Not Applicable.
Not Applicable.
The present invention relates in general to regulating incoming air flow in a vehicular heating, ventilating, and air conditioning (HVAC) system. More specifically, the invention relates to a system and method for providing an efficient selection between 100% fresh air mode and 100% recirculated air mode to optimize heating/cooling performance while increasing fuel economy in the case of an internal combustion (IC) vehicle, increasing IC engine off time in the case of a hybrid vehicle, and reducing battery power consumption in the case of an electric vehicle (EV).
Improved fuel economy for IC engine-powered vehicles has long been a goal of automobile manufacturers. The advent of electric vehicles (EV) and hybrid electric vehicles (HEV) has resulted in a new goal of maximizing efficiency of the use of battery power (thereby reducing IC engine on time in the case of the HEV). One of the challenges to achievement of these goals is the need to maintain a comfortable climate in the passenger cabin.
Cabin comfort is maintained by both vehicle heating and cooling systems. When heating and cooling systems were first introduced, incoming fresh air was relied upon for both heating and cooling. As systems developed, a recirculation mode was introduced in which cabin air is recycled through the HVAC system since it will already have a temperature closer to the desired temperature than the outside air. Besides full recirculation, a partial recirculation mode may also be used in which an inlet mechanism adjusts a proportion of fresh air to recirculated air that is inlet to the HVAC system via the HVAC blower.
A system and method for a partial air inlet control strategy is disclosed in U.S. Patent Application Publication 2012/0009859A1, which is incorporated herein by reference. It discloses that if the air entering the HVAC is not managed carefully, fuel economy and battery consumption may not be optimized. Particularly, if the fresh air mode is selected as the source of air for the HVAC system in hot weather, this air mode will add more cooling load to the compressor and increase energy consumption. On the other hand, if the fresh air mode is selected as the source of air for the HVAC system in cold weather, this air mode will slow down heater/defrost performance. A further complication is that when the full recirculation mode is selected, window fogging may result in certain ambient conditions. Thus, a partial recirculation control strategy is disclosed in which the air inlet door is controlled to move progressively to partial recirculation positions by taking into account the cooling/heating loads and the probability of fogging. As cooling/heating loads increase, the air inlet door moves toward a 100% recirculation mode. As fogging probability increases, the air inlet door moves toward a 100% fresh air mode. By selectively choosing a position between 100% recirculation and 100% fresh air, fuel economy and/or battery power consumption are optimized without compromising passenger comfort or causing fogging on interior glass surfaces.
For any particular vehicle model, target values for a partial recirculation setting according to different vehicle conditions are determined by performing calibration procedures during the vehicle design process by the vehicle manufacturer. The appropriate amount of partial recirculation for any particular temperature/humidity conditions may vary as a function of the speed of the HVAC blower and the velocity of the vehicle because these parameters affect the speed of fresh and recirculated air flows (e.g., at high velocity there may be a tendency for a ram air effect to cause fresh air to reverse its flow direction through the cabin air return vent). Another factor to be considered in calibrating the partial recirculation settings relates to any secondary physical effects of the modified air flow patterns on the passengers within the vehicle. For instance, the cabin air return vent is typically located near the floor in front of the front seat passenger location. When a passenger is seated in this location, the air being recirculated flows around their legs as it returns to the air return vent. As the recirculating air flow increases, the passenger may notice a cooling effect on their legs which may become uncomfortable. Therefore, the calibration process may require a lower amount of recirculated air under certain conditions and what could be achieved without this issue. Consequently, some of the potential increases in energy efficiencies may not be achieved.
In one aspect of the invention, a method is provided for controlling recirculation of a vehicular HVAC system. An automatic recirculation condition is detected in response to first conditions including a window defrost setting. A fogging probability is determined in response to second conditions including a humidity measurement. Occupancy of a passenger seat adjacent a cabin air return vent is detected. A partial recirculation of the return vent is set in response to the fogging probability and the detected occupancy.
The various doors are driven by any of several types of actuators (including, for example and without limitation, electric motors and vacuum controllers) in a conventional fashion. Door 15 may be preferably driven by an electric servomotor so that the position of door 15 is continuously variable.
System 10 further includes heating and cooling elements such as a heater core 20 (receiving a flow of coolant heated by an IC engine or a supplemental heat source) and an evaporator core 21 (receiving a flow of refrigerant from an air conditioning system 22). The evaporator temperature is normally controlled in a conventional automatic fashion to allow the system to dehumidify air passing thereover. System 22 includes a compressor, a condenser, a refrigerant tank, a pressure cycling switch, and an expansion device for metering refrigerant to evaporator core 21. Various ducts couple a heated/cooled air flow from HVAC 10 to various outlets and registers including panel, defrost, and demister registers as known in the art.
For automatic control of the temperature and flow of air in the cabin, certain conditions inside and outside the cabin are monitored by sensors, some of which are shown in
A seat occupancy sensor 35 is associated with a passenger seat 36. An occupant seating in seat 36 places their legs in a leg region 37 which is adjacent to the cabin air return vent (not shown). Sensor 35 may be comprised of a weight sensor or maybe a component of a passenger restraint system such as a seat belt sensor, for example. A transmission gear selector 35 includes an electronic switch for providing a transmission gear setting to controller 36.
A preferred method of the invention is shown in
If conditions exist in which automatic recirculation control is appropriate, then a second set of conditions are collected in step 44 and a fogging probability is determined based on those conditions. In particular, the second set of conditions preferably includes a humidity measurement, an outside air temperature measurement, and an in-cabin temperature measurement. Since it has already been determined that automatic control of partial recirculation is appropriate, a partial recirculation setting can potentially be increased depending on the probability of fogging. Fogging probability is dependent upon the relative humidity and inside and outside temperature measurements according to known relationships. Either a look up table or a calculation can be performed to provide a value of the fogging probability as described in U.S. Patent Application Publication 2012/0009859A1.
In step 45, a partial recirculation setting is obtained from a look up table based on the fogging probability and other conditions. As shown in
According to the present invention, the calibrated values in the tables shown in
As shown in