Automatic print speed control for indicia printer

Information

  • Patent Grant
  • 9864891
  • Patent Number
    9,864,891
  • Date Filed
    Tuesday, November 24, 2015
    9 years ago
  • Date Issued
    Tuesday, January 9, 2018
    7 years ago
Abstract
A label printing device and method include a proportional-integral-derivative controller and a variable speed printer motor. The variable speed printer motor is connected to the proportion-integral-derivative controller, and has an automatically optimized printing speed determined by a print duration history of one or more previously completed print jobs.
Description
FIELD OF THE INVENTION

The invention is generally related to indicia printers, and, more specifically, to indicia printers having automatic print speed control.


BACKGROUND

Decodable indicia are graphical representations of data, the most common of which are one dimensional (1D) and two dimensional (2D) barcodes. 1D barcodes are images that represent data by varying the widths and spacing of parallel lines. 2D barcodes are also images that represent data, but in addition to the parallel lines or bars, 2D barcodes can further include rectangles, dots, hexagons and other geometric patterns in two dimensions.


Decodable indicia are commonly printed on labels by indicia printers, which operate at relatively high printing speeds. Certain types of indicia print jobs, such as the more complicated 2D barcodes, require longer times to send to a printer and/or being processed by a corresponding printer language interpreter, than the time actually required to feed and print the label. As shown for example in FIG. 4, when these types of print jobs are sent in sequence to the indicia printer, frequently the indicia printer will decelerate and sometimes stop between printing each label as the indicia printer waits from the printer language interpreter to receiving and process the next print job. Frequent deceleration and stops renders lower print precision, an uneven noise environment, and wear and tear on indicia printer parts, such as a print motor.


SUMMARY

In one aspect, the invention embraces a method for printing a label using a variable speed printer that optimizes a printing speed of the variable speed printer through a proportional-integral-derivative controller for a new print job based on a print processing duration history of one or more previously completed print jobs; and automatically adjusts the printing speed based on the optimized printing speed.


In an embodiment, the print duration is a length of time extending from an actuation of a print job to a completion of the print job.


In an embodiment, optimizing the printing speed includes storing the print duration and print processing duration history of one or more previously completed print jobs.


In another embodiment, optimizing the printing speed includes capturing and storing a first time stamp of when a new print job is actuated.


In yet another embodiment, optimizing the printing speed includes calculating a theoretical print duration of the new print job starting from the first time stamp, by determining a print duration ratio of a print media length to a current printing speed.


In another embodiment, optimizing the printing speed includes storing a second time stamp of when a subsequent print job is queued.


In another embodiment, optimizing the printing speed includes calculating a difference between the theoretical print duration of the new print job and a print processing duration of one or more of the previously completed print jobs to produce an error value.


In an embodiment, when the error value is positive, the proportional-integral-derivative controller automatically decreases the printing speed of the variable printer to adjust the error value to approximately zero.


In an embodiment, when the error value is negative, the proportional-integral-derivative controller automatically increases the printing speed of the variable printer to adjust the error value to approximately zero.


In another embodiment, the print duration of the new print job is approximately equal to or greater than a print processing duration for a subsequent print job.


In yet another embodiment, the print processing duration is a length of time extending from an input of the subsequent print job into the queue to an output of the subsequent print job to the variable speed printer.


In an embodiment, the variable speed printer is a barcode printer.


In an embodiment, the print duration history is an average of print durations for two or more previously completed print jobs.


In another aspect, the invention embraces a barcode label printing device having a proportional-integral-derivative controller; and a variable speed printer motor connected to the proportion-integral-derivative controller, and having an automatically optimized printing speed determined by a print duration and a print processing duration history of one or more previously completed print jobs.


In an embodiment, the barcode label printing device includes a marker system connected to the variable speed printer and having a thermal print head.


In an embodiment, the print duration is a length of time extending from an actuation of a print job to a completion of the print job.


In another embodiment, the optimized printing speed is a different between a theoretical print duration of a current print job and the print processing duration history.


In an embodiment, the theoretical print duration of the new print job is a print duration ration of a print media length to a current printing speed.


In another embodiment, when the difference between the theoretical print duration and the print processing duration is negative, the optimized printing speed is higher than when the difference is positive.


In yet another embodiment, the print duration of the current print job is approximately equal to or greater than a print processing duration of a subsequently queued print job.


The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described by way of example, with reference to the accompanying Figures, of which:



FIG. 1 is a perspective view of an indicia label printing device;



FIG. 2 is a schematic diagram of a control feedback system using a proportion-integral-derivative controller;



FIG. 3 is a diagram of a data processing device;



FIG. 4 is a diagram showing printing speed of a variable speed printer motor when a print processing time exceeds a label print time;



FIG. 5 is a diagram showing a proportional-integral-derivative controller optimized printing speed of the variable speed printer motor when print processing time is equal to the label print time; and



FIG. 6 is a block diagram of a method of optimizing printing speed using the proportional-integral-derivative controller.





DETAILED DESCRIPTION

In an embodiment shown in FIG. 1, an indicia label printing device 1 includes a proportional-integral-derivative controller 11 (“PID controller”), a variable speed printer motor 12, a marker system 13, and print media 14 having labels 14a. In an embodiment, the indicial label printing device 1 is a barcode printer.


As shown in an embodiment of FIG. 1, the variable speed printer motor 23 is connected to the PID controller 11, which operates as a closed control loop feedback mechanism that automatically optimizes a printing speed of the variable speed printer motor 23 using a print processing duration Dn history of one or more previously completed print jobs. See also, FIG. 2 for a control feedback system 300 utilized by the PID controller 11.


As shown in an embodiment of FIG. 1, the marker system 13 is connected to the variable speed printer motor 12 and includes a thermal print head 12a.


The indicia label printing device 1 is connected to a computing device 500. In an embodiment shown in FIG. 3, the computing device 500, includes one or more of a processing unit 502, memory 503, removable storage 510, and non-removable storage 512. The computing device 500 can be a computer, a laptop, a tablet, or other computing device including the same or similar elements as illustrated and described with regard to FIG. 3. Although the various data storage elements are illustrated as part of the computer 500, the storage may also or alternatively include cloud-based storage accessible via a network, such as the Internet.


Memory 503 can include volatile memory 514 and non-volatile memory 508. Computer 500 may include—or have access to a computing environment that includes—a variety of computer-readable media, such as volatile memory 514 and non-volatile memory 508, removable storage 510 and non-removable storage 512. Computer storage includes random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM) & electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technologies, compact disc read-only memory (CD ROM), Digital Versatile Disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium capable of storing computer-readable instructions known to those of ordinary skill in the art.


In another embodiment shown in FIG. 5, the computer 500 can include or have access to a computing environment that has an input 506, output 504, and a communication connection 516. Output 504 includes a display device, such as a touchscreen, that also may serve as an input device. The input 506 can include one or more of a touchscreen, touchpad, mouse, keyboard, camera, one or more device-specific buttons, one or more sensors integrated within or coupled via wired or wireless data connections to the computer 500, and other input devices. In an embodiment, the computer 500 can operate in a networked environment using a communication connection to connect to one or more remote computers (not shown), such as database servers. The remote computer can be a personal computer (PC), server, router, network PC, a peer device or other common network node, or the like commonly known to those of ordinary skill in the art. The communication connection can be a Local Area Network (LAN), a Wide Area Network (WAN), cellular, WiFi, Bluetooth, or other commonly known networks.


Computer-readable instructions stored on a computer-readable medium are executable by the processing unit 502 of the computer 500. A hard drive, CD-ROM, and RAM are examples of articles, including a non-transitory computer-readable medium like a storage device. The terms “computer-readable medium” and “storage device” generally excludes carrier waves. For example, a computer program 518 capable of providing a generic technique to perform access control check for data access and/or for doing an operation on one of the servers in a component object model (COM) based system can be included on a CD-ROM and loaded from the CD-ROM to a hard drive. The computer-readable instructions allow computer 500 to provide generic access controls in a COM based computer network system having multiple users and servers.


Those of ordinary skill in the art would appreciate that PID controllers, in general, attempt to correct errors in a system between a measured process variable and a desired setpoint, by calculating and then outputting a corrective action that adjusts the process accordingly and rapidly, in order to minimize error over time. To accomplish this, the PID controller algorithm includes coefficients for proportional (P, KP), integral (I, Ki), and derivative (D, Kd) terms, where P accounts for present values of error, I accounts for past values of error, and D accounts for predicted future values of error based on current rates of change. In the embodiments shown in FIGS. 1-6, the PID Controller 11 operates as a closed control loop feedback mechanism that automatically optimizes (i.e., determines and/or adjusts) a printing speed of the variable speed printer motor 23 using the print processing duration Dn history of one or more previously completed print jobs.


In a general embodiment, processor 502 captures and stores a first time stamp Tn of a print job n being actuated in memory 503. Specifically, processor 502 captures the first time stamp Tn at a moment when processing (parsing, rendering) of the print job is complete and the system is ready to actuate the variable speed printer motor 23. Processor 502 also determines whether a subsequent print job is in queue by flagging Fn the subsequent print job. Processor 502 sends first time stamp Tn and flag Fn to memory 503 for storage. Processor 502 calculates a total processing (parsing, rendering) time from a previous time stamp Tn−1 to first time stamp Tn to create a history of time stamps that correlate approximately with processing (parsing, rendering) time required for processor 502 to process new print job n. Processor 502 sends the historical processing (parsing, rendering) and theoretical printing duration information to the PID controller 11, which then calculates an error E value determined by comparing a theoretical printing duration N to the processing (parsing, rendering) time. The PID controller 11 automatically adjusts the current print speed S to minimize any deceleration or acceleration of the variable speed printing motor 12 by minimizing the error E value between theoretical print duration N and an actual print processing (parsing, rendering) duration Dn.


In an embodiment, a process of optimizing a printing speed of the variable speed printing motor 2 by minimizing printing speed error is described as follows:
















1. Print job n is actuated;



2. Processor 502 stores first time stamp Tn of when print job n is



parsed, rendered and ready to be actuated, and stores flag Fn



indicating whether a subsequent print job is in queue in memory



503;



3. If Fn-1 is true then



 a. print processing (rendering, parsing) duration Dn between



previous time stamp Tn-1 of a completed print job and the first



time stamp Tn is calculated Dn = Tn − Tn-1; and



 b. use the PID controller 11 to:



  calculate theoretical print duration N based on print speed S of



 the variable speed printing motor 12 and media length L where



 N = L/S,



  calculate error E, where E = N − Dn,



  adjust the error E with offset K, to make the PID controller 11



 try to increase print speed, where error E is equal to E + K, and



  determine and set a new, optimized print speed SN.









Thus, the print processing duration Dn is a length of time extending from an actuation of a print job n to a completion of the print job n; the optimized printing speed SN is a difference between a theoretical print duration N of a new print job n and the print processing duration Dn of a previous print job; and the theoretical print duration N of a new print job is a print duration ratio of a print media length L to a current printing speed S. In an embodiment, the print processing duration Dn history is the print processing durations Dn for two or more previously completed print jobs. In another embodiment, the print processing duration Dn is an average of print processing durations Dn for two or more previously completed print jobs.


In an embodiment, when the difference between the theoretical print duration N and the print processing duration Dn history of previous print jobs is negative, the optimized printing speed is higher than when the difference between the theoretical print duration N and the actual print processing duration Dn is positive.


In an embodiment, when the error E between the theoretical print duration N and the actual print processing duration Dn is positive, the PID controller 11 automatically decreases the printing speed of the variable speed printer motor 23 to adjust the error E to approximately zero. Conversely, when the error value is negative between the theoretical print duration N and the actual print processing duration Dn is positive, the PID controller 11 automatically increases the printing speed S of the variable speed printer motor 23 to adjust the error E to approximately zero. In an embodiment, the print processing duration Dn of a print job n is approximately equal to or greater than a print processing duration Dn of a subsequently queued print job n by processor 502 once the PID controller 11 has determined and set the new, optimized print speed SN.


As shown in FIG. 5, after the PID controller 11 has adjusted the print speed S of the variable speed printer motor 23 to the optimized print speed SN, the actual print processing duration Dn of the print job n is approximately equal to or greater than a print processing duration Dn for a subsequent print job. The print processing duration Dn is a length of time extending from an input of the subsequent print job into the queue to an output of the subsequent print job to the variable speed printer motor 23. Thus, as shown in FIG. 5 and in contrast to FIG. 4, when the variable speed printer motor 23 is operating at the optimized printing speed SN, the variable speed printer motor 23 seamlessly finishes printing Label #1 and transitions to printing Label #2 without having to accelerate or decelerate.


In an embodiment shown in FIG. 6, a method for printing a label using a variable speed printer, includes the steps of providing a indicia label printing device 1 having a PID controller 11 at block 200; connecting the indicia label printing device 1 to the computing device 500 at block 201; storing the print processing duration Dn history of one or more previously completed print jobs in memory 503 at block 202; capturing with processor 502 and storing in memory 503 a first time stamp Tn of when a new print job n is actuated at block 203; calculating with processor 502 a theoretical print duration N of the new print job n starting from the first time stamp Tn, by determining a theoretical print duration N ratio of a print media length L to a current printing speed S at block 204; storing a flag Fn of when a subsequent print job is queued at block 205; calculating a difference between the theoretical print duration N of the subsequent print job and an actual print processing duration Dn based on a previously completed print job to produce an error value E at block 206; optimizing a printing speed S of the variable speed printer motor 11 through the PID controller 11 based on a print processing duration Dn history of the completed print job or a print processing duration Dn history calculated from an average print processing duration Dn of two or more previously completed print jobs n at block 207; and automatically adjusting the printing speed S of the variable speed printer motor 11 based on the optimized printing speed SN for the subsequent print job, such that the actual print duration N of the new print job n is equal to or greater than the print processing duration Dn of the subsequently queued print job at block 208.


To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:


To supplement the present disclosure, this application incorporates entirely by reference the following patents, patent application publications, and patent applications:


U.S. Pat. No. 6,832,725; U.S. Pat. No. 7,128,266;


U.S. Pat. No. 7,159,783; U.S. Pat. No. 7,413,127;


U.S. Pat. No. 7,726,575; U.S. Pat. No. 8,294,969;


U.S. Pat. No. 8,317,105; U.S. Pat. No. 8,322,622;


U.S. Pat. No. 8,366,005; U.S. Pat. No. 8,371,507;


U.S. Pat. No. 8,376,233; U.S. Pat. No. 8,381,979;


U.S. Pat. No. 8,390,909; U.S. Pat. No. 8,408,464;


U.S. Pat. No. 8,408,468; U.S. Pat. No. 8,408,469;


U.S. Pat. No. 8,424,768; U.S. Pat. No. 8,448,863;


U.S. Pat. No. 8,457,013; U.S. Pat. No. 8,459,557;


U.S. Pat. No. 8,469,272; U.S. Pat. No. 8,474,712;


U.S. Pat. No. 8,479,992; U.S. Pat. No. 8,490,877;


U.S. Pat. No. 8,517,271; U.S. Pat. No. 8,523,076;


U.S. Pat. No. 8,528,818; U.S. Pat. No. 8,544,737;


U.S. Pat. No. 8,548,242; U.S. Pat. No. 8,548,420;


U.S. Pat. No. 8,550,335; U.S. Pat. No. 8,550,354;


U.S. Pat. No. 8,550,357; U.S. Pat. No. 8,556,174;


U.S. Pat. No. 8,556,176; U.S. Pat. No. 8,556,177;


U.S. Pat. No. 8,559,767; U.S. Pat. No. 8,599,957;


U.S. Pat. No. 8,561,895; U.S. Pat. No. 8,561,903;


U.S. Pat. No. 8,561,905; U.S. Pat. No. 8,565,107;


U.S. Pat. No. 8,571,307; U.S. Pat. No. 8,579,200;


U.S. Pat. No. 8,583,924; U.S. Pat. No. 8,584,945;


U.S. Pat. No. 8,587,595; U.S. Pat. No. 8,587,697;


U.S. Pat. No. 8,588,869; U.S. Pat. No. 8,590,789;


U.S. Pat. No. 8,596,539; U.S. Pat. No. 8,596,542;


U.S. Pat. No. 8,596,543; U.S. Pat. No. 8,599,271;


U.S. Pat. No. 8,599,957; U.S. Pat. No. 8,600,158;


U.S. Pat. No. 8,600,167; U.S. Pat. No. 8,602,309;


U.S. Pat. No. 8,608,053; U.S. Pat. No. 8,608,071;


U.S. Pat. No. 8,611,309; U.S. Pat. No. 8,615,487;


U.S. Pat. No. 8,616,454; U.S. Pat. No. 8,621,123;


U.S. Pat. No. 8,622,303; U.S. Pat. No. 8,628,013;


U.S. Pat. No. 8,628,015; U.S. Pat. No. 8,628,016;


U.S. Pat. No. 8,629,926; U.S. Pat. No. 8,630,491;


U.S. Pat. No. 8,635,309; U.S. Pat. No. 8,636,200;


U.S. Pat. No. 8,636,212; U.S. Pat. No. 8,636,215;


U.S. Pat. No. 8,636,224; U.S. Pat. No. 8,638,806;


U.S. Pat. No. 8,640,958; U.S. Pat. No. 8,640,960;


U.S. Pat. No. 8,643,717; U.S. Pat. No. 8,646,692;


U.S. Pat. No. 8,646,694; U.S. Pat. No. 8,657,200;


U.S. Pat. No. 8,659,397; U.S. Pat. No. 8,668,149;


U.S. Pat. No. 8,678,285; U.S. Pat. No. 8,678,286;


U.S. Pat. No. 8,682,077; U.S. Pat. No. 8,687,282;


U.S. Pat. No. 8,692,927; U.S. Pat. No. 8,695,880;


U.S. Pat. No. 8,698,949; U.S. Pat. No. 8,717,494;


U.S. Pat. No. 8,717,494; U.S. Pat. No. 8,720,783;


U.S. Pat. No. 8,723,804; U.S. Pat. No. 8,723,904;


U.S. Pat. No. 8,727,223; U.S. Pat. No. D702,237;


U.S. Pat. No. 8,740,082; U.S. Pat. No. 8,740,085;


U.S. Pat. No. 8,746,563; U.S. Pat. No. 8,750,445;


U.S. Pat. No. 8,752,766; U.S. Pat. No. 8,756,059;


U.S. Pat. No. 8,757,495; U.S. Pat. No. 8,760,563;


U.S. Pat. No. 8,763,909; U.S. Pat. No. 8,777,108;


U.S. Pat. No. 8,777,109; U.S. Pat. No. 8,779,898;


U.S. Pat. No. 8,781,520; U.S. Pat. No. 8,783,573;


U.S. Pat. No. 8,789,757; U.S. Pat. No. 8,789,758;


U.S. Pat. No. 8,789,759; U.S. Pat. No. 8,794,520;


U.S. Pat. No. 8,794,522; U.S. Pat. No. 8,794,525;


U.S. Pat. No. 8,794,526; U.S. Pat. No. 8,798,367;


U.S. Pat. No. 8,807,431; U.S. Pat. No. 8,807,432;


U.S. Pat. No. 8,820,630; U.S. Pat. No. 8,822,848;


U.S. Pat. No. 8,824,692; U.S. Pat. No. 8,824,696;


U.S. Pat. No. 8,842,849; U.S. Pat. No. 8,844,822;


U.S. Pat. No. 8,844,823; U.S. Pat. No. 8,849,019;


U.S. Pat. No. 8,851,383; U.S. Pat. No. 8,854,633;


U.S. Pat. No. 8,866,963; U.S. Pat. No. 8,868,421;


U.S. Pat. No. 8,868,519; U.S. Pat. No. 8,868,802;


U.S. Pat. No. 8,868,803; U.S. Pat. No. 8,870,074;


U.S. Pat. No. 8,879,639; U.S. Pat. No. 8,880,426;


U.S. Pat. No. 8,881,983; U.S. Pat. No. 8,881,987;


U.S. Pat. No. 8,903,172; U.S. Pat. No. 8,908,995;


U.S. Pat. No. 8,910,870; U.S. Pat. No. 8,910,875;


U.S. Pat. No. 8,914,290; U.S. Pat. No. 8,914,788;


U.S. Pat. No. 8,915,439; U.S. Pat. No. 8,915,444;


U.S. Pat. No. 8,916,789; U.S. Pat. No. 8,918,250;


U.S. Pat. No. 8,918,564; U.S. Pat. No. 8,925,818;


U.S. Pat. No. 8,939,374; U.S. Pat. No. 8,942,480;


U.S. Pat. No. 8,944,313; U.S. Pat. No. 8,944,327;


U.S. Pat. No. 8,944,332; U.S. Pat. No. 8,950,678;


U.S. Pat. No. 8,967,468; U.S. Pat. No. 8,971,346;


U.S. Pat. No. 8,976,030; U.S. Pat. No. 8,976,368;


U.S. Pat. No. 8,978,981; U.S. Pat. No. 8,978,983;


U.S. Pat. No. 8,978,984; U.S. Pat. No. 8,985,456;


U.S. Pat. No. 8,985,457; U.S. Pat. No. 8,985,459;


U.S. Pat. No. 8,985,461; U.S. Pat. No. 8,988,578;


U.S. Pat. No. 8,988,590; U.S. Pat. No. 8,991,704;


U.S. Pat. No. 8,996,194; U.S. Pat. No. 8,996,384;


U.S. Pat. No. 9,002,641; U.S. Pat. No. 9,007,368;


U.S. Pat. No. 9,010,641; U.S. Pat. No. 9,015,513;


U.S. Pat. No. 9,016,576; U.S. Pat. No. 9,022,288;


U.S. Pat. No. 9,030,964; U.S. Pat. No. 9,033,240;


U.S. Pat. No. 9,033,242; U.S. Pat. No. 9,036,054;


U.S. Pat. No. 9,037,344; U.S. Pat. No. 9,038,911;


U.S. Pat. No. 9,038,915; U.S. Pat. No. 9,047,098;


U.S. Pat. No. 9,047,359; U.S. Pat. No. 9,047,420;


U.S. Pat. No. 9,047,525; U.S. Pat. No. 9,047,531;


U.S. Pat. No. 9,053,055; U.S. Pat. No. 9,053,378;


U.S. Pat. No. 9,053,380; U.S. Pat. No. 9,058,526;


U.S. Pat. No. 9,064,165; U.S. Pat. No. 9,064,167;


U.S. Pat. No. 9,064,168; U.S. Pat. No. 9,064,254;


U.S. Pat. No. 9,066,032; U.S. Pat. No. 9,070,032;


U.S. Design Pat. No. D716,285;


U.S. Design Pat. No. D723,560;


U.S. Design Pat. No. D730,357;


U.S. Design Pat. No. D730,901;


U.S. Design Pat. No. D730,902;


U.S. Design Pat. No. D733,112;


U.S. Design Pat. No. D734,339;


International Publication No. 2013/163789;


International Publication No. 2013/173985;


International Publication No. 2014/019130;


International Publication No. 2014/110495;


U.S. Patent Application Publication No. 2008/0185432;


U.S. Patent Application Publication No. 2009/0134221;


U.S. Patent Application Publication No. 2010/0177080;


U.S. Patent Application Publication No. 2010/0177076;


U.S. Patent Application Publication No. 2010/0177707;


U.S. Patent Application Publication No. 2010/0177749;


U.S. Patent Application Publication No. 2010/0265880;


U.S. Patent Application Publication No. 2011/0202554;


U.S. Patent Application Publication No. 2012/0111946;


U.S. Patent Application Publication No. 2012/0168511;


U.S. Patent Application Publication No. 2012/0168512;


U.S. Patent Application Publication No. 2012/0193423;


U.S. Patent Application Publication No. 2012/0203647;


U.S. Patent Application Publication No. 2012/0223141;


U.S. Patent Application Publication No. 2012/0228382;


U.S. Patent Application Publication No. 2012/0248188;


U.S. Patent Application Publication No. 2013/0043312;


U.S. Patent Application Publication No. 2013/0082104;


U.S. Patent Application Publication No. 2013/0175341;


U.S. Patent Application Publication No. 2013/0175343;


U.S. Patent Application Publication No. 2013/0257744;


U.S. Patent Application Publication No. 2013/0257759;


U.S. Patent Application Publication No. 2013/0270346;


U.S. Patent Application Publication No. 2013/0287258;


U.S. Patent Application Publication No. 2013/0292475;


U.S. Patent Application Publication No. 2013/0292477;


U.S. Patent Application Publication No. 2013/0293539;


U.S. Patent Application Publication No. 2013/0293540;


U.S. Patent Application Publication No. 2013/0306728;


U.S. Patent Application Publication No. 2013/0306731;


U.S. Patent Application Publication No. 2013/0307964;


U.S. Patent Application Publication No. 2013/0308625;


U.S. Patent Application Publication No. 2013/0313324;


U.S. Patent Application Publication No. 2013/0313325;


U.S. Patent Application Publication No. 2013/0342717;


U.S. Patent Application Publication No. 2014/0001267;


U.S. Patent Application Publication No. 2014/0008439;


U.S. Patent Application Publication No. 2014/0025584;


U.S. Patent Application Publication No. 2014/0034734;


U.S. Patent Application Publication No. 2014/0036848;


U.S. Patent Application Publication No. 2014/0039693;


U.S. Patent Application Publication No. 2014/0042814;


U.S. Patent Application Publication No. 2014/0049120;


U.S. Patent Application Publication No. 2014/0049635;


U.S. Patent Application Publication No. 2014/0061306;


U.S. Patent Application Publication No. 2014/0063289;


U.S. Patent Application Publication No. 2014/0066136;


U.S. Patent Application Publication No. 2014/0067692;


U.S. Patent Application Publication No. 2014/0070005;


U.S. Patent Application Publication No. 2014/0071840;


U.S. Patent Application Publication No. 2014/0074746;


U.S. Patent Application Publication No. 2014/0076974;


U.S. Patent Application Publication No. 2014/0078341;


U.S. Patent Application Publication No. 2014/0078345;


U.S. Patent Application Publication No. 2014/0097249;


U.S. Patent Application Publication No. 2014/0098792;


U.S. Patent Application Publication No. 2014/0100813;


U.S. Patent Application Publication No. 2014/0103115;


U.S. Patent Application Publication No. 2014/0104413;


U.S. Patent Application Publication No. 2014/0104414;


U.S. Patent Application Publication No. 2014/0104416;


U.S. Patent Application Publication No. 2014/0104451;


U.S. Patent Application Publication No. 2014/0106594;


U.S. Patent Application Publication No. 2014/0106725;


U.S. Patent Application Publication No. 2014/0108010;


U.S. Patent Application Publication No. 2014/0108402;


U.S. Patent Application Publication No. 2014/0110485;


U.S. Patent Application Publication No. 2014/0114530;


U.S. Patent Application Publication No. 2014/0124577;


U.S. Patent Application Publication No. 2014/0124579;


U.S. Patent Application Publication No. 2014/0125842;


U.S. Patent Application Publication No. 2014/0125853;


U.S. Patent Application Publication No. 2014/0125999;


U.S. Patent Application Publication No. 2014/0129378;


U.S. Patent Application Publication No. 2014/0131438;


U.S. Patent Application Publication No. 2014/0131441;


U.S. Patent Application Publication No. 2014/0131443;


U.S. Patent Application Publication No. 2014/0131444;


U.S. Patent Application Publication No. 2014/0131445;


U.S. Patent Application Publication No. 2014/0131448;


U.S. Patent Application Publication No. 2014/0133379;


U.S. Patent Application Publication No. 2014/0136208;


U.S. Patent Application Publication No. 2014/0140585;


U.S. Patent Application Publication No. 2014/0151453;


U.S. Patent Application Publication No. 2014/0152882;


U.S. Patent Application Publication No. 2014/0158770;


U.S. Patent Application Publication No. 2014/0159869;


U.S. Patent Application Publication No. 2014/0166755;


U.S. Patent Application Publication No. 2014/0166759;


U.S. Patent Application Publication No. 2014/0168787;


U.S. Patent Application Publication No. 2014/0175165;


U.S. Patent Application Publication No. 2014/0175172;


U.S. Patent Application Publication No. 2014/0191644;


U.S. Patent Application Publication No. 2014/0191913;


U.S. Patent Application Publication No. 2014/0197238;


U.S. Patent Application Publication No. 2014/0197239;


U.S. Patent Application Publication No. 2014/0197304;


U.S. Patent Application Publication No. 2014/0214631;


U.S. Patent Application Publication No. 2014/0217166;


U.S. Patent Application Publication No. 2014/0217180;


U.S. Patent Application Publication No. 2014/0231500;


U.S. Patent Application Publication No. 2014/0232930;


U.S. Patent Application Publication No. 2014/0247315;


U.S. Patent Application Publication No. 2014/0263493;


U.S. Patent Application Publication No. 2014/0263645;


U.S. Patent Application Publication No. 2014/0267609;


U.S. Patent Application Publication No. 2014/0270196;


U.S. Patent Application Publication No. 2014/0270229;


U.S. Patent Application Publication No. 2014/0278387;


U.S. Patent Application Publication No. 2014/0278391;


U.S. Patent Application Publication No. 2014/0282210;


U.S. Patent Application Publication No. 2014/0284384;


U.S. Patent Application Publication No. 2014/0288933;


U.S. Patent Application Publication No. 2014/0297058;


U.S. Patent Application Publication No. 2014/0299665;


U.S. Patent Application Publication No. 2014/0312121;


U.S. Patent Application Publication No. 2014/0319220;


U.S. Patent Application Publication No. 2014/0319221;


U.S. Patent Application Publication No. 2014/0326787;


U.S. Patent Application Publication No. 2014/0332590;


U.S. Patent Application Publication No. 2014/0344943;


U.S. Patent Application Publication No. 2014/0346233;


U.S. Patent Application Publication No. 2014/0351317;


U.S. Patent Application Publication No. 2014/0353373;


U.S. Patent Application Publication No. 2014/0361073;


U.S. Patent Application Publication No. 2014/0361082;


U.S. Patent Application Publication No. 2014/0362184;


U.S. Patent Application Publication No. 2014/0363015;


U.S. Patent Application Publication No. 2014/0369511;


U.S. Patent Application Publication No. 2014/0374483;


U.S. Patent Application Publication No. 2014/0374485;


U.S. Patent Application Publication No. 2015/0001301;


U.S. Patent Application Publication No. 2015/0001304;


U.S. Patent Application Publication No. 2015/0003673;


U.S. Patent Application Publication No. 2015/0009338;


U.S. Patent Application Publication No. 2015/0009610;


U.S. Patent Application Publication No. 2015/0014416;


U.S. Patent Application Publication No. 2015/0021397;


U.S. Patent Application Publication No. 2015/0028102;


U.S. Patent Application Publication No. 2015/0028103;


U.S. Patent Application Publication No. 2015/0028104;


U.S. Patent Application Publication No. 2015/0029002;


U.S. Patent Application Publication No. 2015/0032709;


U.S. Patent Application Publication No. 2015/0039309;


U.S. Patent Application Publication No. 2015/0039878;


U.S. Patent Application Publication No. 2015/0040378;


U.S. Patent Application Publication No. 2015/0048168;


U.S. Patent Application Publication No. 2015/0049347;


U.S. Patent Application Publication No. 2015/0051992;


U.S. Patent Application Publication No. 2015/0053766;


U.S. Patent Application Publication No. 2015/0053768;


U.S. Patent Application Publication No. 2015/0053769;


U.S. Patent Application Publication No. 2015/0060544;


U.S. Patent Application Publication No. 2015/0062366;


U.S. Patent Application Publication No. 2015/0063215;


U.S. Patent Application Publication No. 2015/0063676;


U.S. Patent Application Publication No. 2015/0069130;


U.S. Patent Application Publication No. 2015/0071819;


U.S. Patent Application Publication No. 2015/0083800;


U.S. Patent Application Publication No. 2015/0086114;


U.S. Patent Application Publication No. 2015/0088522;


U.S. Patent Application Publication No. 2015/0096872;


U.S. Patent Application Publication No. 2015/0099557;


U.S. Patent Application Publication No. 2015/0100196;


U.S. Patent Application Publication No. 2015/0102109;


U.S. Patent Application Publication No. 2015/0115035;


U.S. Patent Application Publication No. 2015/0127791;


U.S. Patent Application Publication No. 2015/0128116;


U.S. Patent Application Publication No. 2015/0129659;


U.S. Patent Application Publication No. 2015/0133047;


U.S. Patent Application Publication No. 2015/0134470;


U.S. Patent Application Publication No. 2015/0136851;


U.S. Patent Application Publication No. 2015/0136854;


U.S. Patent Application Publication No. 2015/0142492;


U.S. Patent Application Publication No. 2015/0144692;


U.S. Patent Application Publication No. 2015/0144698;


U.S. Patent Application Publication No. 2015/0144701;


U.S. Patent Application Publication No. 2015/0149946;


U.S. Patent Application Publication No. 2015/0161429;


U.S. Patent Application Publication No. 2015/0169925;


U.S. Patent Application Publication No. 2015/0169929;


U.S. Patent Application Publication No. 2015/0178523;


U.S. Patent Application Publication No. 2015/0178534;


U.S. Patent Application Publication No. 2015/0178535;


U.S. Patent Application Publication No. 2015/0178536;


U.S. Patent Application Publication No. 2015/0178537;


U.S. Patent Application Publication No. 2015/0181093;


U.S. Patent Application Publication No. 2015/0181109;


U.S. patent application Ser. No. 13/367,978 for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.);


U.S. patent application Ser. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.);


U.S. patent application Ser. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.);


U.S. patent application Ser. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.);


U.S. patent application Ser. No. 14/150,393 for Indicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.);


U.S. patent application Ser. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.);


U.S. patent application Ser. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.);


U.S. patent application Ser. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.);


U.S. patent application Ser. No. 14/257,364 for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering);


U.S. patent application Ser. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014 (Ackley et al.);


U.S. patent application Ser. No. 14/277,337 for MULTIPURPOSE OPTICAL READER, filed May 14, 2014 (Jovanovski et al.);


U.S. patent application Ser. No. 14/283,282 for TERMINAL HAVING ILLUMINATION AND FOCUS CONTROL filed May 21, 2014 (Liu et al.);


U.S. patent application Ser. No. 14/327,827 for a MOBILE-PHONE ADAPTER FOR ELECTRONIC TRANSACTIONS, filed Jul. 10, 2014 (Hejl);


U.S. patent application Ser. No. 14/334,934 for a SYSTEM AND METHOD FOR INDICIA VERIFICATION, filed Jul. 18, 2014 (Hejl);


U.S. patent application Ser. No. 14/339,708 for LASER SCANNING CODE SYMBOL READING SYSTEM, filed Jul. 24, 2014 (Xian et al.);


U.S. patent application Ser. No. 14/340,627 for an AXIALLY REINFORCED FLEXIBLE SCAN ELEMENT, filed Jul. 25, 2014 (Rueblinger et al.);


U.S. patent application Ser. No. 14/446,391 for MULTIFUNCTION POINT OF SALE APPARATUS WITH OPTICAL SIGNATURE CAPTURE filed Jul. 30, 2014 (Good et al.);


U.S. patent application Ser. No. 14/452,697 for INTERACTIVE INDICIA READER, filed Aug. 6, 2014 (Todeschini);


U.S. patent application Ser. No. 14/453,019 for DIMENSIONING SYSTEM WITH GUIDED ALIGNMENT, filed Aug. 6, 2014 (Li et al.);


U.S. patent application Ser. No. 14/462,801 for MOBILE COMPUTING DEVICE WITH DATA COGNITION SOFTWARE, filed on Aug. 19, 2014 (Todeschini et al.);


U.S. patent application Ser. No. 14/483,056 for VARIABLE DEPTH OF FIELD BARCODE SCANNER filed Sep. 10, 2014 (McCloskey et al.);


U.S. patent application Ser. No. 14/513,808 for IDENTIFYING INVENTORY ITEMS IN A STORAGE FACILITY filed Oct. 14, 2014 (Singel et al.);


U.S. patent application Ser. No. 14/519,195 for HANDHELD DIMENSIONING SYSTEM WITH FEEDBACK filed Oct. 21, 2014 (Laffargue et al.);


U.S. patent application Ser. No. 14/519,179 for DIMENSIONING SYSTEM WITH MULTIPATH INTERFERENCE MITIGATION filed Oct. 21, 2014 (Thuries et al.);


U.S. patent application Ser. No. 14/519,211 for SYSTEM AND METHOD FOR DIMENSIONING filed Oct. 21, 2014 (Ackley et al.);


U.S. patent application Ser. No. 14/519,233 for HANDHELD DIMENSIONER WITH DATA-QUALITY INDICATION filed Oct. 21, 2014 (Laffargue et al.);


U.S. patent application Ser. No. 14/519,249 for HANDHELD DIMENSIONING SYSTEM WITH MEASUREMENT-CONFORMANCE FEEDBACK filed Oct. 21, 2014 (Ackley et al.);


U.S. patent application Ser. No. 14/527,191 for METHOD AND SYSTEM FOR RECOGNIZING SPEECH USING WILDCARDS IN AN EXPECTED RESPONSE filed Oct. 29, 2014 (Braho et al.);


U.S. patent application Ser. No. 14/529,563 for ADAPTABLE INTERFACE FOR A MOBILE COMPUTING DEVICE filed Oct. 31, 2014 (Schoon et al.);


U.S. patent application Ser. No. 14/529,857 for BARCODE READER WITH SECURITY FEATURES filed Oct. 31, 2014 (Todeschini et al.);


U.S. patent application Ser. No. 14/398,542 for PORTABLE ELECTRONIC DEVICES HAVING A SEPARATE LOCATION TRIGGER UNIT FOR USE IN CONTROLLING AN APPLICATION UNIT filed Nov. 3, 2014 (Bian et al.);


U.S. patent application Ser. No. 14/531,154 for DIRECTING AN INSPECTOR THROUGH AN INSPECTION filed Nov. 3, 2014 (Miller et al.);


U.S. patent application Ser. No. 14/533,319 for BARCODE SCANNING SYSTEM USING WEARABLE DEVICE WITH EMBEDDED CAMERA filed Nov. 5, 2014 (Todeschini);


U.S. patent application Ser. No. 14/535,764 for CONCATENATED EXPECTED RESPONSES FOR SPEECH RECOGNITION filed Nov. 7, 2014 (Braho et al.);


U.S. patent application Ser. No. 14/568,305 for AUTO-CONTRAST VIEWFINDER FOR AN INDICIA READER filed Dec. 12, 2014 (Todeschini);


U.S. patent application Ser. No. 14/573,022 for DYNAMIC DIAGNOSTIC INDICATOR GENERATION filed Dec. 17, 2014 (Goldsmith);


U.S. patent application Ser. No. 14/578,627 for SAFETY SYSTEM AND METHOD filed Dec. 22, 2014 (Ackley et al.);


U.S. patent application Ser. No. 14/580,262 for MEDIA GATE FOR THERMAL TRANSFER PRINTERS filed Dec. 23, 2014 (Bowles);


U.S. patent application Ser. No. 14/590,024 for SHELVING AND PACKAGE LOCATING SYSTEMS FOR DELIVERY VEHICLES filed Jan. 6, 2015 (Payne);


U.S. patent application Ser. No. 14/596,757 for SYSTEM AND METHOD FOR DETECTING BARCODE PRINTING ERRORS filed Jan. 14, 2015 (Ackley);


U.S. patent application Ser. No. 14/416,147 for OPTICAL READING APPARATUS HAVING VARIABLE SETTINGS filed Jan. 21, 2015 (Chen et al.);


U.S. patent application Ser. No. 14/614,706 for DEVICE FOR SUPPORTING AN ELECTRONIC TOOL ON A USER'S HAND filed Feb. 5, 2015 (Oberpriller et al.);


U.S. patent application Ser. No. 14/614,796 for CARGO APPORTIONMENT TECHNIQUES filed Feb. 5, 2015 (Morton et al.);


U.S. patent application Ser. No. 29/516,892 for TABLE COMPUTER filed Feb. 6, 2015 (Bidwell et al.);


U.S. patent application Ser. No. 14/619,093 for METHODS FOR TRAINING A SPEECH RECOGNITION SYSTEM filed Feb. 11, 2015 (Pecorari);


U.S. patent application Ser. No. 14/628,708 for DEVICE, SYSTEM, AND METHOD FOR DETERMINING THE STATUS OF CHECKOUT LANES filed Feb. 23, 2015 (Todeschini);


U.S. patent application Ser. No. 14/630,841 for TERMINAL INCLUDING IMAGING ASSEMBLY filed Feb. 25, 2015 (Gomez et al.);


U.S. patent application Ser. No. 14/635,346 for SYSTEM AND METHOD FOR RELIABLE STORE-AND-FORWARD DATA HANDLING BY ENCODED INFORMATION READING TERMINALS filed Mar. 2, 2015 (Sevier);


U.S. patent application Ser. No. 29/519,017 for SCANNER filed Mar. 2, 2015 (Zhou et al.);


U.S. patent application Ser. No. 14/405,278 for DESIGN PATTERN FOR SECURE STORE filed Mar. 9, 2015 (Zhu et al.);


U.S. patent application Ser. No. 14/660,970 for DECODABLE INDICIA READING TERMINAL WITH COMBINED ILLUMINATION filed Mar. 18, 2015 (Kearney et al.);


U.S. patent application Ser. No. 14/661,013 for REPROGRAMMING SYSTEM AND METHOD FOR DEVICES INCLUDING PROGRAMMING SYMBOL filed Mar. 18, 2015 (Soule et al.);


U.S. patent application Ser. No. 14/662,922 for MULTIFUNCTION POINT OF SALE SYSTEM filed Mar. 19, 2015 (Van Horn et al.);


U.S. patent application Ser. No. 14/663,638 for VEHICLE MOUNT COMPUTER WITH CONFIGURABLE IGNITION SWITCH BEHAVIOR filed Mar. 20, 2015 (Davis et al.);


U.S. patent application Ser. No. 14/664,063 for METHOD AND APPLICATION FOR SCANNING A BARCODE WITH A SMART DEVICE WHILE CONTINUOUSLY RUNNING AND DISPLAYING AN APPLICATION ON THE SMART DEVICE DISPLAY filed Mar. 20, 2015 (Todeschini);


U.S. patent application Ser. No. 14/669,280 for TRANSFORMING COMPONENTS OF A WEB PAGE TO VOICE PROMPTS filed Mar. 26, 2015 (Funyak et al.);


U.S. patent application Ser. No. 14/674,329 for AIMER FOR BARCODE SCANNING filed Mar. 31, 2015 (Bidwell);


U.S. patent application Ser. No. 14/676,109 for INDICIA READER filed Apr. 1, 2015 (Huck);


U.S. patent application Ser. No. 14/676,327 for DEVICE MANAGEMENT PROXY FOR SECURE DEVICES filed Apr. 1, 2015 (Yeakley et al.);


U.S. patent application Ser. No. 14/676,898 for NAVIGATION SYSTEM CONFIGURED TO INTEGRATE MOTION SENSING DEVICE INPUTS filed Apr. 2, 2015 (Showering);


U.S. patent application Ser. No. 14/679,275 for DIMENSIONING SYSTEM CALIBRATION SYSTEMS AND METHODS filed Apr. 6, 2015 (Laffargue et al.);


U.S. patent application Ser. No. 29/523,098 for HANDLE FOR A TABLET COMPUTER filed Apr. 7, 2015 (Bidwell et al.);


U.S. patent application Ser. No. 14/682,615 for SYSTEM AND METHOD FOR POWER MANAGEMENT OF MOBILE DEVICES filed Apr. 9, 2015 (Murawski et al.);


U.S. patent application Ser. No. 14/686,822 for MULTIPLE PLATFORM SUPPORT SYSTEM AND METHOD filed Apr. 15, 2015 (Qu et al.);


U.S. patent application Ser. No. 14/687,289 for SYSTEM FOR COMMUNICATION VIA A PERIPHERAL HUB filed Apr. 15, 2015 (Kohtz et al.);


U.S. patent application Ser. No. 29/524,186 for SCANNER filed Apr. 17, 2015 (Zhou et al.);


U.S. patent application Ser. No. 14/695,364 for MEDICATION MANAGEMENT SYSTEM filed Apr. 24, 2015 (Sewell et al.);


U.S. patent application Ser. No. 14/695,923 for SECURE UNATTENDED NETWORK AUTHENTICATION filed Apr. 24, 2015 (Kubler et al.);


U.S. patent application Ser. No. 29/525,068 for TABLET COMPUTER WITH REMOVABLE SCANNING DEVICE filed Apr. 27, 2015 (Schulte et al.);


U.S. patent application Ser. No. 14/699,436 for SYMBOL READING SYSTEM HAVING PREDICTIVE DIAGNOSTICS filed Apr. 29, 2015 (Nahill et al.);


U.S. patent application Ser. No. 14/702,110 for SYSTEM AND METHOD FOR REGULATING BARCODE DATA INJECTION INTO A RUNNING APPLICATION ON A SMART DEVICE filed May 1, 2015 (Todeschini et al.);


U.S. patent application Ser. No. 14/702,979 for TRACKING BATTERY CONDITIONS filed May 4, 2015 (Young et al.);


U.S. patent application Ser. No. 14/704,050 for INTERMEDIATE LINEAR POSITIONING filed May 5, 2015 (Charpentier et al.);


U.S. patent application Ser. No. 14/705,012 for HANDS-FREE HUMAN MACHINE INTERFACE RESPONSIVE TO A DRIVER OF A VEHICLE filed May 6, 2015 (Fitch et al.);


U.S. patent application Ser. No. 14/705,407 for METHOD AND SYSTEM TO PROTECT SOFTWARE-BASED NETWORK-CONNECTED DEVICES FROM ADVANCED PERSISTENT THREAT filed May 6, 2015 (Hussey et al.);


U.S. patent application Ser. No. 14/707,037 for SYSTEM AND METHOD FOR DISPLAY OF INFORMATION USING A VEHICLE-MOUNT COMPUTER filed May 8, 2015 (Chamberlin);


U.S. patent application Ser. No. 14/707,123 for APPLICATION INDEPENDENT DEX/UCS INTERFACE filed May 8, 2015 (Pape);


U.S. patent application Ser. No. 14/707,492 for METHOD AND APPARATUS FOR READING OPTICAL INDICIA USING A PLURALITY OF DATA SOURCES filed May 8, 2015 (Smith et al.);


U.S. patent application Ser. No. 14/710,666 for PRE-PAID USAGE SYSTEM FOR ENCODED INFORMATION READING TERMINALS filed May 13, 2015 (Smith);


U.S. patent application Ser. No. 29/526,918 for CHARGING BASE filed May 14, 2015 (Fitch et al.);


U.S. patent application Ser. No. 14/715,672 for AUGUMENTED REALITY ENABLED HAZARD DISPLAY filed May 19, 2015 (Venkatesha et al.);


U.S. patent application Ser. No. 14/715,916 for EVALUATING IMAGE VALUES filed May 19, 2015 (Ackley);


U.S. patent application Ser. No. 14/722,608 for INTERACTIVE USER INTERFACE FOR CAPTURING A DOCUMENT IN AN IMAGE SIGNAL filed May 27, 2015 (Showering et al.);


U.S. patent application Ser. No. 29/528,165 for IN-COUNTER BARCODE SCANNER filed May 27, 2015 (Oberpriller et al.);


U.S. patent application Ser. No. 14/724,134 for ELECTRONIC DEVICE WITH WIRELESS PATH SELECTION CAPABILITY filed May 28, 2015 (Wang et al.);


U.S. patent application Ser. No. 14/724,849 for METHOD OF PROGRAMMING THE DEFAULT CABLE INTERFACE SOFTWARE IN AN INDICIA READING DEVICE filed May 29, 2015 (Barten);


U.S. patent application Ser. No. 14/724,908 for IMAGING APPARATUS HAVING IMAGING ASSEMBLY filed May 29, 2015 (Barber et al.);


U.S. patent application Ser. No. 14/725,352 for APPARATUS AND METHODS FOR MONITORING ONE OR MORE PORTABLE DATA TERMINALS (Caballero et al.);


U.S. patent application Ser. No. 29/528,590 for ELECTRONIC DEVICE filed May 29, 2015 (Fitch et al.);


U.S. patent application Ser. No. 29/528,890 for MOBILE COMPUTER HOUSING filed Jun. 2, 2015 (Fitch et al.);


U.S. patent application Ser. No. 14/728,397 for DEVICE MANAGEMENT USING VIRTUAL INTERFACES CROSS-REFERENCE TO RELATED APPLICATIONS filed Jun. 2, 2015 (Caballero);


U.S. patent application Ser. No. 14/732,870 for DATA COLLECTION MODULE AND SYSTEM filed Jun. 8, 2015 (Powilleit);


U.S. patent application Ser. No. 29/529,441 for INDICIA READING DEVICE filed Jun. 8, 2015 (Zhou et al.);


U.S. patent application Ser. No. 14/735,717 for INDICIA-READING SYSTEMS HAVING AN INTERFACE WITH A USER'S NERVOUS SYSTEM filed Jun. 10, 2015 (Todeschini);


U.S. patent application Ser. No. 14/738,038 for METHOD OF AND SYSTEM FOR DETECTING OBJECT WEIGHING INTERFERENCES filed Jun. 12, 2015 (Amundsen et al.);


U.S. patent application Ser. No. 14/740,320 for TACTILE SWITCH FOR A MOBILE ELECTRONIC DEVICE filed Jun. 16, 2015 (Bandringa);


U.S. patent application Ser. No. 14/740,373 for CALIBRATING A VOLUME DIMENSIONER filed Jun. 16, 2015 (Ackley et al.);


U.S. patent application Ser. No. 14/742,818 for INDICIA READING SYSTEM EMPLOYING DIGITAL GAIN CONTROL filed Jun. 18, 2015 (Xian et al.);


U.S. patent application Ser. No. 14/743,257 for WIRELESS MESH POINT PORTABLE DATA TERMINAL filed Jun. 18, 2015 (Wang et al.);


U.S. patent application Ser. No. 29/530,600 for CYCLONE filed Jun. 18, 2015 (Vargo et al);


U.S. patent application Ser. No. 14/744,633 for IMAGING APPARATUS COMPRISING IMAGE SENSOR ARRAY HAVING SHARED GLOBAL SHUTTER CIRCUITRY filed Jun. 19, 2015 (Wang);


U.S. patent application Ser. No. 14/744,836 for CLOUD-BASED SYSTEM FOR READING OF DECODABLE INDICIA filed Jun. 19, 2015 (Todeschini et al.);


U.S. patent application Ser. No. 14/745,006 for SELECTIVE OUTPUT OF DECODED MESSAGE DATA filed Jun. 19, 2015 (Todeschini et al.);


U.S. patent application Ser. No. 14/747,197 for OPTICAL PATTERN PROJECTOR filed Jun. 23, 2015 (Thuries et al.);


U.S. patent application Ser. No. 14/747,490 for DUAL-PROJECTOR THREE-DIMENSIONAL SCANNER filed Jun. 23, 2015 (Jovanovski et al.); and


U.S. patent application Ser. No. 14/748,446 for CORDLESS INDICIA READER WITH A MULTIFUNCTION COIL FOR WIRELESS CHARGING AND EAS DEACTIVATION, filed Jun. 24, 2015 (Xie et al.).


In the specification and/or figures, typical embodiments of the invention have been disclosed. The invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation. The use of the terms “first,” “second,” “third,” etc. are used as labels, and are not intended to impose numerical requirements upon their subjects, unless clearly stated. Furthermore, references to “an embodiment” or “another embodiment” are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated otherwise, embodiments “comprising,” “including,” or “having” an element or plurality of elements having a particular property may include additional elements not having that property.

Claims
  • 1. A method for printing a label using a variable speed printer, comprising the steps of: optimizing a printing speed of the variable speed printer through a proportional-integral-derivative controller for a new print job based on a print duration and print processing duration history of one or more previously completed print jobs, such that an actual print duration of the new print job is equal to or greater than a print processing duration of a queued print job; andautomatically adjusting the printing speed based on the optimized printing speed, the variable speed printer executing the new print job at the optimized printing speed and transitioning to printing the subsequently queued print job without having to increase or decrease the printing speed.
  • 2. The method of claim 1, wherein the print duration is a length of time extending from an actuation of a print job to a completion of the print job.
  • 3. The method of claim 2, wherein optimizing the printing speed includes the step of storing the print duration and print processing duration history of one or more previously completed print jobs.
  • 4. The method of claim 3, wherein optimizing the printing speed further includes the step of capturing and storing a first time stamp of when a new print job is actuated.
  • 5. The method of claim 4, wherein optimizing the printing speed further includes the step of calculating a theoretical print duration of the new print job starting from the first time stamp, by determining a print duration ratio of a print media length to a current printing speed.
  • 6. The method of claim 5, wherein optimizing the printing speed further includes the step of storing a second time stamp of when a subsequent print job is queued.
  • 7. The method of claim 6, wherein optimizing the printing speed further includes the step of calculating a difference between the theoretical print duration of the new print job and a print processing duration of one or more of the previously completed print jobs to produce an error value.
  • 8. The method of claim 7, wherein when the error value is positive, the proportional-integral-derivative controller automatically decreases the printing speed of the variable printer to adjust the error value to approximately zero.
  • 9. The method of claim 8, wherein when the error value is negative, the proportional-integral-derivative controller automatically increases the printing speed of the variable printer to adjust the error value to approximately zero.
  • 10. The method of claim 9, wherein the print duration of the new print job is approximately equal to or greater than a print processing duration for a subsequent print job.
  • 11. The method of claim 10, wherein the print processing duration is a length of time extending from an input of the subsequent print job into the queue to an output of the subsequent print job to the variable speed printer.
  • 12. The method of claim 8, wherein the variable speed printer is a barcode printer.
  • 13. The method of claim 7, wherein the print duration history is an average of print durations for two or more previously completed print jobs.
  • 14. A barcode label printing device comprising: a proportional-integral-derivative controller; anda variable speed printer motor connected to the proportion-integral-derivative controller, and having an automatically optimized printing speed determined by a print duration and a print processing duration history of one or more previously completed print jobs, such that an actual print duration of a new print job is equal to or greater than a print processing duration of a queued print job, and the new print job is performed at the optimized printing speed and transitions to printing the subsequently queued print job without having to increase or decrease the printing speed.
  • 15. The barcode label printing device of claim 14, further comprising a marker system connected to the variable speed printer and having a thermal print head.
  • 16. The barcode label printing device of claim 14, wherein the print duration is a length of time extending from an actuation of a print job to a completion of the print job.
  • 17. The barcode label printing device of claim 16, wherein the optimized printing speed is a different between a theoretical print duration of a current print job and a print processing duration.
  • 18. The barcode label printing device of claim 17, wherein the theoretical print duration of the current print job is a print duration ratio of a print media length to a current printing speed.
  • 19. The barcode label printing device of claim 18, wherein when the difference between the theoretical print duration and the print processing duration is negative, the optimized printing speed is higher than when the difference is positive.
  • 20. The barcode label printing device of claim 19, wherein the print duration of the current print job is approximately equal to or greater than a print processing duration of a subsequently queued print job.
US Referenced Citations (452)
Number Name Date Kind
6832725 Gardiner et al. Dec 2004 B2
7128266 Zhu et al. Oct 2006 B2
7159783 Walczyk et al. Jan 2007 B2
7413127 Ehrhart et al. Aug 2008 B2
7726575 Wang et al. Jun 2010 B2
7835021 Varga Nov 2010 B2
8130255 Bischel et al. Mar 2012 B2
8294969 Plesko Oct 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Liu Dec 2012 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8376233 Horn et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Horn et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8539882 Rancourt Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van Horn et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8740082 Wilz Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8746563 Hennick et al. Jun 2014 B2
8750445 Peake et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Qu et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8763909 Reed et al. Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Barten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794525 Amundsen et al. Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van Horn et al. Aug 2014 B2
8820630 Qu et al. Sep 2014 B2
8822848 Meagher Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
8844823 Fritz et al. Sep 2014 B2
8849019 Li et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8854633 Laffargue Oct 2014 B2
8866963 Grunow et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Barten Oct 2014 B2
8868803 Caballero Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein Nov 2014 B2
8880426 Smith Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8903172 Smith Dec 2014 B2
8908995 Benos et al. Dec 2014 B2
8910870 Li et al. Dec 2014 B2
8910875 Ren et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915439 Feng et al. Dec 2014 B2
8915444 Havens et al. Dec 2014 B2
8916789 Woodburn Dec 2014 B2
8918250 Hollifield Dec 2014 B2
8918564 Caballero Dec 2014 B2
8925818 Kosecki et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8942480 Ellis Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944327 Meier et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8967468 Gomez et al. Mar 2015 B2
8971346 Sevier Mar 2015 B2
8976030 Cunningham et al. Mar 2015 B2
8976368 Akel et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985457 Soule et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8985461 Gelay et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
8998091 Edmonds et al. Apr 2015 B2
9002641 Showering Apr 2015 B2
9007368 Laffargue et al. Apr 2015 B2
9010641 Qu et al. Apr 2015 B2
9015513 Murawski et al. Apr 2015 B2
9016576 Brady et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9022288 Nahill et al. May 2015 B2
9030964 Essinger et al. May 2015 B2
9033240 Smith et al. May 2015 B2
9033242 Gillet et al. May 2015 B2
9036054 Koziol et al. May 2015 B2
9037344 Chamberlin May 2015 B2
9038911 Xian et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
D733112 Chaney et al. Jun 2015 S
9047098 Barten Jun 2015 B2
9047359 Caballero et al. Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047525 Barber Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9049640 Wang et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9053378 Hou et al. Jun 2015 B1
9053380 Xian et al. Jun 2015 B2
9057641 Amundsen et al. Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9064165 Havens et al. Jun 2015 B2
9064167 Xian et al. Jun 2015 B2
9064168 Todeschini et al. Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066032 Wang Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9082023 Feng et al. Jul 2015 B2
9224022 Ackley et al. Dec 2015 B2
9224027 Van Horn et al. Dec 2015 B2
D747321 London et al. Jan 2016 S
9230140 Ackley Jan 2016 B1
9443123 Hejl Jan 2016 B2
9250712 Todeschini Feb 2016 B1
9258033 Showering Feb 2016 B2
9262633 Todeschini et al. Feb 2016 B1
9310609 Rueblinger et al. Apr 2016 B2
D757009 Oberpriller et al. May 2016 S
9342724 McCloskey May 2016 B2
9375945 Bowles Jun 2016 B1
D760719 Zhou et al. Jul 2016 S
9390596 Todeschini Jul 2016 B1
D762604 Fitch et al. Aug 2016 S
D762647 Fitch et al. Aug 2016 S
9412242 Van Horn et al. Aug 2016 B2
D766244 Zhou et al. Sep 2016 S
9443222 Singel et al. Sep 2016 B2
9478113 Xie et al. Oct 2016 B2
20060290770 LeBlanc Dec 2006 A1
20070063048 Havens et al. Mar 2007 A1
20080226323 Park Sep 2008 A1
20090134221 Zhu et al. May 2009 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20110169999 Grunow et al. Jul 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20120111946 Golant May 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120193423 Samek Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20130043312 Van Horn Feb 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306731 Pedraro Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308625 Park et al. Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130313325 Wilz et al. Nov 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140100813 Showering Jan 2014 A1
20140034734 Sauerwein Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140042814 Kather et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Giordano et al. Apr 2014 A1
20140104451 Todeschini et al. Apr 2014 A1
20140106594 Skvoretz Apr 2014 A1
20140106725 Sauerwein Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131438 Kearney May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140131445 Ding et al. May 2014 A1
20140131448 Xian et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140140585 Wang May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Zumsteg et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140166759 Liu et al. Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140175172 Jovanovski et al. Jun 2014 A1
20140191644 Chaney Jul 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140197238 Lui et al. Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140203087 Smith et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140232930 Anderson Aug 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140278387 DiGregorio Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140284384 Lu et al. Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140312121 Lu et al. Oct 2014 A1
20140319220 Coyle Oct 2014 A1
20140319221 Oberpriller et al. Oct 2014 A1
20140326787 Barten Nov 2014 A1
20140332590 Wang et al. Nov 2014 A1
20140344943 Todeschini et al. Nov 2014 A1
20140346233 Liu et al. Nov 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140353373 Van Horn et al. Dec 2014 A1
20140361073 Qu et al. Dec 2014 A1
20140361082 Xian et al. Dec 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150001304 Todeschini Jan 2015 A1
20150003673 Fletcher Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150009610 London et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028102 Ren et al. Jan 2015 A1
20150028103 Jiang Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150048168 Fritz et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053766 Havens et al. Feb 2015 A1
20150053768 Wang et al. Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150063676 Lloyd et al. Mar 2015 A1
20150069130 Gannon Mar 2015 A1
20150071819 Todeschini Mar 2015 A1
20150083800 Li et al. Mar 2015 A1
20150086114 Todeschini Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150099557 Pettinelli et al. Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150102109 Huck Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150129659 Feng et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150136854 Lu et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150144701 Xian et al. May 2015 A1
20150149946 Benos et al. May 2015 A1
20150161429 Xian Jun 2015 A1
20150169925 Chang et al. Jun 2015 A1
20150169929 Williams et al. Jun 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150193644 Kearney et al. Jul 2015 A1
20150193645 Colavito et al. Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150204671 Showering Jul 2015 A1
20150210199 Payne Jul 2015 A1
20150220753 Zhu et al. Aug 2015 A1
20150254485 Feng et al. Sep 2015 A1
20150327012 Bian et al. Nov 2015 A1
20160014251 Hejl Jan 2016 A1
20160040982 Li et al. Feb 2016 A1
20160042241 Todeschini Feb 2016 A1
20160057230 Todeschini et al. Feb 2016 A1
20160109219 Ackley et al. Apr 2016 A1
20160109220 Laffargue Apr 2016 A1
20160109224 Thuries et al. Apr 2016 A1
20160112631 Ackley et al. Apr 2016 A1
20160112643 Laffargue et al. Apr 2016 A1
20160124516 Schoon et al. May 2016 A1
20160125217 Todeschini May 2016 A1
20160125342 Miller et al. May 2016 A1
20160133253 Braho et al. May 2016 A1
20160171720 Todeschini Jun 2016 A1
20160178479 Goldsmith Jun 2016 A1
20160180678 Ackley et al. Jun 2016 A1
20160189087 Morton et al. Jun 2016 A1
20160125873 Braho et al. Jul 2016 A1
20160227912 Oberpriller et al. Aug 2016 A1
20160232891 Pecorari Aug 2016 A1
20160292477 Bidwell Oct 2016 A1
20160294779 Yeakley et al. Oct 2016 A1
20160306769 Kohtz et al. Oct 2016 A1
20160314276 Sewell et al. Oct 2016 A1
20160314294 Kubler et al. Oct 2016 A1
Foreign Referenced Citations (8)
Number Date Country
1970773 Sep 2008 EP
H06-91977 Apr 1994 JP
2000-263883 Sep 2000 JP
2012245649 Dec 2012 JP
2013163789 Nov 2013 WO
2013173985 Nov 2013 WO
2014019130 Feb 2014 WO
2014110495 Jul 2014 WO
Non-Patent Literature Citations (26)
Entry
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned.
U.S. Appl. No. 14/277,337 for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned.
U.S. Appl. No. 14/446,391 for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.); 37 pages; now abandoned.
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages.
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); 17 pages.
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2, 2015 (Fitch et al.); 61 pages.
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages.
U.S. Appl. No. 14/715,916 for Evaluating Image Values filed May 19, 2015 (Ackley); 60 pages.
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages.
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 14 pages.
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al); 16 pages.
U.S. Appl. No. 14/707,123 for Application Independent DEX/UCS Interface filed May 8, 2015 (Pape); 47 pages.
U.S. Appl. No. 14/283,282 for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.); 31 pages; now abandoned.
U.S. Appl. No. 14/705,407 for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.); 42 pages.
U.S. Appl. No. 14/704,050 for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages.
U.S. Appl. No. 14/705,012 for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Fitch et al.); 44 pages.
U.S. Appl. No. 14/715,672 for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.); 35 pages.
U.S. Appl. No. 14/735,717 for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini); 39 pages.
U.S. Appl. No. 14/702,110 for System and Method for Regulating Barcode Data Injection Into a Running Application on a Smart Device filed May 1, 2015 (Todeschini et al.); 38 pages.
U.S. Appl. No. 14/747,197 for Optical Pattern Projector filed Jun. 23, 2015 (Thuries et al.); 33 pages.
U.S. Appl. No. 14/702,979 for Tracking Battery Conditions filed May 4, 2015 (Young et al.); 70 pages.
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages.
U.S. Appl. No. 14/747,490 for Dual-Projector Three-Dimensional Scanner filed Jun. 23, 2015 (Jovanovski et al.); 40 pages.
U.S. Appl. No. 14/740,320 for Tactile Switch Fora Mobile Electronic Device filed Jun. 16, 2015 (Bamdringa); 38 pages.
U.S. Appl. No. 14/740,373 for Calibrating a Volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages.
Extended Search Report in counterpart European Application No. 16199000.7 dated Apr. 21, 2017, pp. 1-7.
Related Publications (1)
Number Date Country
20170147847 A1 May 2017 US