within housing 922. A selective locking mechanism, such as locking screw 930 may extend into housing 922 to engage adjustment mechanism 940. Cover piece 924 and fiber cover 926 are not illustrated in
Adjustment mechanism 940 includes a cylindrical or barrel shaped body portion 942. Body portion 942 is rotatable around a vertical axis aligned with axle portions. Body portion 942 made be made integrally with the axle portions or using separate axle pieces, such as upper and lower bolts 944 and 946 which may be mounted to extend into each end of body portion 942. The bolts extend through housing 922 and may include bushings, bearings or washers to facilitate rotation through openings in housing 922. The upper end of body portion 942 can be engaged to be controlled and rotated by rotatable control knob 948. For example, control knob 948 is illustrated with a slot-and-groove keyed relationship to the upper face of body 942.
Body portion 942 defines an upper horizontal/circular track 960, and four spirally curved and eccentrically spaced curved track portions 962, 964, 966 and 968 in proportional spacing. In tracks having sufficient spiral height, equal and parallel or paired tracks 964′, 966′ and 968 are each defined at a 180 degree offset from tracks 964, 966 and 968 respectively. In the illustrated embodiment, the spiral height of track 962 is insufficient to allow clearance for a parallel track. Assembly 910 includes horizontal sight pins 970, 972, 974, 976 and 978 with respective bases 950, 952, 954, 956 and 958 arranged to engage tracks 960, 962, 964, 966 and 968. In alternate embodiments, additional sight pins and tracks can be included.
As illustrated, pin bases 950, 952, 954, 956 and 958 are arranged around and engage body portion 942. Specifically, guide pins extend through the bases into the guide tracks. For example as illustrated, two threaded guide pins 980 and 980′ extend through base 950 into horizontal track 960. Base 952 includes a single guide pin 982 which extends into track 962. Tracks 964, 966 and 968 with paired offset tracks 964′, 966′ and 968′, are engaged by pairs of guide pins 984 and 984′, 986 and 986′ and 988 and 988′ respectively engaging bases 954, 956 and 958.
The guide pins are slidably engaged in the tracks such that rotation of body portion 942 clockwise or counter-clockwise causes the tracks to apply force to urge the guide pins, and corresponding sight pin bases to adjust their respective heights as determined by the curves of the tracks. The guide pins optionally can be advanced or retracted into deeper or shallower engagement with the tracks to control the frictional resistance. Preferably, the guide pin tips are machined in a suitable profile and/or are formed with a suitable coating or material to assist the guide pins to freely slide within the tracks during adjustment of mechanism 940. As examples, the guide pin tips may be machined with rounded tips, coated with a low-friction material such as a Teflon® or formed using a low-friction material such as Dekin® plastic. The position and curvature of the track portions is preferably calculated to maintain the desired proportional spacing of the respective pin heights as the pins are adjusted.
In alternate embodiments, a middle or lower pin can remain fixed in height, with the curvature and positioning of the track portions arranged relative to the height of the fixed pin. For example, middle pin 974 could be arranged at a fixed height either as directly connected to sight block 912 or with a base engaged to body 942 in a circular track portion. Other track portions would then increase or decrease the positions of pins 970, 972, 976 and 978 relative to pin 974 when the mechanism's body portion is rotated.
When assembled into housing 922, bases 950, 952, 954, 956 and 958 include alignment tabs which slidably engage tracks defined in interior sidewalls of housing 922 and/or cover 924. One, two or more tabs may optionally be used per base. The alignment tabs are preferably vertically slidable to allow adjustment of the respective bases, yet resist undesired horizontal rotation of the bases without housing 922. As illustrated in
In use, the sight assembly 910 is adjusted so that first pin 970, or alternately a selected pin of fixed height, is calibrated to a first distance. The adjustment mechanism 940 is used to adjust a second pin to a second distance. After correctly aligning the first and second pins, the remaining pins will already be adjusted to corresponding distances. Locking screw 930 may then be advanced or tightened to engage adjustment mechanism 940, locking the mechanism at a fixed position.
Adjustment mechanism 1040 includes a cylindrical or barrel shaped body portion 1042. Body portion 1042 is rotatable around a vertical axis aligned with axle portions. Body portion 1042 made be made integrally with the axle portions or using separate axle pieces, such as upper and lower bolts which may each engage an end of body portion 1042. The bolts extend through housing 922 and may include bushings, bearings or washers to facilitate rotation through openings in housing 922. The upper end of body portion 1042 can be engaged to be controlled and rotated by rotatable control knob 1048.
As illustrated in detail in
As illustrated, the spirally wound tracks diverge in proportional vertical spacing as the tracks wind around body portion 1042. In certain embodiments, the tracks each wind around the circumference of body portion 1042 the same number of degrees horizontally while diverging vertically. Accordingly, the end or lowest points of each tracks are also aligned along a shared vertical axis F-F.
In certain embodiments, one or more of the tracks may physically have a length longer than the usable travel distance associated with that pin and track, in which situation the excess track length is effectively unusable, rendering the effective starting or ending point the point corresponding to the usable travel distance of the pin and track. References to the track starting and ending points or highest and lowest points herein are intended to refer to the effective points usable on the track even if the physical track has excess length.
In alternate embodiments, the starting points and ending points of respective tracks do not have to be aligned along a shared vertical axis; however, the tracks need to be synchronized to allow for rotation of body portion 1042 to simultaneously affect each of the pins while maintaining the desired proportional spacing. For example, the respective horizontal spacing of the respective upper track travel points could define a horizontal spacing pattern around the circumference of body portion 1042, which is matched by the horizontal spacing pattern of the respective lower track points. The track with the shortest horizontal degrees of revolution will define the rotation limits of body portion 1042.
Mechanism 1040 includes horizontal sight pins 1070, 1072, 1074, 1076 and 1078 with respective bases 1050, 1052, 1054, 1056 and 1058 arranged to engage tracks 1060, 1062, 1064, 1066 and 1068 in body portion 1042. In alternate embodiments, additional sight pins and tracks can be included. Pin bases 1050, 1052, 1054, 1056 and 1058 are arranged around and engage body portion 1042. Specifically, guide pins extend through the bases into the guide tracks. In the example illustrated, set screws also extend through the bases against the body portion 1042 opposite the guide pins. For example as illustrated, one threaded guide pin 1080 extends through each of bases 1050, 1052, 1054, 1056, and 1058 and into each of horizontal tracks 1060, 1062, 1064, 1066 and 1068. Further, set screws 1080′, 1082′, 1084′, 1086′ and 1088′ extend through each of bases 1050, 1052, 1054, 1056, and 1058 and each set screw has an inward surface that abuts body portion 1042 opposite a guide pin. As illustrated, the set screws have a diameter larger than the height of the guide tracks, and the set screws do not extend into the tracks. Preferably, the guide pin tips and/or the set screws are machined in a suitable profile and/or are formed with a suitable coating or material to assist the guide pins and set screws to freely slide during adjustment of mechanism 1040. For example, nylon set screws may be used.
The set screws and guide pins can each be advanced or retracted to balance and stabilize a pin base relative to body portion 1042 and to control frictional resistance. In one process of assembly, a pin base, for example base 1052, may be placed around body portion 1042 and then a guide pin, such as guide pin 1082 may be advanced into track 1062 through base 1052 to locate the pin base relative to the track. The tip of guide pin 1082 may extend into track 1062 between the upper and lower walls, but the tip may be slightly spaced away from the inner diameter wall of guide track 1062. A set screw, such as screw 1082′ is then advanced against the outer diameter surface of body portion 1042 to stabilize base 1052 and to control frictional resistance between the base and the body portion.
The guide pins are slidably engaged in the tracks such that rotation of body portion 1042 clockwise or counter-clockwise causes the tracks to apply force to urge the guide pins, and corresponding sight pin bases to adjust their respective heights as determined by the curves of the tracks. The degrees of revolution around the circumference of body portion 1042 of each track determine the degrees of rotation of body portion to cause the sight pins to travel from their closest spaced apart distance to their largest spaced apart distance. For example, if the degrees of revolution travel ⅞ths of the way around body portion 1042, control knob 1048 can be adjusted within limits defines by ⅞th of a revolution and/or anywhere in between those limits. In certain preferred embodiments, each spiral track winds around body portion 1042 less than or equal to one full revolution, although alternately longer or shorter degrees of revolution can be used as spacing allows.
When assembled into housing 922, bases 1050, 1052, 1054, 1056 and 1058 include alignment tabs 1051, 1051′, 1053, 1053′, 1055, 1055′, 1057, 1057′, 1059 and 1059′ which slidably engage tracks 932, 934, 936, 932′, 934′ and 936′ defined in sidewalls of housing 922 and/or cover 924 in the same manner as discussed above with respect to bases 950, 952, 954, 956 and 958.
In use, the sight assembly 910 with alternate adjustment mechanism 1040 is used and adjusted in substantially the same manner as sight assembly 910 with adjustment mechanism 940.
Body assembly 1418 is vertically movable relative to base portion 1416, for example as guided by fasteners 1419 engaged with slots 1417 forming vertical slide guides. Adjustment of body assembly 1418 relative to base 1416 is selectively controlled, for example using a rack and pinion gear arrangement as illustrated. In the illustrated embodiment, rack gear 1438 is mounted to base portion 1416. Body assembly 1418 includes a pinion gear 1436. Pinion gear 1436 is selectively controlled by a user turning knob 1434 connected to shaft 1432. As pinion gear 1436 is driven, it causes body assembly 1418 to vertically move relative to base portion 1416 as guided by the vertical slide guides. A pointer mechanism 1435 extends from body portion 1418 adjacent to housing 1422 and can be used to measure and adjust body assembly 1418 relative to height indicator points indicated by mechanism 1440 which are visible through a slot or window 1426 defined in rear panel 1424. A locking screw 1439 can be selectively tightened to prevent or resist relative movement of body assembly 1418 relative to base 1416.
Assembly 1410 includes adjustment mechanism 1440. Specifically, the adjustment mechanism 1440 illustrated in
Adjustment mechanism 1440 includes a cylindrical or barrel shaped body portion 1442. Body portion 1442 is rotatable around a vertical axis aligned with axle portions. Body portion 1442 can be made integrally with the axle portions or using separate axle pieces, such as an upper axle portion 1445 of knob 1444, keyed to a slot 1443 in body 1442, and a lower axle portion 1446. The axle portions may extend through housing 1422 and may include bushings, bearings or washers to facilitate rotation through openings in housing 1422. Rotation of body portion 1442 can be controlled by rotating knob 1444. A selective locking mechanism, such as locking screw 1448 may extend into housing 1422 to inhibit rotation of adjustment mechanism 1440.
As illustrated in detail in
As illustrated, the spirally wound tracks diverge in proportional, nonlinear vertical spacing as the tracks wind around body portion 1442. In certain embodiments, the tracks each wind around the circumference of body portion 1442 the same number of degrees horizontally while diverging vertically. Accordingly, the end or lowest points of each tracks are also aligned along a shared vertical axis.
In certain embodiments, one or more of the tracks may physically have a length longer than the usable travel distance associated with that pin and track, in which situation the excess track length is effectively unusable, rendering the effective starting or ending point the point corresponding to the usable travel distance of the pin and track. References to the track starting and ending points or highest and lowest points herein are intended to refer to the effective points usable on the track even if the physical track has excess length.
In alternate embodiments, the starting points and ending points of respective tracks do not have to be aligned along a shared vertical axis; however, the tracks need to be synchronized to allow for rotation of body portion 1442 while maintaining the desired proportional spacing. For example, the respective horizontal spacing of the respective upper track travel points could define a horizontal spacing pattern around the circumference of body portion 1442, which is matched by the horizontal spacing pattern of the respective lower track points. The track with the shortest horizontal degrees of revolution will define the rotation limits of body portion 1442.
Mechanism 1440 includes distance indicators which designate adjustment points at which the height of the sight body may be adjusted to position the sight pin for corresponding distances. As illustrated, the distance indicators are height indicator rings 1452-1460. Rings 1452-1460 include respective bases 1462-1470 arranged to engage respective tracks 1492-1500 in body portion 1442. Specifically, guide pins 1482-1490 extend through the bases into the guide tracks. Preferably, the guide pin tips are machined in a suitable profile and/or are formed with a suitable coating or material to assist the guide pins to freely slide within the tracks during adjustment of mechanism 1440. In certain preferred embodiments, bases 1462-1470 include irregular bump portions which slightly deviate from a circular profile and which add a slight bit of elasticity when mounting bases around body portion 1442.
The guide pins can each be advanced or retracted to balance and stabilize a base relative to body portion 1442 and to control frictional resistance. In one process of assembly, an indicator ring may be placed around body portion 1442 and arranged adjacent a desired track, then a guide pin may be advanced into the corresponding track through the ring base to locate the base relative to the track. The tip of the guide pin may extend into the track between the upper and lower walls, but the tip may be slightly spaced away from the inner diameter wall of the guide track.
The guide pins are slidably engaged in the tracks such that rotation of body portion 1442 clockwise or counter-clockwise causes the tracks to apply force to urge the guide pins and corresponding indicator rings to adjust their respective heights as determined by the curves of the tracks. The degrees of revolution around the circumference of body portion 1442 of each track determine the degrees of rotation of the body portion to cause the sight pins to travel from their closest spaced apart distance to their largest spaced apart distance. For example, if the degrees of revolution travel ⅞ths of the way around body portion 1442, control knob 1444 can be adjusted within limits defined by ⅞th of a revolution and/or anywhere in between those limits. In certain preferred embodiments, each spiral track winds around body portion 1442 less than or equal to one full revolution, although alternately longer or shorter degrees of revolution can be used as spacing allows.
Each indicator ring 1452-1460 includes a respective tab portion with a height indicator portion 1472-1480. As illustrated in cross-section in
When assembled, the height indicator portions 1472-1480 are visible through rear panel window 1426, allowing a user to compare the height of pointer mechanism 1435 relative to height indicator portions 1472-1480. Alternately, a window or alternate indicator could be in a different position, such as a side of housing 1422. Optionally the tab portions can be marked with a respective numeral such as 20, 30, . . . , 100 to designate the corresponding yardage that the sight will be adjusted for when the pointer mechanism is matched to that level. Alternately, a yardage designation scale with gradation lines or zones to indicate which height indicator corresponds to what distance can be mounted on rear panel 1424, or elsewhere, either with a permanent marking or with a temporary marking for example using a sight tape.
In use, pointer mechanism 1435 is initially adjusted relative to a base height indicator, such as top-most indicator 1472. Sight 1410 is then sighted-in, typically using test shots, at a first base distance such as 20 yards and the pin is adjusted to the correct position using windage adjustment 1413 and elevation adjustment 1411 on body assembly 1418. Once the base distance is correctly sighted, the bow is shot at a second base distance, such as 30 yards. The pin and correspondingly body assembly 1418 with pointer assembly 1435 is then adjusted to the correct height for that distance using knob 1434 to drive the rack and pinion mechanism. Adjustment mechanism 1440 is then used to adjust the height indicator rings so that a corresponding height indicator portion is matched with pointing mechanism 1435. For example, at a 30 yard second base range adjustment mechanism 1440 is rotated so that ring 1453 and height indicator portion 1473 are aligned with pointer mechanism 1435. After correctly aligning the first and a second height indicator portions and corresponding ranges, the remaining height indicator portions will already be adjusted to corresponding distances. Locking screw 1448 may then be advanced or tightened to engage adjustment mechanism 1440, locking the mechanism at a fixed position. Thereafter, if the user wants to adjust sight pin 1415 to sight it in for a desired distance, the user can selectively turn knob 1434 to operate the rack and pinion gear arrangement, moving body assembly 1418 to a corresponding height as can be judged by comparing pointer mechanism 1435 relative to the respective height indicator portions 1472-1480 for the desired distance.
In this embodiment, sight assembly 1410 includes a fixed sight pin 1615, for example positioned at the bottom portion of sight guard 1414. An upper adjustable sight pin 1618 and a lower adjustable sight pin 1620 are positioned above fixed sight pin 1615 on the side of sight guard 1414 nearest sight block 1412. As illustrated, the fixed sight pin is vertical and the adjustable sight pins are horizontal, but this is not intended to be limiting for any of the pins.
Comparable to sight pin 1415 in
In use, pointer mechanism 1435 is initially adjusted to a base height indicator, such as the top-most indicator 1472, as shown in
Once fixed sight pin 1615 is positioned correctly for the first base distance, the bow is shot from a second, shorter base distance, such as 30 yards. The user then positions lower sight pin 1620 to correspond with the location of the arrow fired from the bow. To position lower sight pin 1620, the user adjusts the height of lower adjustable sight pin 1620, without moving sight body 1414, by sliding pin 1620 within slot 1625 to match the position of the shot fired.
The bow is then shot from a third base distance, such as 20 yards. The user then repeats the process described above for pin 1620, but instead adjusts the height of upper adjustable sight pin 1618 to match the position of the shot fired. The height of adjustable sight pin 1618 is adjusted by sliding pin 1618 within slot 1619, while the positions of fixed pin 1615 and lower sight pin 1620 are unchanged.
This sighting in process results in reference points for three different distances when pointer mechanism 1435 is positioned at the base height indicator. A user may prefer to keep the sight in this position at most times when using the bow to allow shots to be fired quickly for any of these base distances without having to adjust the sight.
If the user wishes to fire the bow for a distance that is farther than the first base distance, sight 1410 also must be sighted in using a process similar to the one previously described in the embodiment shown in
To sight in for a desired distance greater than the first base distance, the user may adjust sight 1410 by turning knob 1434 to adjust the height of body assembly 1418. The height of body assembly 1418 corresponds to the height of the pointer mechanism 1435. When pointer mechanism 1435 is aligned with the height indicator portion that corresponds to the target distance, fixed sight pin 1615 is positioned in the correct location for that distance.
Certain illustrated embodiments show a mechanism which may be manually adjusted by expansion, contraction or rotation. Alternately, a mechanical control can be used in any of the embodiments to allow fine adjustments of the expansion, contraction or rotational movement.
Conventional materials may be used to make embodiments of the archery sights disclosed. Examples of such materials include metals such as aluminum, steel or titanium or plastic component pieces as appropriate. Appropriate connectors and fasteners such as screws and pins are used to assemble the archery sights, some of which have been illustrated, but not all of which have been discussed in detail. Appropriate use of such connectors as illustrated herein will be understood by those with skill in the art.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/857,718 filed on Jul. 24, 2013, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3674002 | Diamond, Sr. | Jul 1972 | A |
4153999 | O'Steen | May 1979 | A |
4535747 | Kudlacek | Aug 1985 | A |
4689887 | Colvin | Sep 1987 | A |
4846141 | Johnson | Jul 1989 | A |
4984373 | Forrest | Jan 1991 | A |
5072716 | Sappington | Dec 1991 | A |
5103568 | Canoy | Apr 1992 | A |
5228204 | Khoshnood | Jul 1993 | A |
5239760 | Dixon et al. | Aug 1993 | A |
5384966 | Gibbs | Jan 1995 | A |
5676122 | Wiseby et al. | Oct 1997 | A |
5718215 | Kenny | Feb 1998 | A |
5920996 | Hurckman | Jul 1999 | A |
RE36266 | Gibbs | Aug 1999 | E |
5946812 | Slates | Sep 1999 | A |
6061919 | Reichert | May 2000 | A |
6079111 | Williams | Jun 2000 | A |
6418633 | Rager | Jul 2002 | B1 |
6618949 | Keener | Sep 2003 | B1 |
6796039 | Walbrink | Sep 2004 | B2 |
7086161 | Ellig et al. | Aug 2006 | B2 |
7103981 | Rager | Sep 2006 | B1 |
7275328 | Rager | Oct 2007 | B1 |
7278216 | Grace | Oct 2007 | B2 |
7308891 | Graf | Dec 2007 | B2 |
7360313 | Hamm | Apr 2008 | B1 |
7392590 | Gordon | Jul 2008 | B2 |
7721453 | Young | May 2010 | B1 |
8904655 | Larson | Dec 2014 | B1 |
20060254065 | Grace | Nov 2006 | A1 |
20070220761 | Helm | Sep 2007 | A1 |
20080010841 | Gordon | Jan 2008 | A1 |
20090000134 | Kurtzhals et al. | Jan 2009 | A1 |
20090139100 | Kingsbury | Jun 2009 | A1 |
20130118019 | Kingsbury | May 2013 | A1 |
20150026991 | Hahn | Jan 2015 | A1 |
20150075016 | Wassmer | Mar 2015 | A1 |
20160025456 | Hamm | Jan 2016 | A1 |
Entry |
---|
International Search Report and Written Opinion issued in PCT/US2012/054812, dated Feb. 26, 2013. |
Number | Date | Country | |
---|---|---|---|
20150026991 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61857718 | Jul 2013 | US |