This invention relates an automatic pouring method, for instance, in a foundry, or automatic pouring molten metal into a mold and equipment for the same.
Conventionally, for instance, in a foundry, an automatic pouring machine for automatically pouring molten metal from a ladle into a mold by tilting the ladle is used to carry out that automatic pouring. In this case, one known method includes the steps of presetting necessary volumes of the molten metal to be poured for respective types of casting products, and carrying out pouring the molten metal using the preset necessary volume as target volumes of the molten metal to be poured (see, e.g., Patent Literature 1).
[Patent Literature 1] Japanese Patent Laid-open Publication No. 04-46665 (Mazda Motor Corporation)
However, the capacity of one ladle for holding the molten metal is limited capacity for holding the molten metal. Therefore, even if in the first several times of pouring the molten metal the respective target volumes of the molten metal to poured, would be complied with the remaining molten metal in the ladle in the last of pour may often be less than the target volume. In such a situation, the pour would not be carried out and thus the remaining molten metal in the ladle should be drained in an extra process. This results in an investment of time to drain the remaining molten metal and thus involves a problem in which the cycle time of equipment for delivering the molten metal may be lengthened. Further, because the molten metal that has been used to melt it should be drained, i.e., disposed of there is a problem of an increase in the amount of disposed molten metal.
The present invention that is made in view of the foregoing situations aims to provide an automatic pouring method and equipment for the same that enables the inhibition of the occurring of the residual molten metal in the ladle such that the molten metal to be discharged therefrom can be eliminated.
To achieve the above objective, an automatic pouring method of the present invention uses an automatic pouring machine for tilting a ladle that stores molten metal therein to pour the molten metal therefrom into a specified mold of a group of molds that are intermittently conveyed and a controlling means for controlling the automatic pouring machine. The automatic pouring method comprises the steps of;
Further, automatic pouring equipment of the present invention comprises:
In the automatic pouring method and equipment of the present invention, the part of the difference in weight between the actual weight of the molten metal in the ladle and the set weight of the molten metal in the ladle to be added to the set weight of the molten metal to be poured into the mold to be poured preferably refers to a value that is obtained by dividing the difference in weight between the actual weight of the molten metal in the ladle and the set weight of the molten metal in the ladle by the number of pieces of the molds that could be poured with the ladle.
With the automatic pouring method and equipment that are configured as described above, the pouring of the molten metal is repeated a number of times that equals to the number of pieces of the molds that could be poured with the ladle such that the ladle would be emptied when the last mold in the number of pieces of the molds that could be poured with the ladle is poured. This results in various advantages, for instance, the occurring of the residual molten metal in the ladle is inhibited such that the molten metal to be discharged therefrom can be eliminated.
The accompanying drawings, which are incorporated in and constitute a part of the specification, schematically illustrate a preferred embodiment of the present invention, and together with the general description given above and the detailed description of the preferred embodiment given below, serve to explain the principles of the present invention.
With reference to drawings, an embodiment of the present invention will be explained in detail. As illustrated in
Outside the first rails 2, a third driven roller conveyor 6 and a fourth driven roller conveyor 7 are arranged. Outside the third and fourth driven roller conveyors 6 and 7, second rails 8 are laid with an interval therebetween such that the automatic pouring machine 9 is loaded thereon to travel along them. The automatic pouring machine 9 is provided with a second driven roller conveyor 10 on which the ladle 5 is loaded on and loaded off. Also, the automatic pouring machine 9 is equipped with a means for measuring weight, typically, a load cell (not shown) such that the load cell measures the weight of molten metal in the ladle 5.
Outside the automatic pouring machine 9, one group of molds M that is molded from a molding machine (not shown) is intermittently conveyed in the direction denoted by an arrow Y1, by means of a conveying means (not shown) for conveying the molds such that the group of the molds M is conveyed one pitch (corresponding to the length of one mold M). In this embodiment, each mold is a tight-flask mold that is molded from a horizontally parted tight-flask molding machine. Numeral 11 denotes a console (a controlling means) for controlling respectively, the melting furnace, the ladle-transferring truck, and the automatic pouring machine, respectively. The console 11 includes various circuits as described below.
The operation of the above configuration will be explained. First, provided to an input circuit of the console 11 is a set of data on assigned numbers that are assigned to the respective molds of the group of the molds M to be poured, types of products to be cast, and set weights of the molten metal to be poured. The input circuit may be configured to receive, for instance, the above data that are transmitted from outside.
Then, a decision circuit determines set weights of the molten metal to be received by the ladle 5 and the number of molds that could be poured by the ladle 5, in response to the received data on the assigned numbers of the respective molds of the group of the molds M to be poured, the types of the products, and the set weights of the molten metal to be poured. This determination is below described in detail.
The melting furnace 1 is forwardly tilted by means of a tilting means (not shown) for tilting the melting furnace such that the molten metal is fed into the ladle 5 that has been loaded on the first driven roller conveyor 4. Feeding of the molten metal is continued until the weight of the molten metal in the ladle 5 achieves 900 kg of the set weight of the molten metal. The melting furnace 1 is then inversely tilted by the tilting means (not shown). This tilting movement is carried out in response to a signal from the controlling circuit such that the ladle 5 receives the set weight of the molten metal from the melting furnace 1.
If an operator drops an alloy in or removes slugs from the ladle 5 on the first driven roller conveyor 4 to adjust the composition of the molten metal, the weight of the molten metal in the ladle 5 would exceed the set weight of the molten metal. Namely, a weight of the molten metal that exceeds the set weight would be received in the ladle 5. In this embodiment, the weight of the molten metal in the ladle 5 at present, i.e., the actual weight of the molten metal that is actually received in the ladle 5 is assumed to be 1,000 kg.
The ladle-transferring truck 3 is then moved by a driving means (not shown) to replace the ladle 5 on the first driven roller conveyor 4 to the immediate front side of the fourth driven roller conveyor 7. The driving means (not shown) of the respective first and fourth driven-roller conveyors 4 and 7 are then actuated such that the ladle 5 on the first driven-roller conveyor 4 is loaded on the fourth driven-roller conveyor 7 therefrom. The ladle-transferring truck 3 is then moved by the driving means (not shown) to replace the first driven roller conveyor 4 to the immediate front side of the third driven roller conveyor 6. The driving means (not shown) of the respective second and third driven-roller conveyors 10 and 6 and the driving means (not shown) of the first driven-roller conveyor 4 are then actuated such that the empty ladle 5 on the second driven-roller conveyor 10 is loaded on the first driven-roller conveyor 4, passes through above the third driven roller conveyor 6. The ladle-transferring truck 3 is then moved by the driving means (not shown) to replace the empty ladle 5 on the first driven roller conveyor 4 to return to outside the melting furnace 1.
The automatic pouring machine 9 is moved by means of a driving means (not shown) to move the second driven roller conveyor 10 to behind the fourth driven roller conveyor 7. The driving means (not shown) of the respective fourth and second driven roller conveyors 7 and 10 are then actuated such that the ladle 5, which holds the molten metal therein, on the fourth driven-roller conveyor 7 is loaded on the second driven-roller conveyor 10.
In the console 11, a first arithmetic circuit then derives the difference between the actual weight of the molten metal that is received in the ladle 5 and the set weight of the molten metal. In this embodiment, because the actual weight of the molten metal is 1,000 kg and the set weight of the molten metal is 900 kg, the difference would be 1,000 kg-900 kg=100 kg.
In the console 11, a second arithmetic circuit then derives the target weight of the molten metal to be poured into the mold by adding a part of the derived difference in weight between the actual weight of the molten metal in the ladle 5 and the set weight of the molten metal to the set weight of the molten metal to be poured in the mold M. In this embodiment, the part of the difference in weight (between the actual weight of the molten metal in the ladle 5 and the set weight of the molten metal, to be added to the set weight of the molten metal to be poured in the mold M) refers to the following value. Namely, the value would be obtained by dividing the difference in weight (between the actual weight of the molten metal and the set weight of the molten metal) by the number of molds that could be poured by the ladle 5.
As illustrated in
The ladle 5 is then forwardly tilted by means of the tilting means (not shown). Thus, the molten metal is poured into the mold M of the assigned number 11 to target the target weight of the molten metal to be poured. The ladle 5 is then inversely tilted by means of the tilting means (not shown). This movement is controlled by a signal from a pouring circuit in the console 11 for pouring the molten metal to the mold to be poured to target the target weight of the molten metal to be poured.
The group of the molds M is intermittently conveyed in the direction denoted by the arrow Y1, by means of the conveying means (not shown) for conveying the molds such that the group of the molds M is conveyed one pitch (corresponding to the length of one mold). Thus, the following mold M to be subsequently poured would be that of the assigned number 12. On the mold of the assigned number 12, the remaining number of the molds that could be poured by the ladle 5 would be 9. The present actual weight of the molten metal in the ladle 5 would be a value that equals the preceding actual weight of the molten metal in the ladle 5 minus the actual weight of the molten metal to be poured into the mold of the assigned number 11 (see
The ladle 5 is then forwardly tilted by means of the tilting means (not shown) such that the ladle 5 pours the molten metal into the mold M of the assigned number 12 to target the target weight of the molten metal to be poured. The ladle 5 is then inversely tilted by means of the tilting means (not shown). This movement is controlled by a signal from the pouring circuit, in the console 11, for pouring the molten metal to the mold to be poured to target the target weight of the molten metal to be poured.
Thereafter, the molds of the assigned numbers 13 to 20 would be sequentially and intermittently conveyed in the direction denoted by the arrow Y1. The target weights of the molten metal for the molds of the assigned numbers 13 to 20 would be derived similar to the above case on the mold of the assigned number 12. The molten metal is then sequentially poured into the molds M of the assigned numbers 13 to 20, to target the target weight of the molten metal. When the last mold in the numbers of the molds that could be poured by the ladle 5, i.e., the mold M of the assigned number 20, has been poured, the ladle 5 is emptied.
The empty ladle 5 on the second driven roller conveyor 10 is then replaced with another ladle 5 that holds the molten metal. To describe this motion in detail, first, the ladle 5 that holds the molten metal is loaded and ready on the third driven roller conveyor 6, while the first driven roller conveyor 4 is moved to immediate front side of the fourth driven-roller conveyor 7, before pouring of the mold M with the assigned number 20 with the molten metal is completed. When pouring of the mold M of the assigned number 20 with the molten metal is completed, the empty ladle 5 on the second driven-roller conveyor 10 is loaded on the first driven-roller conveyor 4 by passing through above the fourth driven roller conveyor 7. The ladle 5 that holds the molten metal on the third driven roller conveyor 6 is then loaded on the second driven roller conveyor 10 after the second driven-roller conveyor 10 is moved to behind the third driven-roller conveyor 6. The empty ladle 5 on the first driven-roller conveyor 10 will return to outside the melting furnace 1.
After the empty ladle 5 on the second driven-roller conveyor 10 is thus replaced with the filled ladle 5 that holds the molten metal, the filled ladle 5 will repeatedly pour the molten metal into molds of a number of pieces that could be poured by the filled ladle 5, similar to the above embodiment.
In the present invention, the difference in weight between the actual weight of the molten metal in the ladle 5 and the set weight of the molten metal is divided to the respective molds M of number of pieces that could be poured by that ladle. The value of the divided difference is then added to the set weight of the molten metal to be poured into each mold, to derive the target weight of the molten metal to be poured into each mold such that the ladle 5 pours the molten metal into each mold to target the derived target weight of the molten metal to be poured. Therefore, as a result an advantage in which the ladle 5 would be reliably emptied when the molten metal is poured into the last mold in the molds of number of pieces that could be poured by the ladle 5. Thus, the occurring of residual molten metal in the ladle 5 can be inhibited and thus the molten metal to be discharged therefrom is eliminated.
Although the automatic pouring method and the equipment for the same of the present invention are described on the specified embodiment, the present invention is not intended to be limited to it. For instance, in the above embodiment, the part of the difference in weight between the actual weight of the molten metal in the ladle 5 and the set weight of the molten metal, to be added to the set weight of the molten metal to be poured in the mold M refers to the value d that is derived by dividing the above difference in weight by number of pieces of molds that could be poured by the ladle 5. However, the present invention is not intended to be limited to this embodiment. If, for instance, the ladle 5 empties when it pours the molten metal into the last mold in the number of pieces of molds that could be poured by that ladle 5, the value d may be replaced with another value. However, the value d that is derived by the described procedure in the embodiment is more preferably used such that the difference in weight between the actual weight of the molten metal in the ladle 5 and the set weight of the molten metal can be accurately divided to number of pieces of the respective molds M that could be poured by that ladle. Adding the value of the divided difference to the set weight of the molten metal to be poured into each mold enables the derivation of the target weight of the molten metal to be poured into each mold. Thus, the variability of the target weights of the molten metal per to be poured into the respective molds is preferably reduced.
Although the above embodiment illustrates one example in that the present invention is applied on the pouring of the tight-flask molds that are molded from the horizontally parted tight-flask molding machine, the present invention is not intended to be limited to it but may be applicable on a pouring of, for instance, a flasklless mold that is molded from a horizontally parted flaskless molding machine or a longitudinal flaskless molding machine.
Number | Date | Country | Kind |
---|---|---|---|
2009-143077 | Jun 2009 | JP | national |
2010-013798 | Jan 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/055174 | 3/25/2010 | WO | 00 | 3/2/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/146909 | 12/23/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4600047 | Matoba et al. | Jul 1986 | A |
Number | Date | Country |
---|---|---|
01-262064 | Oct 1989 | JP |
04-046665 | Feb 1992 | JP |
11-207458 | Aug 1999 | JP |
2000-102859 | Apr 2000 | JP |
Entry |
---|
International Search Report dated May 25, 2010 issued in corresponding International Application No. PCT/JP2010/055174. |
Number | Date | Country | |
---|---|---|---|
20120173009 A1 | Jul 2012 | US |